Linear Regression, Logistic Regression, and Perceptrons

Problem Method Model Objective Stochastic Gradient Descent Update Rule

Regression Linear Regression | hy(%) = @ - & =Y, w2’ | Squared Error | w’ «w/ — X+ (hg(%) — yi) - @]

Classification | Linear Regression | hg(%) =@ - % Squared Error | w/ < w? — X+ (hg(Z;) — yi) - @

Classification | Logistic Regression | hg(Z) = 1/(1 + e~ %) Squared Error | w? < w? — X+ (hg(Z;) — yi) - ha(Z3) - (1 — hg(Z;)) - 2
Classification | Logistic Regression | hg(Z) = 1/(1 + e~%7) Log Likelihood | w? < w? — X+ (hg(Z;) — i) - 2]

Classification | Perceptron hg(Z) = sign(w - ) Mistakes wl —wl = X (hg(T) — i) - )

Notes:

The labels y are typically encoded as {0,1} when using linear or logistic regression and {—1,+1} when using the perceptron algorithm.
Squared error is Y. (hag(Z;) — yi)?.

Log likelihood is Y~ (y; - log(ha (%)) + (1 — y;) - log(1 — hg(Z))).

Mistakes is simply the number of instances where hg(%;) # y;.

The perceptron training algorithm has the update rule

w? — w + xf
for mistakes on positive examples and

wl — wl — ]
for mistakes on negative examples (if the data has not been transformed to have only positive instances). Now consider the perceptron update
rule given in the table above: _

wl —wl =\ (hw(fz) — y,) . Iz
Assuming {—1,+1} labels, we note that hg(Z;) — y; is 0 if z; is correctly classified; it is —2 if x; is a misclassified positive example; and it is
42 if x; is a misclassified negative example. Thus, the perceptron update rule given in the table above is equivalent to the standard perceptron
update rule(s) when A = 1/2.

Finally, we note that the stochastic gradient descent update rule is identical for (1) linear regression with a squared error objective, (2) logistic
regression with a log likelihood objective, and (3) perceptron with a mistake count objective. However, in each case, the model is different: - Z,
1/(1+ e "), and sign(w - &), respectively.



