Decision Trees

Machine Learning – 10701/15781
Carlos Guestrin
Carnegie Mellon University

February 5th, 2007

Linear separability

- A dataset is linearly separable iff ∃ a separating hyperplane:
 - □ ∃ **w**, such that:
 - $w_0 + \sum_i w_i x_i > 0$; if $\mathbf{x} = \{x_1, \dots, x_n\}$ is a positive example
 - $w_0 + \sum_i w_i x_i < 0$; if $\mathbf{x} = \{x_1, \dots, x_n\}$ is a negative example

Not linearly separable data

Some datasets are not linearly separable!

Addressing non-linearly separable data — Option 1, non-linear features

- Choose non-linear features, e.g.,
 - □ Typical linear features: $w_0 + \sum_i w_i x_i$
 - Example of non-linear features:
 - Degree 2 polynomials, $w_0 + \sum_i w_i x_i + \sum_{ij} w_{ij} x_i x_j$
- Classifier h_w(x) still linear in parameters w
 - □ As easy to learn
 - □ Data is linearly separable in higher dimensional spaces
 - More discussion later this semester

Addressing non-linearly separable data – Option 2, non-linear classifier

- Choose a classifier $h_{\mathbf{w}}(\mathbf{x})$ that is non-linear in parameters \mathbf{w} , e.g.,
 - □ Decision trees, neural networks, nearest neighbor,...
- More general than linear classifiers
- But, can often be harder to learn (non-convex/concave optimization required)
- But, but, often very useful
- (BTW. Later this semester, we'll see that these options are not that different)

A small dataset: Miles Per Gallon

Suppose we want to predict MPG

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

40 Records

From the UCI repository (thanks to Ross Quinlan)

A Decision Stump

Recursion Step

Recursion Step

Second level of tree

Recursively build a tree from the seven records in which there are four cylinders and the maker was based in Asia

(Similar recursion in the other cases)

Classification of a new example

 Classifying a test example – traverse tree and report leaf label

Are all decision trees equal?

- Many trees can represent the same concept
- But, not all trees will have the same size!
 - \square e.g., ϕ = A \land B $\lor \neg$ A \land C ((A and B) or (not A and C))

Learning decision trees is hard!!!

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - □ Recurse

Choosing a good attribute

Measuring uncertainty

- Good split if we are more certain about classification after split
 - □ Deterministic good (all true or all false)
 - Uniform distribution bad

P(Y=A) = 1/2	P(Y=B) = 1/4	P(Y=C) = 1/8	P(Y=D) = 1/8
--------------	--------------	--------------	--------------

$$P(Y=A) = 1/4$$
 $P(Y=B) = 1/4$ $P(Y=C) = 1/4$ $P(Y=D) = 1/4$

Entropy

Entropy H(X) of a random variable Y

$$H(Y) = -\sum_{i=1}^{k} P(Y = y_i) \log_2 P(Y = y_i)$$

More uncertainty, more entropy!

Information Theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

Andrew Moore's Entropy in a nutshell

Low Entropy

High Entropy

Andrew Moore's Entropy in a nutshell

Low Entropy

High Entropy

..the values (locations of soup) sampled entirely from within the soup bowl ..the values (locations of soup) unpredictable... almost uniformly sampled throughout our dining room

Information gain

- Advantage of attribute decrease in uncertainty
 - □ Entropy of Y before you split
 - Entropy after split
 - Weight by probability of following each branch, i.e., normalized number of records

$$H(Y \mid X) = -\sum_{j=1}^{v} P(X = x_j) \sum_{i=1}^{k} P(Y = y_i \mid X = x_j) \log_2 P(Y = y_i \mid X = x_j)$$

■ Information gain is difference $IG(X) = H(Y) - H(Y \mid X)$

Learning decision trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - □ Use, for example, information gain to select attribute
 - \square Split on arg max $IG(X_i) = \arg\max_i H(Y) H(Y \mid X_i)$
- Recurse

Suppose we want to predict MPG

Look at all the information gains...

A Decision Stump

Base Cases

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

Base Cases: An idea

- Base Case One: If all records in current data subset have the same output then don't recurse
- Base Case Two: If all records have exactly the same set of input attributes then don't recurse

• Is this a good idea?

The problem with Base Case 3

а	b	У
О	О	О
О	1	1
1	О	1
1	1	0

$$y = a XOR b$$

The information gains:

The resulting decision tree:

```
y values: 0 1
root
2 2
Predict 0
```

If we omit Base Case 3:

а	b	У
О	О	0
О	1	1
1	О	1
1	1	0

$$y = a XOR b$$

The resulting decision tree:

Basic Decision Tree Building Summarized

BuildTree(*DataSet*, *Output*)

- If all output values are the same in *DataSet*, return a leaf node that says "predict this unique output"
- If all input values are the same, return a leaf node that says "predict the majority output"
- Else find attribute X with highest Info Gain
- Suppose X has n_X distinct values (i.e. X has arity n_X).
 - \square Create and return a non-leaf node with n_X children.
 - ☐ The *i*'th child should be built by calling BuildTree(DS_i,Output)

Where DS_i built consists of all those records in DataSet for which X = ith distinct value of X.

Announcements

- Pittsburgh won the Super Bowl!!
 - □ Last year...

Decision trees & Learning Bias

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

Decision trees will overfit

- Standard decision trees are have no learning biased
 - □ Training set error is always zero!
 - (If there is no label noise)
 - □ Lots of variance
 - Will definitely overfit!!!
 - ☐ Must bias towards simpler trees
- Many strategies for picking simpler trees:
 - □ Fixed depth
 - □ Fixed number of leaves
 - □ Or something smarter...

A chi-square test

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

A chi-square test

- Suppose that mpg was completely uncorrelated with maker.
- What is the chance we'd have seen data of at least this apparent level of association anyway?

By using a particular kind of chi-square test, the answer is 7.2%

(Such simple hypothesis tests are very easy to compute, unfortunately, not enough time to cover in the lecture, but in your homework, you'll have fun! :))

Using Chi-squared to avoid overfitting

- Build the full decision tree as before
- But when you can grow it no more, start to prune:
 - □ Beginning at the bottom of the tree, delete splits in which p_{chance} > MaxPchance
 - Continue working you way up until there are no more prunable nodes

MaxPchance is a magic parameter you must specify to the decision tree, indicating your willingness to risk fitting noise

Pruning example

following MPG decision tree:

Note the improved test set accuracy compared with the unpruned tree

	Num Errors	Set Size	Percent Wrong
Training Set	5	40	12.50
Test Set	56	352	15.91

MaxPchance

 Technical note MaxPchance is a regularization parameter that helps us bias towards simpler models

We'll learn to choose the value of these magic parameters soon!

Real-Valued inputs

mpg	cylinders	displacemen	horsepower	weight	acceleration	modelyear	maker
good	4	97	75	2265	18.2	77	asia
bad	6	199	90	2648	15	70	america
bad	4	121	110	2600	12.8	77	europe
bad	8	350	175	4100	13	73	america
bad	6	198	95	3102	16.5	74	america
bad	4	108	94	2379	16.5	73	asia
bad	4	113	95	2228	14	71	asia
bad	8	302	139	3570	12.8	78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
good	4	120	79	2625	18.6	82	america
bad	8	455	225	4425	10	70	america
good	4	107	86	2464	15.5	76	europe
bad	5	131	103	2830	15.9	78	europe

Infinite number of possible split values!!!

Finite dataset, only finite number of relevant splits!

Idea One: Branch on each possible real value

"One branch for each numeric value" idea:

Hopeless: with such high branching factor will shatter the dataset and overfit

Threshold splits

- Binary tree, split on attribute X
 - □ One branch: X < t
 - □ Other branch: X ≥ t

Choosing threshold split

- Binary tree, split on attribute X
 - □ One branch: X < t</p>
 - \square Other branch: $X \ge t$
- Search through possible values of t
 - □ Seems hard!!!
- But only finite number of t's are important
 - □ Sort data according to X into $\{x_1, ..., x_m\}$
 - \square Consider split points of the form $x_i + (x_{i+1} x_i)/2$

A better idea: thresholded splits

- Suppose X is real valued
- Define IG(Y|X:t) as H(Y) H(Y|X:t)
- Define H(Y|X:t) = H(Y|X < t) P(X < t) + H(Y|X >= t) P(X >= t)
 - IG(Y|X:t) is the information gain for predicting Y if all you know is whether X is greater than or less than t
- Then define $IG^*(Y|X) = max_t IG(Y|X:t)$
- For each real-valued attribute, use $IG^*(Y|X)$ for assessing its suitability as a split

Example with MPG

Example tree using reals

What you need to know about decision trees

- Easy to understand
- Easy to implement
- □ Easy to use
- Computationally cheap (to solve heuristically)
- Information gain to select attributes (ID3, C4.5,...)
- Presented for classification, can be used for regression and density estimation too
- Decision trees will overfit!!!
 - lue Zero bias classifier ightarrow Lots of variance
 - Must use tricks to find "simple trees", e.g.,
 - Fixed depth/Early stopping
 - Pruning
 - Hypothesis testing

Acknowledgements

- Some of the material in the presentation is courtesy of Andrew Moore, from his excellent collection of ML tutorials:
 - □ http://www.cs.cmu.edu/~awm/tutorials