Foundations and Trends® in
Information Retrieval

Vol. 4, No. 3 (2010) 175-246 n‘w

© 2010 C. Olston and M. Najork
DOI: 10.1561,/1500000017 the essence of knowledge

Web Crawling
By Christopher Olston and Marc Najork

Contents
1 Introduction 176
1.1 Challenges 178
1.2 Outline 179
2 Crawler Architecture 180
2.1 Chronology 180
2.2 Architecture Overview 184
2.3 Key Design Points 185
3 Crawl Ordering Problem 194
3.1 Model 195
3.2 Web Characteristics 197
3.3 Taxonomy of Crawl Ordering Policies 202
4 Batch Crawl Ordering 203
4.1 Comprehensive Crawling 204
4.2 Scoped Crawling 208

4.3 Efficient Large-Scale Implementation 213

5 Incremental Crawl Ordering 215

5.1 Maximizing Freshness 217
5.2 Capturing Updates 222
5.3 Efficient Large-Scale Implementation 223
6 Avoiding Problematic and Undesirable Content 225
6.1 Redundant Content 225
6.2 Crawler Traps 226
6.3 Web Spam 227
6.4 Cloaked Content 228
7 Deep Web Crawling 230
7.1 Types of Deep Web Sites 230
7.2 Problem Overview 232
7.3 Content Extraction 232
8 Future Directions 236

References 239

Foundations and Trends® in

Information Retrieval

Vol. 4, No. 3 (2010) 175-246 n‘w
© 2010 C. Olston and M. Najork

DOI: 10.1561/1500000017 the essence of knowledge

Web Crawling

Christopher Olston! and Marc Najork?

1 Yahoo! Research, 701 First Avenue, Sunnyvale, CA, 94089, USA
olston@yahoo-inc.com

2 Microsoft Research, 1065 La Avenida, Mountain View, CA, 94043, USA
najork@microsoft.com

Abstract

This is a survey of the science and practice of web crawling. While at
first glance web crawling may appear to be merely an application of
breadth-first-search, the truth is that there are many challenges ranging
from systems concerns such as managing very large data structures
to theoretical questions such as how often to revisit evolving content
sources. This survey outlines the fundamental challenges and describes
the state-of-the-art models and solutions. It also highlights avenues for
future work.

1

Introduction

A web crawler (also known as a robot or a spider) is a system for the
bulk downloading of web pages. Web crawlers are used for a variety of
purposes. Most prominently, they are one of the main components of
web search engines, systems that assemble a corpus of web pages, index
them, and allow users to issue queries against the index and find the web
pages that match the queries. A related use is web archiving (a service
provided by e.g., the Internet archive [77]), where large sets of web pages
are periodically collected and archived for posterity. A third use is web
data mining, where web pages are analyzed for statistical properties,
or where data analytics is performed on them (an example would be
Attributor [7], a company that monitors the web for copyright and
trademark infringements). Finally, web monitoring services allow their
clients to submit standing queries, or triggers, and they continuously
crawl the web and notify clients of pages that match those queries (an
example would be GigaAlert [64]).

The raison d’étre for web crawlers lies in the fact that the web is
not a centrally managed repository of information, but rather consists

176

177

of hundreds of millions of independent web content providers, each one
providing their own services, and many competing with one another.
In other words, the web can be viewed as a federated information repos-
itory, held together by a set of agreed-upon protocols and data formats,
such as the Transmission Control Protocol (TCP), the Domain Name
Service (DNS), the Hypertext Transfer Protocol (HTTP), the Hyper-
text Markup Language (HTML) and the robots exclusion protocol. So,
content aggregators (such as search engines or web data miners) have
two choices: They can either adopt a pull model where they will proac-
tively scour the web for new or updated information, or they could
try to establish a convention and a set of protocols enabling content
providers to push content of interest to the aggregators. Indeed, the
Harvest system [24], one of the earliest search services, adopted such
a push model. However, this approach did not succeed, and virtually
all content aggregators adopted the pull approach, with a few pro-
visos to allow content providers to exclude all or part of their content
from being crawled (the robots exclusion protocol) and to provide hints
about their content, its importance and its rate of change (the Sitemaps
protocol [110]).

There are several reasons why the push model did not become the
primary means of acquiring content for search engines and other content
aggregators: The fact that web servers are highly autonomous means
that the barrier of entry to becoming a content provider is quite low,
and the fact that the web protocols were at least initially extremely
simple lowered the barrier even further — in fact, this simplicity is
viewed by many as the reason why the web succeeded where earlier
hypertext systems had failed. Adding push protocols would have com-
plicated the set of web protocols and thus raised the barrier of entry for
content providers, while the pull model does not require any extra pro-
tocols. By the same token, the pull model lowers the barrier of entry for
content aggregators as well: Launching a crawler does not require any
a priori buy-in from content providers, and indeed there are over 1,500
operating crawlers [47], extending far beyond the systems employed by
the big search engines. Finally, the push model requires a trust relation-
ship between content provider and content aggregator, something that
is not given on the web at large — indeed, the relationship between

178 Introduction

content providers and search engines is characterized by both mutual
dependence and adversarial dynamics (see Section 6).

1.1 Challenges

The basic web crawling algorithm is simple: Given a set of seed Uni-
form Resource Locators (URLs), a crawler downloads all the web pages
addressed by the URLs, extracts the hyperlinks contained in the pages,
and iteratively downloads the web pages addressed by these hyperlinks.
Despite the apparent simplicity of this basic algorithm, web crawling
has many inherent challenges:

® Scale. The web is very large and continually evolving.
Crawlers that seek broad coverage and good freshness must
achieve extremely high throughput, which poses many diffi-
cult engineering problems. Modern search engine companies
employ thousands of computers and dozens of high-speed
network links.

e Content selection tradeoffs. Even the highest-throughput
crawlers do not purport to crawl the whole web, or keep up
with all the changes. Instead, crawling is performed selec-
tively and in a carefully controlled order. The goals are to
acquire high-value content quickly, ensure eventual coverage
of all reasonable content, and bypass low-quality, irrelevant,
redundant, and malicious content. The crawler must balance
competing objectives such as coverage and freshness, while
obeying constraints such as per-site rate limitations. A bal-
ance must also be struck between exploration of potentially
useful content, and exploitation of content already known to
be useful.

e Social obligations. Crawlers should be “good citizens” of
the web, i.e., not impose too much of a burden on the web
sites they crawl. In fact, without the right safety mecha-
nisms a high-throughput crawler can inadvertently carry out
a denial-of-service attack.

e Adversaries. Some content providers seek to inject use-
less or misleading content into the corpus assembled by

1.2 Outline 179

the crawler. Such behavior is often motivated by financial
incentives, for example (mis)directing traffic to commercial
web sites.

1.2 OQutline

Web crawling is a many-faceted topic, and as with most interesting
topics it cannot be split into fully orthogonal subtopics. Bearing that
in mind, we structure the survey according to five relatively distinct
lines of work that occur in the literature:

¢ Building an efficient, robust and scalable crawler (Section 2).

® Selecting a traversal order of the web graph, assuming
content is well-behaved and is interconnected via HTML
hyperlinks (Section 4).

¢ Scheduling revisitation of previously crawled content (Sec-
tion 5).

¢ Avoiding problematic and undesirable content (Section 6).

e Crawling so-called “deep web” content, which must be
accessed via HTML forms rather than hyperlinks (Section 7).

Section 3 introduces the theoretical crawl ordering problem studied
in Sections 4 and 5, and describes structural and evolutionary proper-
ties of the web that influence crawl ordering. Section 8 gives a list of
open problems.

2

Crawler Architecture

This section first presents a chronology of web crawler development,
and then describes the general architecture and key design points of
modern scalable crawlers.

2.1 Chronology

Web crawlers are almost as old as the web itself. In the spring of 1993,
shortly after the launch of NCSA Mosaic, Matthew Gray implemented
the World Wide Web Wanderer [67]. The Wanderer was written in Perl
and ran on a single machine. It was used until 1996 to collect statistics
about the evolution of the web. Moreover, the pages crawled by the
Wanderer were compiled into an index (the “Wandex”), thus giving
rise to the first search engine on the web. In December 1993, three
more crawler-based Internet Search engines became available: Jump-
Station (implemented by Jonathan Fletcher; the design has not been
written up), the World Wide Web Worm [90], and the RBSE spider [57].
WebCrawler [108] joined the field in April 1994, and MOMspider [61]
was described the same year. This first generation of crawlers identified
some of the defining issues in web crawler design. For example, MOM-

180

2.1 Chronology 181

spider considered politeness policies: It limited the rate of requests
to each site, it allowed web sites to exclude themselves from purview
through the nascent robots exclusion protocol [83], and it provided a
“black-list” mechanism that allowed the crawl operator to exclude sites.
WebCrawler supported parallel downloading of web pages by structur-
ing the system into a central crawl manager and 15 separate download-
ing processes. However, the design of these early crawlers did not focus
on scalability, and several of them (RBSE spider and WebCrawler) used
general-purpose database management systems to store the state of the
crawl. Even the original Lycos crawler [89] ran on a single machine, was
written in Perl, and used Perl’s associative arrays (spilt onto disk using
the DBM database manager) to maintain the set of URLs to crawl.

The following few years saw the arrival of several commercial search
engines (Lycos, Infoseek, Excite, AltaVista, and HotBot), all of which
used crawlers to index tens of millions of pages; however, the design of
these crawlers remains undocumented.

Mike Burner’s description of the Internet Archive crawler [29] was
the first paper that focused on the challenges caused by the scale of the
web. The Internet Archive crawling system was designed to crawl on
the order of 100 million URLs. At this scale, it is no longer possible to
maintain all the required data in main memory. The solution proposed
by the TA paper was to crawl on a site-by-site basis, and to parti-
tion the data structures accordingly. The list of URLs to be crawled
was implemented as a disk-based queue per web site. To avoid adding
multiple instances of the same URL to the queue, the IA crawler main-
tained an in-memory Bloom filter [20] of all the site’s URLs discovered
so far. The crawl progressed by dequeuing a URL, downloading the
associated page, extracting all links, enqueuing freshly discovered on-
site links, writing all off-site links to disk, and iterating. Each crawling
process crawled 64 sites in parallel, using non-blocking input/output
(I/0) and a single thread of control. Occasionally, a batch process
would integrate the off-site link information into the various queues.
The IA design made it very easy to throttle requests to a given host,
thereby addressing politeness concerns, and DNS and robot exclusion
lookups for a given web site were amortized over all the site’s URLs
crawled in a single round. However, it is not clear whether the batch

182 Crawler Architecture

process of integrating off-site links into the per-site queues would scale
to substantially larger web crawls.

Brin and Page’s 1998 paper outlining the architecture of the first-
generation Google [25] system contains a short description of their
crawler. The original Google crawling system consisted of a single
URLserver process that maintained the state of the crawl, and around
four crawling processes that downloaded pages. Both URLserver and
crawlers were implemented in Python. The crawling process used asyn-
chronous I/O and would typically perform about 300 downloads in par-
allel. The peak download rate was about 100 pages per second, with an
average size of 6 KB per page. Brin and Page identified social aspects
of crawling (e.g., dealing with web masters’ complaints) as a major
challenge in operating a crawling system.

With the Mercator web crawler, Heydon and Najork presented a
“blueprint design” for web crawlers [75, 94]. Mercator was written
in Java, highly scalable, and easily extensible. The first version [75]
was non-distributed; a later distributed version [94] partitioned the
URL space over the crawlers according to host name, and avoided the
potential bottleneck of a centralized URL server. The second Mercator
paper gave statistics of a 17-day, four-machine crawl that covered
891 million pages. Mercator was used in a number of web mining
projects [27, 60, 71, 72, 95], and in 2001 replaced the first-generation
AltaVista crawler.

Shkapenyuk and Suel’s Polybot web crawler [111] represents another
“blueprint design.” Polybot is a distributed system, consisting of a
crawl manager process, multiple downloader processes, and a DNS
resolver process. The paper describes scalable data structures for the
URL frontier and the “seen-URL” set used to avoid crawling the same
URL multiple times; it also discusses techniques for ensuring polite-
ness without slowing down the crawl. Polybot was able to download
120 million pages over 18 days using four machines.

The IBM WebFountain crawler [56] represented another industrial-
strength design. The WebFountain crawler was fully distributed.
The three major components were multi-threaded crawling processes
(“Ants”), duplicate detection processes responsible for identifying
downloaded pages with near-duplicate content, and a central controller

2.1 Chronology 183

process responsible for assigning work to the Ants and for monitoring
the overall state of the system. WebFountain featured a very flexible
crawl scheduling mechanism that allowed URLs to be prioritized, main-
tained a politeness policy, and even allowed the policy to be changed
on the fly. It was designed from the ground up to support incremental
crawling, i.e., the process of recrawling pages regularly based on their
historical change rate. The WebFountain crawler was written in C++
and used MPI (the Message Passing Interface) to facilitate communi-
cation between the various processes. It was reportedly deployed on a
cluster of 48 crawling machines [68].

UbiCrawler [21] is another scalable distributed web crawler. It uses
consistent hashing to partition URLs according to their host component
across crawling machines, leading to graceful performance degradation
in the event of the failure of a crawling machine. UbiCrawler was able to
download about 10 million pages per day using five crawling machines.
UbiCrawler has been used for studies of properties of the African
web [22] and to compile several reference collections of web pages [118].

Recently, Yan et al. described IRLbot [84], a single-process web
crawler that is able to scale to extremely large web collections without
performance degradation. IRLbot features a “seen-URL” data struc-
ture that uses only a fixed amount of main memory, and whose perfor-
mance does not degrade as it grows. The paper describes a crawl that
ran over two months and downloaded about 6.4 billion web pages. In
addition, the authors address the issue of crawler traps (web sites with
a large, possibly infinite number of low-utility pages, see Section 6.2),
and propose ways to ameliorate the impact of such sites on the crawling
process.

Finally, there are a number of open-source crawlers, two of which
deserve special mention. Heritrix [78, 93] is the crawler used by the
Internet Archive. It is written in Java and highly componentized,
and its design is quite similar to that of Mercator. Heritrix is multi-
threaded, but not distributed, and as such suitable for conducting mod-
erately sized crawls. The Nutch crawler [62, 81] is written in Java as
well. It supports distributed operation and should therefore be suitable
for very large crawls; but as of the writing of [81] it has not been scaled
beyond 100 million pages.

184 Crawler Architecture

2.2 Architecture Overview

Figure 2.1 shows the high-level architecture of a prototypical dis-
tributed web crawler. The crawler consists of multiple processes run-
ning on different machines connected by a high-speed network. Each
crawling process consists of multiple worker threads, and each worker
thread performs repeated work cycles.

At the beginning of each work cycle, a worker obtains a URL from
the Frontier data structure, which dispenses URLs according to their
priority and to politeness policies. The worker thread then invokes the
HTTRP fetcher. The fetcher first calls a DNS sub-module to resolve the
host component of the URL into the IP address of the corresponding
web server (using cached results of prior resolutions if possible), and
then connects to the web server, checks for any robots exclusion rules
(which typically are cached as well), and attempts to download the web
page.

If the download succeeds, the web page may or may not be stored
in a repository of harvested web pages (not shown). In either case, the
page is passed to the Link extractor, which parses the page’s HTML
content and extracts hyperlinks contained therein. The corresponding
URLs are then passed to a URL distributor, which assigns each URL
to a crawling process. This assignment is typically made by hashing
the URLs host component, its domain, or its IP address (the latter
requires additional DNS resolutions). Since most hyperlinks refer to
pages on the same web site, assignment to the local crawling process is
the common case.

Next, the URL passes through the Custom URL filter (e.g., to
exclude URLs belonging to “black-listed” sites, or URLs with particu-
lar file extensions that are not of interest) and into the Duplicate URL
eliminator, which maintains the set of all URLs discovered so far and
passes on only never-before-seen URLs. Finally, the URL prioritizer
selects a position for the URL in the Frontier, based on factors such as
estimated page importance or rate of change.l

I Change rates play a role in incremental crawlers (Section 2.3.5), which route fetched URLs
back to the prioritizer and Frontier.

DNS servers

Crawling process 1

2.3 Key Design Points 185

Crawling process 2

Web servers

-
= cache
A
Host names IP addresses
4
| HTTP fetcher

DNS resolver &

/ HTML pages
h 4

Link extractor

URLs
h 4

URL distributor

A 4

Custom URL filter

URLs

URLs
A 4

Duplicate URL
eliminator

URLs
h 4

URL prioritizer

URLs
v

Frontier

N

URLs URLs

DNS resolver &

P DNS servers

-
cache h
A
Host names IP addresses
A 4
HTTP fetcher |«
HTML pages \
4
Link extractor
URLs
4
URL distributor
URLs URLs
4

Custom URL filter

URLs URLs
A 4

Duplicate URL
eliminator

URLs
A 4

URL prioritizer

URLs
\ 4

Frontier

NI

Fig. 2.1 Basic crawler architecture.

2.3 Key Design Points

P \Web servers

Web crawlers download web pages by starting from one or more
seed URLs, downloading each of the associated pages, extracting the

186 Crawler Architecture

hyperlink URLs contained therein, and recursively downloading those
pages. Therefore, any web crawler needs to keep track both of the
URLs that are to be downloaded, as well as those that have already
been downloaded (to avoid unintentionally downloading the same page
repeatedly). The required state is a set of URLs, each associated with
a flag indicating whether the page has been downloaded. The oper-
ations that must be supported are: Adding a new URL, retrieving a
URL, marking a URL as downloaded, and testing whether the set con-
tains a URL. There are many alternative in-memory data structures
(e.g., trees or sorted lists) that support these operations. However, such
an implementation does not scale to web corpus sizes that exceed the
amount of memory available on a single machine.

To scale beyond this limitation, one could either maintain the data
structure (e.g., the tree or sorted list) on disk, or use an off-the-shelf
database management system. Either solution allows maintaining set
sizes that exceed main memory; however, the cost of accessing items in
the set (particularly for the purpose of set membership test) typically
involves a disk seek, making it a fairly expensive operation. To achieve
high performance, a more specialized approach is needed.

Virtually every modern web crawler splits the crawl state into two
major data structures: One data structure for maintaining the set of
URLs that have been discovered (whether downloaded or not), and
a second data structure for maintaining the set of URLs that have
yet to be downloaded. The first data structure (sometimes called the
“URL-seen test” or the “duplicated URL eliminator”) must support set
addition and set membership testing, while the second data structure
(usually called the frontier) must support adding URLSs, and selecting
a URL to fetch next.

2.3.1 Frontier Data Structure and Politeness

A straightforward implementation of the frontier data structure is a
First-in-First-out (FIFO) queue. Such an implementation results in a
breadth-first traversal of the web graph. However, this simple approach
has drawbacks: Most hyperlinks on the web are “relative” (i.e., refer
to another page on the same web server). Therefore, a frontier realized

2.3 Key Design Points 187

as a FIFO queue contains long runs of URLs referring to pages on
the same web server, resulting in the crawler issuing many consecutive
HTTP requests to that server. A barrage of requests in short order
is considered “impolite,” and may be construed as a denial-of-service
attack on the web server. On the other hand, it would be wasteful for
the web crawler to space out requests to the same server without doing
other useful work in the meantime. This problem is compounded in a
multithreaded or distributed crawler that issues many HTTP requests
in parallel.

Most web crawlers obey a policy of not issuing multiple overlapping
requests to the same server. An easy way to realize this is to maintain a
mapping from web servers to crawling threads, e.g., by hashing the host
component of each URL.? In this design, each crawling thread has a sep-
arate FIFO queue, and downloads only URLs obtained from that queue.

A more conservative politeness policy is to space out requests to
each web server according to that server’s capabilities. For example, a
crawler may have a policy to delay subsequent requests to a server by a
multiple (say 10x) of the time it took to download the last page from
that server. This policy ensures that the crawler consumes a bounded
fraction of the web server’s resources. It also means that in a given time
interval, fewer pages will be downloaded from slow or poorly connected
web servers than from fast, responsive web servers. In other words,
this crawling policy is biased toward well-provisioned web sites. Such a
policy is well-suited to the objectives of search engines, since large and
popular web sites tend also to be well-provisioned.

The Mercator web crawler implemented such an adaptive politeness
policy. It divided the frontier into two parts, a “front end” and a “back
end.” The front end consisted of a single queue), and URLs were
added to the frontier by enqueuing them into that queue. The back

2To amortize hardware cost, many web servers use virtual hosting, meaning that multiple
symbolic host names resolve to the same IP address. Simply hashing the host component
of each URL to govern politeness has the potential to overload such web servers. A better
scheme is to resolve the URLs symbolic host name to an IP address and use a hash of that
address to assign URLs to a queue. The drawback of that approach is that the latency
of DNS resolution can be high (see Section 2.3.3), but fortunately there tends to be a
high amount of locality in the stream of discovered host names, thereby making caching
effective.

188 Crawler Architecture

end consisted of many separate queues; typically three times as many
queues as crawling threads. Each queue contained URLs belonging to a
single web server; a table T' on the side maintained a mapping from web
servers to back-end queues. In addition, associated with each back-end
queue g was a time ¢ at which the next URL from ¢ may be processed.
These (g,t) pairs were organized into an in-memory priority queue, with
the pair with lowest ¢ having the highest priority. Each crawling thread
obtained a URL to download by removing the highest-priority entry
(g,t) from the priority queue, waiting if necessary until time ¢ had been
reached, dequeuing the next URL u from ¢, downloading it, and finally
reinserting the pair (¢,tnow + k -) into the priority queue, where ;04
is the current time, x is the amount of time it took to download u, and k
is a “politeness parameter”; typically 10. If dequeuing u from ¢ left ¢
empty, the crawling thread would remove the mapping from host(u)
to ¢ from T, repeatedly dequeue a URL v’ from @Q and enqueue u’ into
the back-end queue identified by T'(host(u’)), until it found a u’ such
that host(u’) was not contained in T. At this point, it would enqueue
v’ in ¢ and update T to map host(u') to q.

In addition to obeying politeness policies that govern the rate at
which pages are downloaded from a given web site, web crawlers may
also want to prioritize the URLs in the frontier. For example, it may
be desirable to prioritize pages according to their estimated usefulness
(based for example on their PageRank [101], the traffic they receive,
the reputation of the web site, or the rate at which the page has
been updated in the past). The page ordering question is discussed in
Section 4.

Assuming a mechanism for assigning crawl priorities to web pages, a
crawler can structure the frontier (or in the Mercator design described
above, the front-end queue) as a disk-based priority queue ordered by
usefulness. The standard implementation of a priority queue is a heap,
and insertions into a heap of n elements require log(n) element accesses,
each access potentially causing a disk seek, which would limit the data
structure to a few hundred insertions per second — far less than the
URL ingress required for high-performance crawling.

An alternative solution is to “discretize” priorities into a fixed num-
ber of priority levels (say 10 to 100 levels), and maintain a separate URL

2.3 Key Design Points 189

FIFO queue for each level. A URL is assigned a discrete priority level,
and inserted into the corresponding queue. To dequeue a URL, either
the highest-priority nonempty queue is chosen, or a randomized policy
biased toward higher-priority queues is employed.

2.3.2 URL Seen Test

As outlined above, the second major data structure in any modern
crawler keeps track of the set of URLs that have been previously dis-
covered and added to frontier. The purpose of this data structure is
to avoid adding multiple instances of the same URL to the frontier;
for this reason, it is sometimes called the URL-seen test (UST) or the
duplicate URL eliminator (DUE). In a simple batch crawling setting
in which pages are downloaded only once, the UST needs to support
insertion and set membership testing; in a continuous crawling setting
in which pages are periodically re-downloaded (see Section 2.3.5), it
must also support deletion, in order to cope with URLs that no longer
point to a valid page.

There are multiple straightforward in-memory implementations of
a UST, e.g., a hash table or Bloom filter [20]. As mentioned above, in-
memory implementations do not scale to arbitrarily large web corpora;
however, they scale much further than in-memory implementations of
the frontier, since each URL can be compressed to a much smaller
token (e.g., a 10-byte hash value). Commercial search engines employ
distributed crawlers (Section 2.3.4), and a hash table realizing the UST
can be partitioned across the machines in the crawling cluster, further
increasing the limit of how far such an in-memory implementation can
be scaled out.

If memory is at a premium, the state of the UST must reside on
disk. In a disk-based hash table, each lookup requires a disk seek,
severely limiting the throughput. Caching popular URLs can increase
the throughput by about an order of magnitude [27] to a few thousand
lookups per second, but given that the average web page contains on
the order of a hundred links and that each link needs to be tested for
novelty, the crawling rate would still be limited to tens of pages per
second under such an implementation.

190 Crawler Architecture

While the latency of disk seeks is poor (a few hundred seeks per
second), the bandwidth of disk reads and writes is quite high (on the
order of 50-100 MB per second in modern disks). So, implementations
performing random file accesses perform poorly, but those that perform
streaming sequential reads or writes can achieve reasonable through-
put. The Mercator crawler leveraged this observation by aggregating
many set lookup and insertion operations into a single large batch, and
processing this batch by sequentially reading a set of sorted URL hashes
from disk and writing them (plus the hashes of previously undiscovered
URLs) out to a new file [94].

This approach implies that the set membership is delayed: We only
know whether a URL is new after the batch containing the URL has
been merged with the disk file. Therefore, we cannot decide whether
to add the URL to the frontier until the merge occurs, i.e., we need
to retain all the URLs in a batch, not just their hashes. However, it is
possible to store these URLs temporarily on disk and read them back
at the conclusion of the merge (again using purely sequential 1/0),
once it is known that they had not previously been encountered and
should thus be added to the frontier. Adding URLs to the frontier in
a delayed fashion also means that there is a lower bound on how soon
they can be crawled; however, given that the frontier is usually far
larger than a DUE batch, this delay is imperceptible except for the
most high-priority URLs.

The IRLbot crawler [84] uses a refinement of the Mercator scheme,
where the batch of URLs arriving at the DUE is also written to disk,
distributed over multiple files keyed by the prefix of each hash. Once
the size of the largest file exceeds a certain threshold, the files that
together hold the batch are read back into memory one by one and
merge-sorted into the main URL hash file on disk. At the conclusion
of the merge, URLs are forwarded to the frontier as in the Mercator
scheme. Because IRLbot stores the batch on disk, the size of a single
batch can be much larger than Mercator’s in-memory batches, so the
cost of the merge-sort with the main URL hash file is amortized over
a much larger set of URLs.

In the Mercator scheme and its IRLbot variant, merging a batch of
URLs into the disk-based hash file involves reading the entire old hash

2.3 Key Design Points 191

file and writing out an updated version. Hence, the time requirement
is proportional to the number of discovered URLs. A modification of
this design is to store the URL hashes on disk in sorted order as before,
but sparsely packed rather than densely packed. The k highest-order
bits of a hash determine the disk block where this hash resides (if it is
present). Merging a batch into the disk file is done in place, by reading
a block for which there are hashes in the batch, checking which hashes
are not present in that block, and writing the updated block back to
disk. Thus, the time requirement for merging a batch is proportional to
the size of the batch, not the number of discovered URLs (albeit with
high constant due to disk seeks resulting from skipping disk blocks).
Once any block in the file fills up completely, the disk file is rewritten
to be twice as large, and each block contains hashes that now share
their £ + 1 highest-order bits.

2.3.3 Auxiliary Data Structures

In addition to the two main data structures discussed in Sections 2.3.1
and 2.3.2 — the frontier and the UST/DUE — web crawlers maintain
various auxiliary data structures. We discuss two: The robots exclusion
rule cache and the DNS cache.

Web crawlers are supposed to adhere to the Robots Exclusion Pro-
tocol [83], a convention that allows a web site administrator to bar web
crawlers from crawling their site, or some pages within the site. This is
done by providing a file at URL /robots.txt containing rules that spec-
ify which pages the crawler is allowed to download. Before attempt-
ing to crawl a site, a crawler should check whether the site supplies
a /robots.txt file, and if so, adhere to its rules. Of course, download-
ing this file constitutes crawling activity in itself. To avoid repeatedly
requesting /robots.txt, crawlers typically cache the results of previous
requests of that file. To bound the size of that cache, entries must
be discarded through some cache eviction policy (e.g., least-recently
used); additionally, web servers can specify an expiration time for their
/robots.txt file (via the HT'TP Expires header), and cache entries should
be discarded accordingly.

URLs contain a host component (e.g., www.yahoo.com), which is
“resolved” using the Domain Name Service (DNS), a protocol that

192 Crawler Architecture

exposes a globally distributed mapping from symbolic host names to IP
addresses. DNS requests can take quite a long time due to the request-
forwarding nature of the protocol. Therefore, crawlers often maintain
their own DNS caches. As with the robots exclusion rule cache, entries
are expired according to both a standard eviction policy (such as least-
recently used), and to expiration directives.

2.3.4 Distributed Crawling

Web crawlers can be distributed over multiple machines to increase
their throughput. This is done by partitioning the URL space, such
that each crawler machine or node is responsible for a subset of the
URLs on the web. The URL space is best partitioned across web site
boundaries [40] (where a “web site” may refer to all URLs with the same
symbolic host name, same domain, or same IP address). Partitioning
the URL space across site boundaries makes it easy to obey politeness
policies, since each crawling process can schedule downloads without
having to communicate with other crawler nodes. Moreover, all the
major data structures can easily be partitioned across site boundaries,
i.e., the frontier, the DUE, and the DNS and robots exclusion caches
of each node contain URL, robots exclusion rules, and name-to-address
mappings associated with the sites assigned to that node, and nothing
else.

Crawling processes download web pages and extract URLs, and
thanks to the prevalence of relative links on the web, they will be them-
selves responsible for the large majority of extracted URLs. When a
process extracts a URL w that falls under the responsibility of another
crawler node, it forwards w to that node. Forwarding of URLs can
be done through peer-to-peer TCP connections [94], a shared file sys-
tem [70], or a central coordination process [25, 111]. The amount of
communication with other crawler nodes can be reduced by maintain-
ing a cache of popular URLs, used to avoid repeat forwardings [27].

Finally, a variant of distributed web crawling is peer-to-peer crawl-
ing [10, 87, 100, 112, 121], which spreads crawling over a loosely col-
laborating set of crawler nodes. Peer-to-peer crawlers typically employ
some form of distributed hash table scheme to assign URLs to crawler

2.3 Key Design Points 193

nodes, enabling them to cope with sporadic arrival and departure of
crawling nodes.

2.3.5 Incremental Crawling

Web crawlers can be used to assemble one or more static snapshots of
a web corpus (batch crawling), or to perform incremental or continu-
ous crawling, where the resources of the crawler are divided between
downloading newly discovered pages and re-downloading previously
crawled pages. Efficient incremental crawling requires a few changes
to the major data structures of the crawler. First, as mentioned in
Section 2.3.2, the DUE should support the deletion of URLs that are
no longer valid (e.g., that result in a 404 HTTP return code). Second,
URLs are retrieved from the frontier and downloaded as in batch crawl-
ing, but they are subsequently reentered into the frontier. If the frontier
allows URLs to be prioritized, the priority of a previously downloaded
URL should be dependent on a model of the page’s temporal behavior
based on past observations (see Section 5). This functionality is best
facilitated by augmenting URLs in the frontier with additional infor-
mation, in particular previous priorities and compact sketches of their
previous content. This extra information allows the crawler to compare
the sketch of the just-downloaded page to that of the previous version,
for example raising the priority if the page has changed and lowering
it if it has not. In addition to content evolution, other factors such as
page quality are also often taken into account; indeed there are many
fast-changing “spam” web pages.

3

Crawl Ordering Problem

Aside from the intra-site politeness considerations discussed in Sec-
tion 2, a crawler is free to visit URLs in any order. The crawl order
is extremely significant, because for the purpose of crawling the web
can be considered infinite — due to the growth rate of new content,
and especially due to dynamically generated content [8]. Indeed, despite
their impressive capacity, modern commercial search engines only index
(and likely only crawl) a fraction of discoverable web pages [11]. The
crawler ordering question is even more crucial for the countless smaller-
scale crawlers that perform scoped crawling of targeted subsets of the
web.

Sections 3-5 survey work on selecting a good crawler order, with a
focus on two basic considerations:

e Coverage. The fraction of desired pages that the crawler
acquires successfully.

® Freshness. The degree to which the acquired page snapshots
remain up-to-date, relative to the current “live” web copies.

Issues related to redundant, malicious or misleading content are covered
in Section 6. Generally speaking, techniques to avoid unwanted content

194

3.1 Model 195

can be incorporated into the basic crawl ordering approaches without
much difficulty.

3.1 Model

Most work on crawl ordering abstracts away the architectural details
of a crawler (Section 2), and assumes that URLs in the frontier
data structure can be reordered freely. The resulting simplified crawl
ordering model is depicted in Figure 3.1. At a given point in time,
some historical crawl order has already been executed (P, P2, P3, Py, Ps
in the diagram), and some future crawl order has been planned
(Ps, Pr, Py, Ps,...).!

In the model, all pages require the same amount of time to down-
load; the (constant) rate of page downloading is called the crawl rate,
typically measured in pages/second. (Section 2 discussed how to max-
imize the crawl rate; here it is assumed to be fixed.) The crawl rate
is not relevant to batch crawl ordering methods, but it is a key factor
when scheduling page revisitations in incremental crawling.

crawl rate

|Ps|P1|P4|Ps|PslP2|P10|P11|P12|P13|P14| \

(_[P]Po[Ps[Pu]P,]

crawl history . planned crawl order
page crawl /v
downloader ordgrlng
policy
* &
page repository
crawler

Fig. 3.1 Crawl ordering model.

1 Some approaches treat the crawl ordering problem hierarchically, e.g., select a visitation
order for web sites, and within each site select a page visitation order. This approach
helps mitigate the complexity of managing a crawl ordering policy, and is well aligned
with policies that rely primarily on site-level metrics such as site-level PageRank to drive
crawl ordering decisions. Many of the insights about page-level crawl ordering also apply
at the site level.

196 Crawl Ordering Problem

Pages downloaded by the crawler are stored in a repository. The
future crawl order is determined, at least in part, by analyzing the
repository. For example, one simple policy mentioned earlier, breadth-
first search, extracts hyperlinks from pages entering the repository,
identifies linked-to pages that are not already part of the (historical
or planned) crawl order, and adds them to the end of the planned
crawl order.

The content of a web page is subject to change over time, and it
is sometimes desirable to re-download a page that has already been
downloaded, to obtain a more recent snapshot of its content. As men-
tioned in Section 2.3.5, two approaches exist for managing repeated
downloads:

e Batch crawling. The crawl order does not contain duplicate
occurrences of any page, but the entire crawling process is
periodically halted and restarted as a way to obtain more
recent snapshots of previously crawled pages. Information
gleaned from previous crawl iterations (e.g., page importance
score estimates) may be fed to subsequent ones.

® Incremental crawling. Pages may appear multiple times
in the crawl order, and crawling is a continuous process that
conceptually never terminates.

It is believed that most modern commercial crawlers perform incremen-
tal crawling, which is more powerful because it allows re-visitation of
pages at different rates. (A detailed comparison between incremental
and batch crawling is made by Cho and Garcia-Molina [39].)

3.1.1 Limitations

This model has led to a good deal of research with practical implica-
tions. However, as with all models, it simplifies reality. For one thing, as
discussed in Section 2, a large-scale crawler maintains its frontier data
structure on disk, which limits opportunities for reordering. Generally
speaking, the approach of maintaining a prioritized ensemble of FIFO
queues (see Section 2.3.1) can be used to approximate a desired crawl
order. We revisit this issue in Sections 4.3 and 5.3.

3.2 Web Characteristics 197

Other real-world considerations that fall outside the model include:

e Some pages (or even versions of a page) take longer to down-
load than others, due to differences in size and network
latency.

e Crawlers take special care to space out downloads of pages
from the same server, to obey politeness constraints, see Sec-
tion 2.3.1. Crawl ordering policies that assume a single crawl
rate constraint can, at least in principle, be applied on a per-
server basis, i.e., run n independent copies of the policy for
n servers.

® As described in Section 2, modern commercial crawlers uti-
lize many simultaneous page downloader threads, running
on many independent machines. Hence rather than a single
totally ordered list of pages to download, it is more accurate
to think of a set of parallel lists, encoding a partial order.

® Special care must be taken to avoid crawling redundant and
malicious content; we treat these issues in Section 6.

e [f the page repository runs out of space, and expanding it
is not considered worthwhile, is becomes necessary to retire
some of the pages stored there (although it may make sense to
retain some metadata about the page, to avoid recrawling it).
We are not aware of any scholarly work on how to select pages
for retirement.

3.2 Web Characteristics

Before proceeding, we describe some structural and evolutionary prop-
erties of the web that are relevant to the crawl ordering question. The
findings presented here are drawn from studies that used data sets of
widely varying size and scope, taken at different dates over the span of
a decade, and analyzed via a wide array of methods. Hence, caution is
warranted in their interpretation.

3.2.1 Static Characteristics

Several studies of the structure of the web graph, in which pages
are encoded as vertices and hyperlinks as directed edges, have been

198 Crawl Ordering Problem

conducted. One notable study is by Broder et al. [26], which uncovered
a “bowtie” structure consisting of a central strongly connected com-
ponent (the core), a component that can reach the core but cannot
be reached from the core, and a component that can be reached from
the core but cannot reach the core. (In addition to these three main
components there are a number of small, irregular structures such as
disconnected components and long “tendrils.”)

Hence there exist many ordered pairs of pages (P, P2) such that
there is no way to reach P, by starting at P, and repeatedly following
hyperlinks. Even in cases where P» is reachable from P;, the distance
can vary greatly, and in many cases hundreds of links must be traversed.
The implications for crawling are: (1) one cannot simply crawl to depth
N, for a reasonable value of N like N = 20, and be assured of covering
the entire web graph; (2) crawling “seeds” (the pages at which a crawler
commences) should be selected carefully, and multiple seeds may be
necessary to ensure good coverage.

In an earlier study, Broder et al. [28] showed that there is an abun-
dance of near-duplicate content of the web. Using a corpus of 30 million
web pages collected by the AltaVista crawler, they used the shingling
algorithm to cluster the corpus into groups of similar pages, and found
that 29% of the pages were more than 50% similar to other pages in
the corpus, and 11% of the pages were exact duplicates of other pages.
Sources of near-duplication include mirroring of sites (or portions of
sites) and URL synonymy, see Section 6.1.

Chang et al. [35] studied the “deep web,” i.e., web sites whose con-
tent is not reachable via hyperlinks and instead can only be retrieved by
submitting HTML forms. The findings include: (1) there are over one
million deep web sites; (2) more deep web sites have structured (multi-
field) query interfaces than unstructured (single-field) ones; and (3)
most query interfaces are located within a few links of the root of a web
site, and are thus easy to find by shallow crawling from the root page.

3.2.2 Temporal Characteristics

One of the objectives of crawling is to maintain freshness of the
crawled corpus. Hence it is important to understand the temporal

3.2 Web Characteristics 199

characteristics of the web, both in terms of site-level evolution (the
appearance and disappearance of pages on a site) and page-level evo-
lution (changing content within a page).

3.2.2.1 Site-Level Evolution

Dasgupta et al. [48] and Ntoulas et al. [96] studied creation and retire-
ment of pages and links inside a number of web sites, and found the
following characteristics (these represent averages across many sites):

e New pages are created at a rate of 8% per week.

® Pages are retired at a rapid pace, such that during the course
of one year 80% of pages disappear.

e New links are created at the rate of 25% per week, which is
significantly faster than the rate of new page creation.

e Links are retired at about the same pace as pages, with 80%
disappearing in the span of a year.

e It is possible to discover 90% of new pages by monitoring
links spawned from a small, well-chosen set of old pages (for
most sites, five or fewer pages suffice, although for some sites
hundreds of pages must be monitored for this purpose). How-
ever, discovering the remaining 10% requires substantially
more effort.

3.2.2.2 Page-Level Evolution

Some key findings about the frequency with which an individual web
page undergoes a change are:

e Page change events are governed by a Poisson process, which
means that changes occur randomly and independently, at
least in the case of pages that change less frequently than
once a day [39].2

® Page change frequencies span multiple orders of magnitude
(sub-hourly, hourly, daily, weekly, monthly, annually), and
each order of magnitude includes a substantial fraction of

2 A Poisson change model was originally postulated by Coffman et al. [46].

200 Crawl Ordering Problem

pages on the web [2, 39]. This finding motivates the study of
non-uniform page revisitation schedules.
e Change frequency is correlated with visitation frequency,
URL depth, domain and topic [2], as well as page length [60].
e A page’s change frequency tends to remain stationary over
time, such that past change frequency is a fairly good pre-
dictor of future change frequency [60].

Unfortunately, it appears that there is no simple relationship
between the frequency with which a page changes and the cumulative
amount of content that changes over time. As one would expect, pages
with moderate change frequency tend to exhibit a higher cumulative
amount of changed content than pages with a low change frequency.
However, pages with high change frequency tend to exhibit less cumula-
tive change than pages with moderate change frequency. On the encour-
aging side, the amount of content that changed on a page in the past
is a fairly good predictor of the amount of content that will change in
the future (although the degree of predictability varies from web site
to web site) [60, 96].

Many changes are confined to a small, contiguous region of a web
page [60, 85], and/or only affect transient words that do not character-
ize the core, time-invariant theme of the page [2]. Much of the “new”
content added to web pages is actually taken from other pages [96].

The temporal behavior of (regions of) web pages can be divided into
three categories: Static (no changes), churn (new content supplants old
content, e.g., quote of the day), and scroll (new content is appended to
old content, e.g., blog entries). Simple generative models for the three
categories collectively explain nearly all observed temporal web page
behavior [99].

Most web pages include at least some static content, resulting in
an upper bound on the divergence between an old snapshot of a page
and the live copy. The shape of the curve leading to the upper bound
depends on the mixture of churn and scroll content, and the rates
of churning and scrolling. One simple way to characterize a page is
with a pair of numbers: (1) the divergence upper bound (i.e., the
amount of non-static content), under some divergence measure such

201

3.2 Web Characteristics

‘sonbruyoe) SULIOPIO [MRID JO AWOUOXR], '€ "SI

~>

> >

[1] D1dO
[9¢] urejunoqop

e
>

I

(g'g uoroag) amyden ayepdn)
[€0T] yoedwr ypIRES SZIWUTXRIA
[GTT] JuotusseIIRqUIO SZITUTUTIA
[66] 11991100 1991I00UT SZITITUTIA
[1¥] o8e ezrururjy

[9F ‘TF] @oue0sa]0SqO SZIWTUI]

>

~>
> > > > > >

>TSS > > >

(¢'% uoroag) Surmerd padoog
[70T] 10edwt yoress Aq az1jLong
[87] @1e1 SuTuMmeds Aq zILI0LI]
[6] 9z1s 0118 Aq oZILIOLI

57 ‘ep] ueyeSe Aq oznIou]
[eF] @a18epur Aq ozIjLIOLI]

[80T ‘6 ‘€7 yoIeas Js1y-yipeatq

fiporwouliq | 2ouvn2)y _ aoupgsodwf
POIOPISUOD SI0J0R]

SSIUYSALT _ 2bD.4200))
s0A1390[q)

onbruyoay,

202 Crawl Ordering Problem

as shingle [28] or word difference; and (2) the amount of time it takes
to reach the upper bound (i.e., the time taken for all non-static content
to change) [2].

3.3 Taxonomy of Crawl Ordering Policies

Figure 3.2 presents a high-level taxonomy of published crawl ordering
techniques. The first group of techniques focuses exclusively on order-
ing pages for first-time downloading, which affects coverage. These can
be applied either in the batch crawling scenario, or in the incremen-
tal crawling scenario in conjunction with a separate policy governing
re-downloading of pages to maintain freshness, which is the focus of
the second group of techniques. Techniques in the third group con-
sider the combined problem of interleaving first-time downloads with
re-downloads, to balance coverage and freshness.

As reflected in Figure 3.2, crawl ordering decisions tend to be based
on some combination of the following factors: (1) importance of a page
or site, relative to others; (2) relevance of a page or site to the pur-
pose served by the crawl; and (3) dynamicity, or how the content of a
page/site tends to change over time.

Some crawl ordering techniques are broader than others in terms
of which factors they consider and which objectives they target. Ones
that focus narrowly on a specific aspect of crawling typically aim for a
“better” solution with respect to that aspect, compared with broader
“all-in-one” techniques. On the other hand, to be usable they may need
to be extended or combined with other techniques. In some cases a
straightforward extension exists (e.g., add importance weights to an
importance-agnostic formula for scheduling revisitations), but often
not. There is no published work on the best way to combine multiple
specialized techniques into a comprehensive crawl ordering approach
that does well across the board.

The next two chapters describe the techniques summarized in Fig-
ure 3.2, starting with ones geared toward batch crawling (Section 4),
and then moving to incremental crawl ordering techniques (Section 5).

4

Batch Crawl Ordering

A batch crawler traverses links outward from an initial seed set of URLs.
The seed set may be selected algorithmically, or by hand, based on
criteria such as importance, outdegree, or other structural features of
the web graph [120]. A common, simple approach is to use the root
page of a web directory site such as OpenDirectory, which links to
many important sites across a broad range of topics. After the seed set
has been visited and links have been extracted from the seed set pages,
the crawl ordering policy takes over.

The goal of the crawl ordering policy is to maximize the weighted
coverage (WC) achieved over time, given a fixed crawl rate. WC is
defined as:

WC(t) = > w(p),

peC(t)

where t denotes the time elapsed since the crawl began, C(t) denotes the
set of pages crawled up to time ¢ (under the fixed crawl rate assumption,
|IC(t)| x t), and w(p) denotes a numeric weight associated with page p.
The weight function w(p) is chosen to reflect the purpose of the crawl.
For example, if the purpose is to crawl pages about helicopters, one sets
w(p) = 1 for pages about helicopters, and w(p) = 0 for all other pages.

203

204 Batch Crawl Ordering

omniscient

We(h)

Fig. 4.1 Weighted coverage (WC) as a function of time elapsed () since the beginning of a
batch crawl.

Figure 4.1 shows some hypothetical WC curves. Typically, w(p) > 0,
and hence WC(t) is monotonic in ¢. Under a random crawl ordering pol-
icy, WC(t) is roughly linear in ¢; this line serves as a baseline upon which
other policies strive to improve. An omniscient policy, which downloads
pages in descending order of w(p) yields a theoretical upper-bound
curve. (For the helicopter example, the omniscient policy downloads
all helicopter pages first, thereby achieving maximal WC before the
end of the crawl.) Policies A and B fall in-between the random and
omniscient cases, with A performing better in the early stages of the
crawl, but B performing better toward the end. The choice between A
and B depends on how long the crawl is allowed to run before being
stopped (and possibly re-started to bring in a fresh batch of pages),
and to what use, if any, pages obtained early in the crawl are put while
the crawl is still in flight.

The above framework can be applied to comprehensive batch crawl-
ing, in which the goal is to achieve broad coverage of all types of con-
tent, as well as to scoped batch crawling, where the crawler restricts its
attention to a relatively narrow slice of the web (e.g., pages about heli-
copters). This chapter examines the two scenarios in turn, focusing ini-
tially on crawl order effectiveness, with implementation and efficiency
questions covered at the end.

4.1 Comprehensive Crawling

When the goal is to cover high-quality content of all varieties, a
popular choice of weight function is w(p) = PR(p), where PR(p) is

4.1 Comprehensive Crawling 205

p’s importance score as measured by PageRank [101].! Variations on
PageRank used in the crawling context include: Only counting external
links, i.e., ones that go between two web sites (Najork and Wiener [95]
discuss some tradeoffs involved in counting all links versus only exter-
nal links); biasing the PageRank random jumps to go to a trusted set of
pages believed not to engage in spamming (see Cho and Schonfeld [45]
for discussion); or omitting random jumps entirely, as done by Abite-
boul et al. [1].

In view of maximizing coverage weighted by PageRank or some
variant, three main types of crawl ordering policies have been examined
in the literature. In increasing order of complexity, they are:

¢ Breadth-first search [108]. Pages are downloaded in the
order in which they are first discovered, where discovery
occurs via extracting all links from each page immediately
after it is downloaded. Breadth-first crawling is appealing
due to its simplicity, and it also affords an interesting cov-
erage guarantee: In the case of PageRank that is biased to
a small trusted page set T, a breadth-first crawl of depth d
using T as its seed set achieves WC > 1 — a*! [45], where «
is the PageRank damping parameter.

¢ Prioritize by indegree [43]. The page with the highest
number of incoming hyperlinks from previously downloaded
pages, is downloaded next. Indegree is sometimes used as a
low-complexity stand-in for PageRank, and is hence a nat-
ural candidate for crawl ordering under a PageRank-based
objective.

¢ Prioritize by PageRank (variant/estimate) [1, 43, 45].
Pages are downloaded in descending order of PageRank
(or some variant), as estimated based on the pages and links
acquired so far by the crawler. Straightforward application

1 Although this cumulative PageRank measure has been used extensively in the literature,
Boldi et al. [23] caution that absolute PageRank scores may not be especially meaningful,
and contend that PageRank should be viewed as a way to establish relative page order-
ings. Moreover, they show that biasing a crawl toward pages with high PageRank in the
crawled subgraph leads to subgraphs whose PageRank ordering differs substantially from
the PageRank-induced ordering of the same pages in the full graph.

206 Batch Crawl Ordering

of this method involves recomputing PageRank scores after
each download, or updating the PageRank scores incremen-
tally [38]. Another option is to recompute PageRank scores
only periodically, and rely on an approximation scheme
between recomputations. Lastly, Abiteboul et al. [1] gave an
efficient online method of estimating a variant of PageRank
that does not include random jumps, designed for use in con-
junction with a crawler.

The three published empirical studies that evaluate the above poli-
cies over real web data are listed in Figure 4.2 (Najork and Wiener [95]
evaluated only breadth-first search). Under the objective of crawling
high-PageRank pages early (w(p) =PR(p)), the main findings from
these studies are the following:

e Starting from high-PageRank seeds, breadth-first crawling
performs well early in the crawl (low ¢), but not as well as
the other policies later in the crawl (medium to high ¢).

® Perhaps unsurprisingly, prioritization by PageRank performs
well throughout the entire crawl. The shortcut of only recom-
puting PageRank periodically leads to poor performance, but
the online approximation scheme by Abiteboul et al. [1] per-
forms well. Furthermore, in the context of repeated batch
crawls, it is beneficial to use PageRank values from previous
iterations to drive the current iteration.

® There is no consensus on prioritization by indegree: One
study (Cho et al. [43]) found that it worked fairly well (almost
as well as prioritization by PageRank), whereas another
study (Baeza-Yates et al. [9]) found that it performed very

| STUDY [DATA SET | DATA SIZE | PUB. YEAR |
Cho et al. [43] Stanford web 10° 1998
Najork and Wiener [95] general web 108 2001
Baeza-Yates et al. [9] | Chile and Greece 106 2005

Fig. 4.2 Empirical studies of batch crawl ordering policies.

4.1 Comprehensive Crawling 207

poorly. The reason given by Baeza-Yates et al. [9] for poor
performance is that it is overly greedy in going after high-
indegree pages, and therefore it takes a long time to find
pages that have high indegree and PageRank yet are only
discoverable via low-indegree pages. The two studies are over
different web collections that differ in size by an order of mag-
nitude, and are seven years apart in time.

In addition to the aforementioned results, Baeza-Yates et al. [9]
proposed a crawl policy that gives priority to sites containing a large
number of discovered but uncrawled URLs. According to their empirical
study, which imposed per-site politeness constraints, toward the end of
the crawl (high ¢) the proposed policy outperforms policies based on
breadth-first search, indegree, and PageRank. The reason is that it
avoids the problem of being left with a few very large sites at the end,
which can cause a politeness bottleneck.

Baeza-Yates and Castillo [8] observed that although the web graph
is effectively infinite, most user browsing activity is concentrated within
a small distance of the root page of each web site. Arguably, a crawler
should concentrate its activities there, and avoid exploring too deeply
into any one site.

4.1.1 Search Relevance as the Crawling Objective

Fetterly et al. [58] and Pandey and Olston [104] argued that when the
purpose of crawling is to supply content to a search engine, PageRank-
weighted coverage may not be the most appropriate objective. Accord-
ing to the argument, it instead makes sense to crawl pages that would
be viewed or clicked by search engine users, if present in the search
index. For example, one may set out to crawl all pages that, if indexed,
would appear in the top ten results of likely queries. Even if PageRank
is one of the factors used to rank query results, the top result for query
Q1 may have lower PageRank than the eleventh result for some other
query (s, especially if Qo pertains to a more established topic.
Fetterly et al. [58] evaluated four crawl ordering policies (breadth-
first; prioritize by indegree; prioritize by trans-domain indegree;

208 Batch Crawl Ordering

prioritize by PageRank) under two relevance metrics:

¢ MaxNDCG: The total Normalized Distributed Cumulative
Gain (NDCG) [79] score of a set of queries evaluated over the
crawled pages, assuming optimal ranking.

® Click count: The total number of clicks the crawled pages
attracted via a commercial search engine in some time period.

The main findings were that prioritization by PageRank is the most
reliable and effective method on these metrics, and that imposing per-
domain page limits boosts effectiveness.

Pandey and Olston [104] proposed a technique for explicitly ordering
pages by expected relevance impact, under the objective of maximizing
coverage weighted by the number of times a page appears among the
top N results of a user query. The relatively high computational over-
head of the technique is mitigated by concentrating on queries whose
results are likely to be improved by crawling additional pages (deemed
needy queries). Relevance of frontier pages to needy queries is estimated
from cues found in URLs and referring anchortext, as first proposed in
the context of scoped crawling [43, 74, 108], discussed next.

4.2 Scoped Crawling

A scoped crawler strives to limit crawling activities to pages that fall
within a particular category or scope, thereby acquiring in-scope con-
tent much faster and more cheaply than via a comprehensive crawl.
Scope may be defined according to topic (e.g., pages about aviation),
geography (e.g., pages about locations in and around Oldenburg, Ger-
many [6]), format (e.g., images and multimedia), genre (e.g., course
syllabi [51]), language (e.g., pages in Portuguese [65]), or other aspects.
(Broadly speaking, page importance, which is the primary crawl order-
ing criterion discussed in Section 4.1, can also be thought of as a form
of scope.)

Usage scenarios for scoped crawling include mining tasks that call
for crawling a particular type of content (e.g., images of animals), per-
sonalized search engines that focus on topics of interest to a partic-
ular user (e.g., aviation and gardening), and search engines for the

4.2 Scoped Crawling 209

“deep web” that use a surface-web crawler to locate gateways to deep-
web content (e.g., HTML form interfaces). In another scenario, one sets
out to crawl the full web by deploying many small-scale crawlers, each
of which is responsible for a different slice of the web — this approach
permits specialization to different types of content, and also facilitates
loosely coupled distributed crawling (Section 2.3.4).

As with comprehensive crawling (Section 4.1), the mathematical
objective typically associated with scoped crawling is maximization of
weighted coverage WC(t) = cc(;y w(p). In scoped crawling, the role
of the weight function w(p) is to reflect the degree to which page p falls
within the intended scope. In the simplest case, w(p) € {0,1}, where 0
denotes that p is outside the scope and 1 denotes that p is in-scope.
Hence weighted coverage measures the fraction of crawled pages that
are in-scope, analogous to the precision metric used in information
retrieval.

Typically the in-scope pages form a finite set (whereas the full web is
often treated as infinite, as mentioned above). Hence it makes sense to
measure recall in addition to precision. Two recall-oriented evaluation
techniques have been proposed: (1) designate a few representative in-
scope pages by hand, and measure what fraction of them are discovered
by the crawler [92]; (2) measure the overlap among independent crawls
initiated from different seeds, to see whether they converge on the same
set of pages [34].

Topical crawling (also known as “focused crawling”), in which in-
scope pages are ones that are relevant to a particular topic or set of
topics, is by far the most extensively studied form of scoped crawling.
Work on other forms of scope — e.g., pages with form interfaces [14],
and pages within a geographical scope [6, 63] — tends to use similar
methods to the ones used for topical crawling. Hence we primarily
discuss topical crawling from this point forward.

4.2.1 Topical Crawling

The basic observation exploited by topical crawlers is that relevant
pages tend to link to other relevant pages, either directly or via short
chains of links. (This feature of the web has been verified empirically

210 Batch Crawl Ordering

in many studies, including Chakrabarti et al. [34] and Cho et al. [43].)
The first crawl ordering technique to exploit this observation was fish
search [53]. The fish search crawler categorized each crawled page p as
either relevant or irrelevant (a binary categorization), and explored the
neighborhood of each relevant page up to depth d looking for additional
relevant pages.

A second generation of topical crawlers [43, 74, 108] explored the
neighborhoods of relevant pages in a non-uniform fashion, opting to
traverse the most promising links first. The link traversal order was
governed by individual relevance estimates assigned to each linked-to
page (a continuous relevance metric is used, rather than a binary one).
If a crawled page p links to an uncrawled page g, the relevance estimate
for ¢ is computed via analysis of the text surrounding p’s link to ¢ (i.e.,
the anchortext and text near the anchortext?), as well as ¢’s URL.
In one variant, relevance estimates are smoothed by associating some
portion of p’s relevance score (and perhaps also the relevance scores
of pages linking to p, and so on in a recursive fashion), with g. The
motivation for smoothing the relevance scores is to permit discovery of
pages that are relevant yet lack indicative anchortext or URLs.

A third-generation approach based on machine learning and link
structure analysis was introduced by Chakrabarti et al. [33, 34]. The
approach leverages pre-existing topic taxonomies such as the Open
Directory and Yahoo!’s web directory, which supply examples of web
pages matching each topic. These example pages are used to train a
classifier? to map newly encountered pages into the topic taxonomy.
The user selects a subset of taxonomy nodes (topics) of interest to crawl,
and the crawler preferentially follows links from pages that the classi-
fier deems most relevant to the topics of interest. Links from pages that
match “parent topics” are also followed (e.g., if the user indicated an
interest in bicycling, the crawler follows links from pages about sports
in general). In addition, an attempt is made to identify hub pages —
pages with a collection of links to topical pages — using the HITS link

2 This aspect was studied in detail by Pant and Srinivasan [107].
3Pant and Srinivasan [106] offer a detailed study of classifier choices for topical crawlers.

4.2 Scoped Crawling 211

analysis algorithm [82]. Links from hub pages are followed with higher
priority than other links.

The empirical findings of Chakrabarti et al. [34] established topical
crawling as a viable and effective paradigm:

® A general web crawler seeded with topical pages quickly
becomes mired in irrelevant regions of the web, yielding very
poor weighted coverage. In contrast, a topical crawler suc-
cessfully stays within scope, and explores a steadily growing
population of topical pages over time.

® Two topical crawler instances, started from disparate seeds,
converge on substantially overlapping sets of pages.

Beyond the basics of topical crawling discussed above, there are two
key considerations [92]: Greediness and adaptivity.

4.2.1.1 Greediness

Paths between pairs of relevant pages sometimes pass through one or
more irrelevant pages. A topical crawler that is too greedy will stop
when it reaches an irrelevant page, and never discovers subsequent rel-
evant page(s). On the other extreme, a crawler that ignores relevance
considerations altogether degenerates into a non-topical crawler, and
achieves very poor weighted coverage, as we have discussed. The ques-
tion of how greedily to crawl is an instance of the explore versus exploit
tradeoff observed in many contexts. In this context, the question is: How
should the crawler balance exploitation of direct links to (apparently)
relevant pages, with exploration of other links that may, eventually,
lead to relevant pages?

In the approach of Hersovici et al. [74], a page p inherits some of the
relevance of the pages that link to p, and so on in a recursive fashion.
This passing along of relevance forces the crawler to traverse irrelevant
pages that have relevant ancestors. A decay factor parameter controls
how rapidly relevance decays as more links are traversed. Eventually, if
no new relevant pages are encountered, relevance approaches zero and
the crawler ceases exploration on that path.

212 Batch Crawl Ordering

Later work by Diligenti et al. [54] proposed to classify pages accord-
ing to their distance from relevant pages. Each uncrawled page p is
assigned a distance estimate d(p) € [0,00) that represents the crawler’s
best guess as to how many links lie between p and the nearest rele-
vant page.* Pages are ordered for crawling according to d(-). As long
as one or more uncrawled pages having d(p) =0 are available, the
crawler downloads those pages; if not, the crawler resorts to down-
loading d(p) = 1 pages, and so on. The threshold used to separate “rel-
evant” pages from “irrelevant” ones controls greediness: If the threshold
is strict (i.e., only pages with strong relevance indications are classified
as “relevant”), then the crawler will favor long paths to strongly rele-
vant pages over short paths to weakly relevant pages, and vice versa.

A simple meta-heuristic to control the greediness of a crawler was
proposed by Menczer et al. [92]: Rather than continuously adjusting
the crawl order as new pages and new links are discovered, commit
to crawling N pages from the current crawl order before reordering.
This heuristic has the attractive property that it can be applied in
conjunction with any existing crawl ordering policy. Menczer et al. [92]
demonstrated empirically that this heuristic successfully controls the
level of greediness, and that there is benefit in not being too greedy,
in terms of improved weighted coverage in the long run. The study
done by Diligenti et al. [54] also showed improved long-term weighted
coverage by not being overly greedy. We are not aware of any attempts
to characterize the optimal level of greediness.

4.2.1.2 Adaptivity

In most topical crawling approaches, once the