Decision Tree

September 16, 2014

1 Supervised learning

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

40 Records

Figure 1: Toy set of records (UCI)

2 Univariate trees for classification

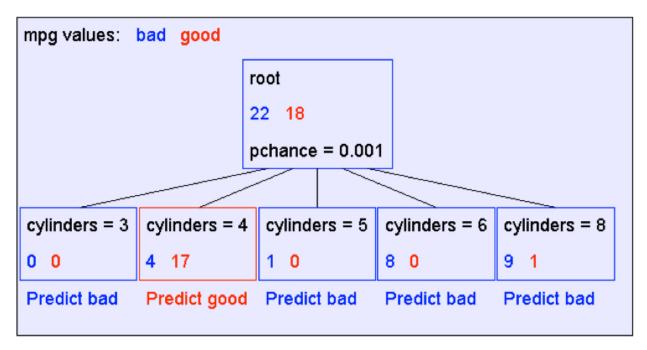


Figure 2: Decision tree, 1 layer.

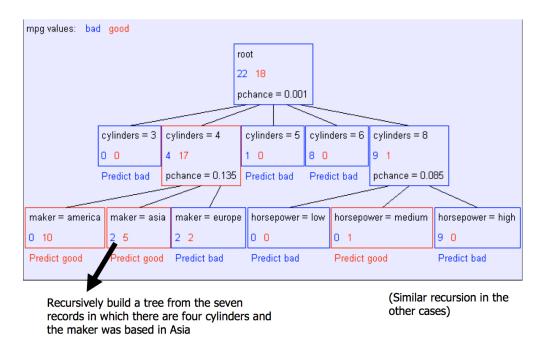


Figure 3: Decision tree, 2 layers.

REMARK: not capable of classifying data not seen in training

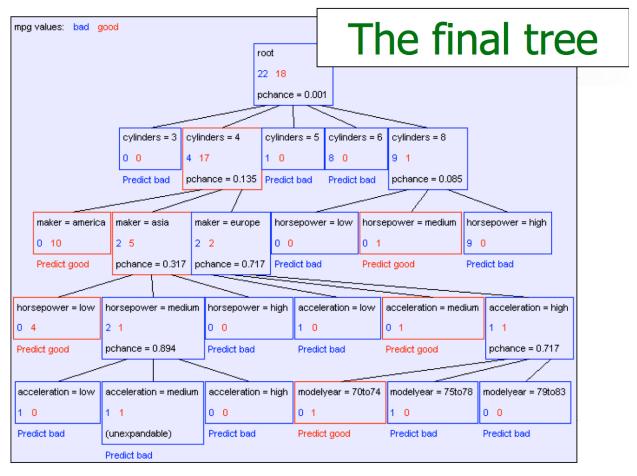


Figure 4: Decision tree, complete

3 Tree splitting

Finding the smallest decision tree in NP-complete. Use a heuristic:

- start with an empty decision tree
- split on the best feature.
- recurse

3.1 Entropy-based gain

$$H(Y) = \sum_{j} P(y_j) \log_2(\frac{1}{P(y_j)})$$

Entropy after split by X feature

$$H(Y|X) = \sum_{i} P(x_i) \sum_{j} P(y_j|x_i) \log_2(\frac{1}{P(y_j|x_i)})$$

Mutual information (or Information Gain).

$$IG(X) = H(Y) - H(Y|X)$$

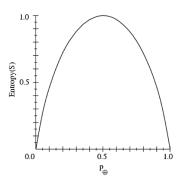


Figure 5: Entropy for 2-valued distribution

At each split we are going to choose the feature that gives the highest information gain.

X ¹	X ²	Υ
Т	Τ	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Figure 6: 2 possible features to split by

$$H(Y|X^{1}) = \frac{1}{2}H(Y|X^{1} = T) + \frac{1}{2}H(Y|X^{1} = F) = 0 + \frac{1}{2}(\frac{1}{4}\log_{2}\frac{4}{1} + \frac{3}{4}\log_{2}\frac{4}{3}) \approx .405$$
$$IG(X^{1}) = H(Y) - H(Y|X^{1}) = .954 - .405 = .549$$

$$H(Y|X^2) = \frac{1}{2}H(Y|X^2 = T) + \frac{1}{2}H(Y|X^2 = F) = \frac{1}{2}(\frac{1}{4}\log_2\frac{4}{1} + \frac{3}{4}\log_2\frac{4}{3}) + \frac{1}{2}(\frac{1}{2}\log_2\frac{2}{1} + \frac{1}{2}\log_2\frac{2}{1}) \approx .905$$

$$IG(X^2) = H(Y) - H(Y|X^2) = .954 - .905 = .049$$

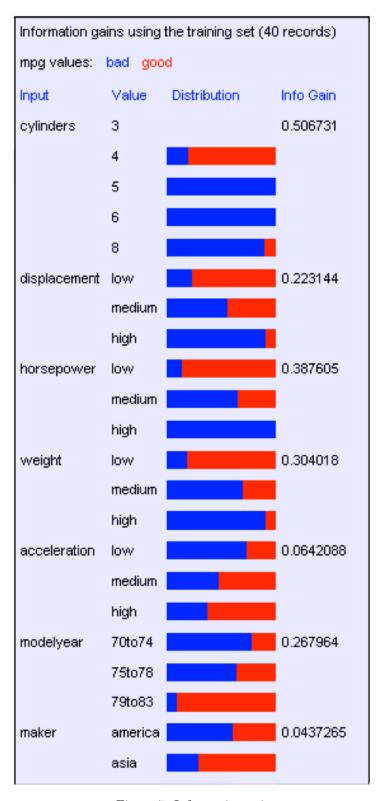


Figure 7: Information gain

4 When to stop splitting

- matching records have the same attribute value. REMARK: H(Y) = 0
- No attributes can further distinguish records. REMARK: H(Y|X) = H(Y) for any feature X

4.0.1 0 information gain case in general

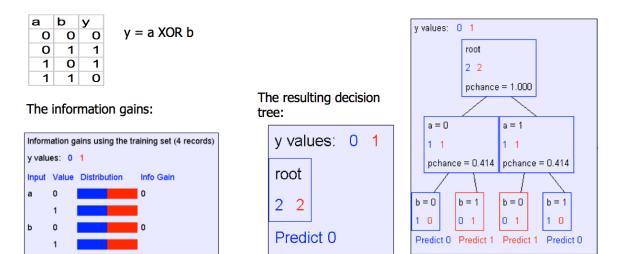


Figure 8: "Do not split" VS "split" when Information gain is 0

5 Real-valued inputs

If the input values of X are real (and/or continuous), then splitting branches by feature-values are not feasible. Instead find the best threshold t for the feature X.

$$H(Y|X:t) = P(X < t)H(Y|X < t) + P(X \ge t)H(Y|X \ge t)$$

$$IG(X:t) = H(Y) - H(Y|X:t)$$

Find t that maximizes IG(X:t). To do so, a possibility is to consider all t between two consecutive feature values.

6 Multiway splits

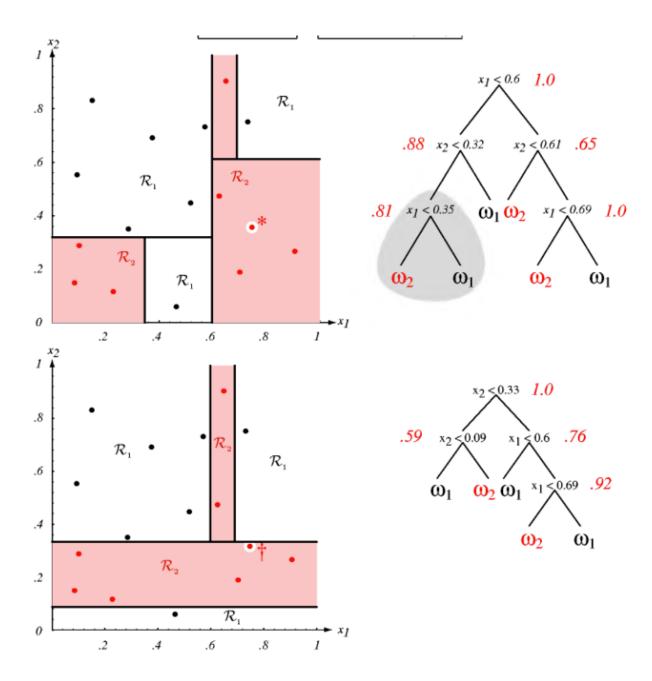
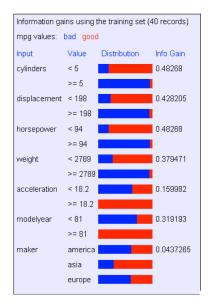


Figure 9: Real-valued information gain and decision tree



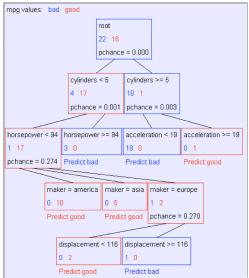


Figure 10: Real-valued information gain and decision tree

7 Regression trees

Lets say that fro each node m, χ_m is the set of datapoints reaching that node.

Estimate a predicted value per tree node

$$g_m = \frac{\sum_{t \in \chi_m} y_t}{|\chi_m|}$$

Calculate mean square error

$$E_m = \frac{\sum_{t \in \chi_m} (y_t - g_m)^2}{|\chi_m|}$$

How to choose the next split. If $E_m < \theta$, then stop splitting. Otherwise choose the split that realizes the maximum drop in error for all all brances. Say we are considering feature X with branches $x_1, x_2, ..., x_k$, and lets call χ_{mj} the subset of χ_m for which $X = x_j$.

$$g_{mj} = \frac{\sum_{t \in \chi_{mj}} y_t}{|\chi_{mj}|}$$

$$E'_{m}(X) = \frac{\sum_{j} \sum_{t \in \chi_{mj}} (y_{t} - g_{mj})^{2}}{|\chi_{m}|}$$

We shall choose X such that $E'_m(X)$ is minimized, or the drop in error is maximized.

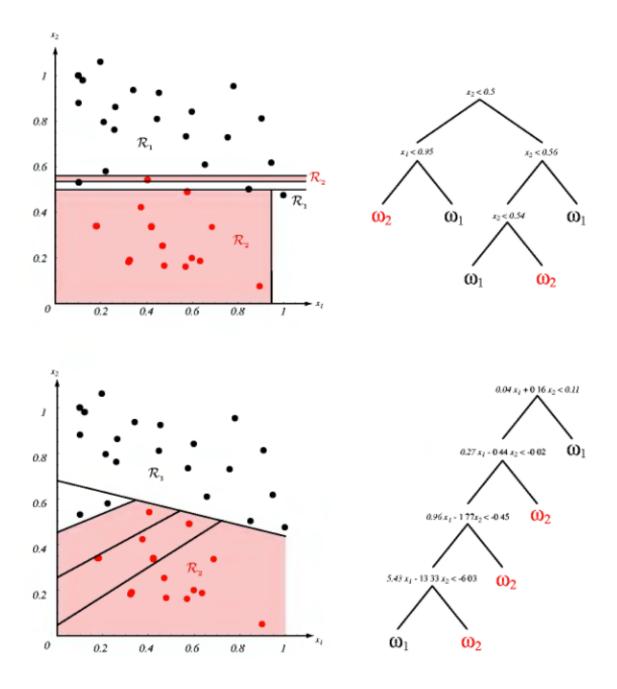


Figure 11: Multiway splits

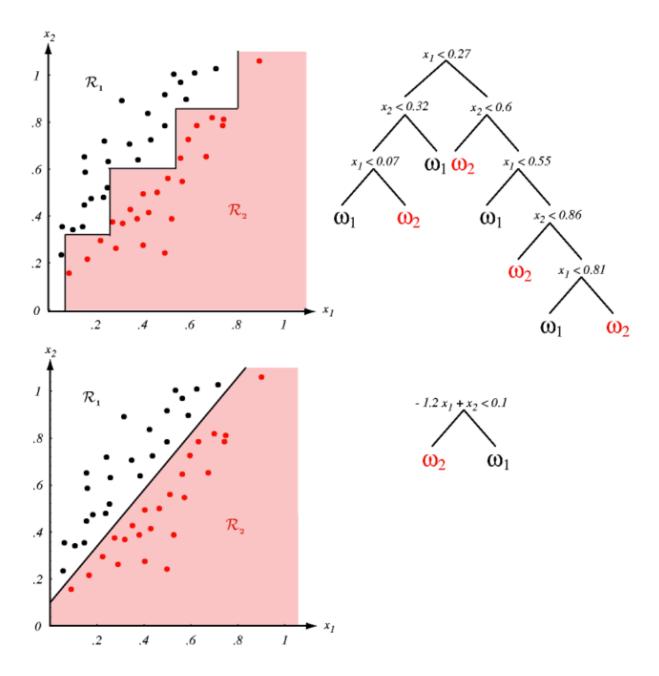


Figure 12: Multiway splits

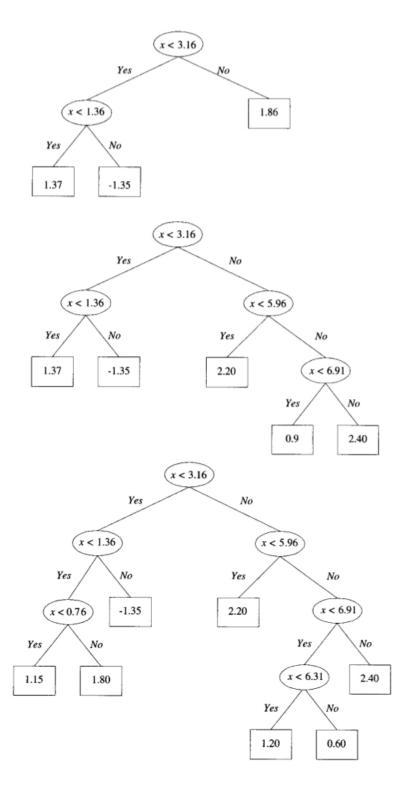


Figure 13: Regression tree

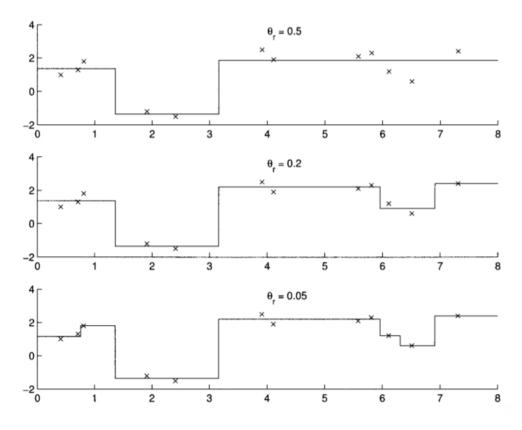


Figure 14: Regression fit

8 Decision Tree vs. Regression Tree

Aspect	Decistion Tree	Regression Tree
uncertainity	entropy	SSE
splitting criteria (Δ uncertainity)	Δ entropy = M.I	Δ SSE
leaf prediction	majority vote	mean

9 Pruning

If a tree is "too small", the model does not capture all structure of data, or it *underfits*. if the tree is too big, it captures structure that is too local and it cannot be generalized (*overfits*). Pruning helps heuristically to find the appropriate tree size.

Pre-pruning If a tree node contains less that, say, 5% of the training set, stop splitting (even if there are features with positive information gain).

Post-pruning Grow the tree until all positive information gains are used for splitting; then find the overfitting subtrees and merge them together. To do so, we need a pruning set (separate from testing or validation sets): if merging subtrees does not increase the classification error on the pruning set (by more than ϵ), then we merge the subtrees.

10 Rules extraction

Go over the branches of the tree and write down the splits. For example, for the tree in figure 10, some rules are:

```
IF (CYlinders<5) AND (horsepower<94) AND (maker= asia) THEN "predict good" IF (cylinders>=5) AND (acceleration<19) THEN "predict bad"
```

Rules extraction directly from data. Also based on Information gain, but it traverses the data DFS instead of BFS.

11 Multivariate tree

In a multivariate tree, the splitting criteria can be a functional of more than one feature. For example, at the root we can have the following split:

$$cylinders * 20 + horsepower < 180$$

More generally, a binary linear multivariate node m split can look like

$$w^1x^1 + w^2x^2 + \dots + w^dx^d + w^0 > 0$$

Such splits can be extremely powerful (if data is linearly separable, a single split at root can create a perfect classification); even more complex splits can be obtained using nonlinear split functions.

However, finding a good multivariate split is not anymore a matter of brute force: there are $2^d \binom{N}{d}$ possible splits (or hyperplanes). Later on in the course we will discuss linear classification and how good hyperplanes can be obtained without an exhaustive search.

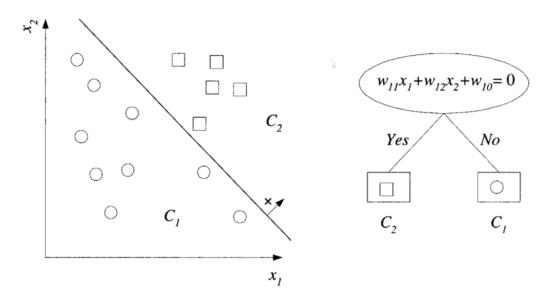


Figure 15: Multivariate split