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Supervised learning

Problem Setting

* Set of possible instances X’

* Set of possible labels Y

* Unknown target function f: X — Y

* Set of function hypotheses H = {h | h: X — Y}

Input: Training examples of unknown target function £
{x;,y;},fori=1,..,n
Output: Hypothesis f € H that best approximates f

fx) = y;

Classification
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» Suppose we are given a training set of N observations

{x1, .., xy}and {y4, ..., yn}, x; € R%, y;

+ Classification problem is to estimate f(x) from this data such that

fG) =y




Example 1

Classifying spam email

é igoogleteam (GOOGLE LOTTERY WINNER! CONTAX

From: googleteam To:
Subject: GOOGLE LOTTERY WINNER! CONTACT YOUR AGENT TO CLAIM YOUR PRIZE.

GOOGLE LOTTERY INTERNATIONAL

INTERNATIONAL PROMOTION / PRIZE AWARD

(WE ENCOURAGE GLOBALIZATION)

FROM: THE LOTTERY COORDINATOR,

GOOGLE B.V. 44 9459 PE

RESULTS FOR CATEGORY "A" DRAWS

Congratulations to you as we bring to your notice, the results of the First Ca
inform you that your email address have emerged a winner of One Million (1.(
money of Two Million (2,000,000.00) Euro shared among the 2 winners in thi¢
email addresses of individuals and companies from Africa, America, Asia, At
CONGRATULATIONS!

Your fund is now deposited with the paying Bank. In your best interest to avo
award strictly from public notice until the process of transferring your claims

NOTE: to file for your claim, please contact the claim department below on e

Content-related features
* Use of certain words
* Word frequencies

* Language

* Sentence
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Structural features

* Sender IP address

* |P blacklist

* DNS information

*  Email server

* URL links (non-matching)

Binary classification: SPAM or HAM

Example 2

Handwritten Digit Recognition

Multi-class classification




Example 3

Image classification

L
N
\

B
Rl
&
ki
¥

airplane ﬁ. : : : .
automobile EE!E‘E‘
o Rl WES ¥ BN
«  EEGHNEEEEP
ceer [ PRI IS N KR RS
wg  [AE<SES DI E
roo [ I N ) O S
rorse il N R S 9 R ER SR T TR
s R Rl S -
wook o R e P o L L

Multi-class classification

Supervised Learning Process

Training
Data Pre- Feature Learning
processing extraction model
Lab'eled Normalization Feature Classification
(Typically) Standardization Selection Regression
Testing

New Learnin o

g
data model
Malicious

Unlabeled A Risk score
Benign

Classification Regression




History of Perceptrons

They were popularised by Frank Rosenblatt in the early 1960’s.
— They appeared to have a very powerful learning algorithm.
— Lots of grand claims were made for what they could learn to do.

In 1969, Minsky and Papert published a book called “Perceptrons” that
analysed what they could do and showed their limitations.

— Many people thought these limitations applied to all neural network
models.

The perceptron learning procedure is still widely used today for tasks
with enormous feature vectors that contain many millions of features.

They are the basic building blocks for
Deep Neural Networks

Linear classifiers

A hyperplane partitions space into 2 half-spaces
d+1

— Defined by the normal vector 8 € R
* @ is orthogonal to any vector lying 0
on the hyperplane

— Assumed to pass through the origin
* This is because we incorporated bias term 6 intoitby zg =1

Consider classification with +1, -1 labels ...
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Linear classifiers

* Linear classifiers: represent decision boundary by hyperplane

00 @ o ®)
2 ‘
9 — . xT = [ 1z ... x4 } o @
: e o
9(1
if 2>
h(x) = sign(@Tx) where sign(z) = { _1 ii z 2 8

—Notethat: 0T >0 — y = +1
0T <0 —= y=-—1

All the points x on the hyperplane satisfy: 87x = 0

Example: Spam

« Imagine 3 features (spam is “positive” class):
1. free (number of occurrences of “free”)

2. money (occurrences of “money”) d
3. BIAS (intercept, always has value 1) Z x;0;
i=0
x 0
BIAS H 1 BIAS : -3 (1)(_3) +
« " free : 1 free : 4 (1)(4) H
free money money : 1 money : 2 (12 +
) .,

Zi xiGi >0 =29 SPAM!!I
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The Perceptron

1 ifz>0

h(x) = sign(0Tx) where sign(z) = { 1 ifs<0

* The perceptron uses the following update rule each
time it receives a new training instance  (x;,¥;)

1
0y —8i—5 (he (x;) — yi)xyj

L J
Y
either 2 or -2

— If the prediction matches the label, make no change
— Otherwise, adjust €

The Perceptron

* The perceptron uses the following update rule each
time it receives a new training instance  (x;,y;)

1
0j < 6 — 5 (he(xi) — yi)xij

1 J
Y
either 2 or -2

* Re-write as 0] «— 0] + :Vixij (only upon misclassification)

Perceptron Rule: If x; is misclassified, do
0« 0+y;x;
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Geometric interpretation

' Bt-'l-l

[Slide by Rong Jin]

Online Perceptron

Let 8 <]0,0,...,0]
Repeat:
Receive training example (x;, y;)
If y,0Tx; <0 // prediction is incorrect
0 <6+ Vi X

Online learning — the learning mode where the model update is
performed each time a single observation is received

Batch learning — the learning mode where the model update is
performed after observing the entire training set

16




Batch Perceptron

Given training data - x;,y; }7: .
Let 6 « [0,0,..., 0]
Repeat:

Let A +[0,0,...,0]
fori=1...n,do

if y6Tx; <0 // prediction for it" instance is incorrect
A~ A+ yix
A A/TL // compute average update
6—60+ A
Until ||All2 <€

Guaranteed to find separating hyperplane if
data is linearly separable

Linear separability

) o o Y L]
° AA [}
linearly %, .. AL, A
separable L A AAA , A
® .. ° A A‘A
A AA °
A
L]
A
° o A aA AAAA
e %o A A °®
_hot ®ede akh, ey 4
linearly S e aata DALV
separable o 4 A .l
AAa

* For linearly separable data, can prove bounds on perceptron
error (depends on how well separated the data is)
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Perceptron Limitations

* |s dependent on starting point
* It could take many steps for convergence
* Perceptron can overfit

— Move the decision boundary for every example

Which of this is
optimal?

Improving the Perceptron

* The Perceptron produces many 8's during training
* The standard Perceptron simply uses the final @ at test time
— This may sometimes not be a good idea!

— Some other # may be correct on 1,000 consecutive examples,
but one mistake ruins it!

* Idea: Use a combination of multiple perceptrons
— (i.e., neural networks!)

* ldea: Use the intermediate #'s
— Voted Perceptron: vote on predictions of the intermediate 6's
— Averaged Perceptron: average the intermediate 6's

20




Linear classifiers

A linear classifier has the form

h(x)=0
X2
0.. ..O AAA
hg (X) = f(HTx) o e : A‘AAA‘ A
°° . A AA‘
° A AA
h(x) <0 h(x) >0,
XI
Properties
- (6y,64, ...,04) = model parameters
— Perceptron is a special case with f = sign
* Pros A
— Very compact model (size d) Y,

— Perceptron is fast
* Cons )
— Does not work for data that is not linearly separable —

LDA

* Classify to one of k classes

» Logistic regression computes directly
—P[Y =1]|X = x]
— Assume sigmoid function
* LDA uses Bayes Theorem to estimate it
P[X = x|Y = k]p[r=k]
P[X=x]

— Let T, = P[Y = k] be the prior probability of class
kand fi(x) = P[X = x|Y = k]

—PlY =k|X=x] =

22




Pr(Y =kl X =2) = —————
( | ) I\lﬂ'[f[()

Assume f}. (x) is Gaussian!
Unidimensional case (d=1)

1 1 ,
(L) = —/— eX — xTr — L
fk( ) \/2_71'0'k p 2% f( /k)

Tk \/2170 exp (—21 (1 — p)?)
D=1 T Vono P (=207 (z — )?)

Assumption: oy = ..o, = ©
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Gaussian Distribution

Normal Distribution
Iy . . 99.7% of the data are within
Probability density function ndard de: of the mesn ———————|
! ! ! ! 2 mmm deviations
68% within
[+— 1 standard
deviation
=30 w20 n-o " nto u+20 430
P R e S e e T T S ] For the normal distribution, the values less than one &
X standard deviation away from the mean account for 68.27% of
the set; while two standard deviations from the mean account
o

The red curve is the standard normal distribution g
for 95.45%; and three standard deviations account for 99.73%

Notation  |A/(p,0?)
Parameters | € R = mean (location)

o > 0= variance (squared scale)
Support ze€R
PDF 1

v 2mo?

_ e
e 207
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LDA decision boundary

Pick class k to maximize

2
N Mk My
(Sk(.z..) =" ; - ﬁ + IOg(’/Tk)
Example: k = 2,m; = m,

Classify as class 1 if x > %:2

True decision boundary Estimated decision boundary

Multi-Variate Normal

Multivariate normal
Probability density function

X ~ N(g, ),

with k-dimensional mean vector

p=E[X] = [E[X;],E[X;],....E[X)]]",

and k % k covariance matrix

(x)d

i = Bl(X: — ) (X; - )] = CovlXe, X;]
< 2 = E[(X - p)(X - )" = [Cov[Xe, ;i1 <i,j < KL.

Many sample points from a multivariate normal distribution with
B= [g] and ¥ = [3;5 3f‘].shown along with the 3-sigma fk(l) — +e 3= ni) ') Ya—px)

p/2 1/2 .

ellipse, the two marginal distributions, and the two 1-d (ZTT) IZk'

histograms.
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Example: Independent variables

J\

people’s heights: timépeople woke up this
X ~N(67, 20) morning: ¥~ N(9, 1)

Co-variance matrix

[5 ol

27

Example: Correlated variables

JANREUA

people’s heights: People’s weight
X~N(67, 20) Y =~ N(177,40)

Co-variance matrix

5 s
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Multi-variate LDA

Pr(Y =kl X =2) = LA(I)
( l ) 11;1 7 fi(x)

Pr(Y = k|X =x)

Assume X;, = X log ~log 754 + log =
Pr(Y = |X =x)z  Je(®) me

Tk 1
=log == — = (uk + pe) TS (ke — pe)
(Y3 2

+ 272 (g — pe),

Linear decision boundary between classes k and /

Linear discriminant functions  §;(z) = 2Ty — %#Zz Uik + log 7y

Given x, classify to class k: argmax; §; (x)

29

Example 3 classes

3 Normal distributions LDA decision boundary
with same co-variance,
but different means

30




LDA in practice

Given training data (x;,y;),i = 1,...,n,y; € {1, ..., K}

1. Estimate mean e = E”Zk
and variance

A2 _ o

7 T on —Ix leyzk /lk
2. Estimate prior Tk = Nk /n.

Given testing point x, predict k that maximizes:

31

Multi-variate LDA

Given training data (x;,v;),i =1, ...,n,y; € {1, ...,K}

1. Estimate mean
and variance

o 7 = Ni /N, where Ni is the number of class-k observations;
o fik =3, %i/Ni;
o £ =00 X me(@i — (@i — ) T/(N - K).

2. Estimate prior

Given testing point x, predict k that maximizes:

1
bi(z) = 2 27y — S B e + log e

32




Classification based on Probability

* Instead of just predicting the class, give the probability
of the instance being that class
—i.e,learn p(y | x)

* Comparison to perceptron:
— Perceptron doesn’t produce probability estimate

¢ Recall that: f

0 < p(event) <1

plevent) + p(—event) =1 | .

33

Example

2500
!

--»#o oo
60000
!

1500 2000
L I

® ° : :
£ § g i € £
g < i 8
£ g . | g
g i
§ s 8 g 1 -
° T T T T T T ° _I— . ° _I— .
) 500 1000 1500 2000 2500 No Yes No Yes
Balance Default Default

FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Bozplots of balance as a function of default status. Right:
Bozxplots of income as a function of default status.
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Why not linear regression?

\

Probability of Default
00 02 04 06 08 10

!

!

Probability of Default
00 02 04 06 08 10

0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500

Balance Balance

FIGURE 4.2. Classification using the Default data. Left: Estimated probabil-
ity of default using linear regression. Some estimated probabilities are negative!
The orange ticks indicate the 0/1 values coded for default(No or Yes). Right:
Predicted probabilities of default using logistic regression. All probabilities lie
between 0 and 1.
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Logistic regression

* Takes a probabilistic approach to learning
discriminative functions (i.e., a classifier)

* hg(x) should give p(y = 1| «;0) | Can’tjustuse linear
—Want 0 < hg(w) <1 regression with a

threshold
* Logistic regression model:
h (w) =g (OTw) Logistic/5i§moid Function
q:] == -
1 9(2)
ST
1
]’Lg ($) = —
SOk I 5 I I )
1 te - 6 -4 -2 o0 2 4 6

36




Interpretation of Model Output

he(x) = estimated p(y =1 | x;0)

Example: Cancer diagnosis from tumor size

. i) . 1
= x1 | | tumorSize

he(w) =0.7
—> Tell patient that 70% chance of tumor being malignant

Note that: p(y =0 | x;0)+ply=1|x;0) =1

Therefore, p(y =0 |x;0)=1—py=1|;0)

37

LR is a Linear Classifier!

* Predicty = 1if:
Ply = 1|x; 0] > P[y = 0lx; 6]

Ply = 1|x;0] > %
1 1

- > —
140" 2
* Equivalent to:

° 890+Z?=1 ijj > 1

° 90 + Z?:l OJX] >0

Logistic Regression is a linear classifier!
38




Logistic Regression

. .

he(x) =g (0Tx)
1

g9(z

9(z) = =

]

0T should be large negative
values for negative instances

1
OTx should be large positive
values for positive instances

* Assume a threshold and... ® o o ®
— Predicty =1if hg(ax) > 0.5 eVl ,p ©
— Predicty = 0if hg(x) < 0.5 e © 0%
QO OO 5)
Logistic Regression
* Given { (xllyl) s (xz, yz) ety (xN; yN) }

where  x. e R4y, € {0,1}

* Model: hy(x) =g (07x)

1
9(2)—1+6_Z
to

o-|" 2T=[1 =

0a

24 ]
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Logistic Regression Objective

* Can’t just use squared loss as in linear regression:

J(0) = %Z?=1(h9(xi) — ¥i)?

— Using the logistic regression model

1
he(x) = P

results in a non-convex optimization‘

41

Maximum Likelihood Estimation (MLE)

Given training data X = {x, ..., xy} with labels
Y= {1, yn}

What is the likelihood of training data for parameter 67

Define likelihood function

Maxg L(6) = P[Y|X; 0]
Assumption: training points are independent

1©® = | [Pidxsio)
i=1

General probabilistic method for classifier training




Log Likelihood

* Max likelihood is equivalent to maximizing log
of likelihood

L@ = | [ Plyilx0)
i=1

logL(8) = 2 log P[y;|x;, 6]
i=1
* They both have the same maximum 6 g

MVLE for Logistic Regression

p(ylx,0) = he(x)? (1 — he(x))"

O\LE = arg max Zl log p(¥;l,9)

= azmax ) yilog hg(x;) + (1 — y)log (1 — hg(x:))
1=1

* Substitute in model, and take negative to yield

Logistic regression objective:
in.J(6
min ©)

J(0) = — Z yilog hg(x;) + (1 = y)log (1 — hy(x,))




Objective for Logistic Regression

J(0)=—=> yiloghg(x;) + (1 — yi)log (1 — hg (x:)) y

i=1"

* Cost of a single instance:

cost (hg(a:), y) = { B log_(lloi(zzgig i Z z (1)

* Can re-write objective function as
n

J(6) =) cost ( he(xi), yi )

=1
\ J
I

Cross-entropy loss

Intuition
s N —log(he(x)) ify=1
cost (he(x),y) = { og(1 — hZ(:c)) £y =0

Aside: Recall the plot of log(z)
/

0.5 1

-0.5
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Intuition

—log(he(x)) ify=1|

cost (he(x),y) = {‘

—log(1 — he(x)) ify=0

lfy=1

fy=1 J

cost

>

0 /ZQ(ZB) 1

Cost = 0 if prediction is correct
As hg(x) — 0, cost — oo

Captures intuition that larger
mistakes should get larger
penalties

— e.g., predict hg(x) =0,buty=1

47

Intuition

cost(ofe).) = {

Ify=1
Ify=0

cost

—log(he(x)) ify=1
—log(1 — hg(x)) ify=0

Ify=0

* Cost = 0if prediction is correct
* As (1 —he(x)) — 0,cost — o0

* Captures intuition that larger

mistakes should get larger
penalties
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