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1 Ridge Regression

Consider the Ridge regression problem:

ŵridge = arg min
w
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wjxij)
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w2
j

}
; λ ≥ 0 (1)

if we are working with centered data, then the above problem can be rewritten as:

ŵc
ridge = arg min

wc

{ N∑
i=1

(yi − wc0 −
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wcj(xij − x̄j))2 + λ

m∑
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(wcj)
2

}
; λ ≥ 0 (2)

1. Can you give the correspondence between wi and wci for all i ∈ {0, 1, . . . ,m} ?

2. Show that the optimal value for wc0 for centered data is the mean of the output values i.e.,
ȳ =

∑N
i=1 yi.

3. Why can’t we have a negative λ ?

2 Programming Ridge Regression

In this question you will implement ridge regression using the formulation shown in Equation ??.
To this end remember to center your data and do not include the constant feature in your design
matrix. We will be working with the Sinusoid dataset from Assignment-2 (do not use the validation
set). Estimate the training and test RMSE using ten-fold cross validation for the following settings:

1. Add four new feature to the dataset consisting of higher powers of xp, p ∈ {1, 2, . . . , 5}. Use
51 values of λ in [0, 10], so that λ ∈ {0, 0.2, 0.4, . . . , 10}. Plot train and test RMSE vs lambda
on separate plots.

2. Add nine new feature to the dataset consisting of higher powers of xp, p ∈ {1, 2, . . . , 9}. Use
51 values of λ in [0, 10], so that λ ∈ {0, 0.2, 0.4, . . . , 10}. Plot train and test RMSE vs lambda
on separate plots.

NOTE: The quantity that you will be plotting is the average RMSE across the ten folds for the
test/train sets, for each value of λ.

1



2.1 Interpretation:

Do you see a difference in the behavior of regularization of the two synthetic datasets we created
in the two problems? Explain your results in detail, keeping in mind that a zero value for λ
corresponds to the solution without regularization i.e., linear regression.

3 Maximum Likelihood For Univariate Normal

Consider N samples {x1, x2 . . . , xN}, generated from a univariate normal distribution:

p(x;µ, σ) =
1√
2πσ

e−
1

2σ2 (x−µ)2 (3)

formulate the log-likelihood for the N samples, and derive the maximum likelihood estimate for
the mean of the distribution µML.

3.1 Extra-credit:

Derive the maximum likelihood estimate for the standard deviation σML.
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