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Training Search Engines

Queries

Search Engine

BM25,tf*idf,
PageRank, ...

Document Corpus

1. Neural Network
2. Support Vector
Machine
3. Regression Function
4. Decision Tree




Training Data Sets

e Data Collections
— Billions of documents
— Thousands of queries

* |deal, in theory; infeasible, in practice...
— Extract features from all query-document pairs
— Judge each document with respect to each query

e Extensive human effort

— Train over all query-document pairs



Training Data Sets

* Train the ranking function over a subset of the
complete collection

* Few queries with many document judged vs.
many queries with few documents judged

— Better to train over many queries with few judged
documents [Yilmaz and Robertson '09]

* How should we select document?



Training Data Sets

 Machine Learning (Active Learning)
— Iterative process
— Tightly coupled with the learning algorithm

* |R Evaluation
— Many test collections already available

— Efficient and effective techniques to construct test
collections

* Intelligent way of selecting documents
* |Inferences of effectiveness metrics



Duality between LTR and Evaluation

* This work: Explore duality between Evaluation
and Learning-to-Rank

— Employ techniques used for efficient and effective
test collection construction to construct training
collections



Duality between LTR and Evaluation

e Can test collection construction
methodologies be used to construct training
collections?

* |f yes, which one of these methodologies is
better?

* What makes a training set better than the
other?



Methodology
Depth-100 pool (as the complete collection)

Select subsets of documents from the depth-100 pool
— Using different document selection methodologies

Train over the different training sets
— Using a number of learning-to-rank algorithms

Test the performance of the resulting ranking functions
— Five fold cross validation



Data Sets

e Data from TREC 6,7 and 8
— Document corpus : TREC Discs 4 and 5
— Queries : 150 queries; ad-hoc tracks
— Relevance judgments : depth-100 pools

* Features from each query-document pair

— 22 features; subset of LETOR features
(BM25, Language Models, TF-IDF, ...)



Document Selection Methodologies

Select subsets of documents
— Subset size varying from 6% to 60%

1. Depth-k pooling
2. InfAP (uniform random sampling)

StatAP (stratified random sampling)
4. MTC (greedy on-line algorithm)

w

5. LETOR (top-k by BM25; current practice)
6. Hedge (greedy on-line algorithm)



Precision

Document Selection Methodologies

Precision of the selection methods Discrepancy between relevant and non-relevant documents
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* Precision : fraction of selected documents that are
relevant

* Discrepancy : symmetrized KL divergence between
documents’ language models



LTR Algorithms

 Train over the different data sets

A ol S

Regression (classification error)
Ranking SVM (AUC)
RankBoost (pairwise preferences)

RankNet (probability of correct order)
LambdaRank (nDCG)
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Results (3)

RankNet
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MAP

Observations (1)

* Some Learning-to-Rank algorithms are robust
to document selection methodologies

— LambdaRank vs. RankBoost

LambdaRank
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Observations (2)

* Near-optimal performance with 1%-2% of
complete collection (depth-100 pool)

— No significant differences at greater % (t-test)

— Number of features matter [Taylor et.al ‘06]

RankNet
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Observations (3)

* Selection methodology matters
— Hedge (worst performance)
— Depth-k pooling and statAP (best performance)
— LETOR-like (neither most efficient nor most effective)

Ranking SVM
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Relative Importance on Effectiveness

* Learning-to-Rank algorithm vs. document
selection methodology
— 2-way ANOVA model

* Variance decomposition over all data sets
— 26% due to document selection
— 31% due to LTR algorithm

e Variance decomposition (small data sets, <10%)
— 44% due to document selection
— 31% due to LTR algorithm



What makes one training set better
than another?

* Different methods have different properties
— Precision
— Recall
— Similarities between relevant documents

— Similarities between relevant and non-relevant
documents

e Model selection



What makes one training set better
than another?

* Different methods have different properties
— Precision
— Recall
— Similarities between relevant documents

— Similarities between relevant and non-relevant
documents

e Model selection
— Linear model (adjusted R? = 0.99)
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What makes one training set better
than another?
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What makes one training set better
than another?
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Conclusions

Some LTR algorithms are robust to document
selection methodologies

For those not, selection methodology matters
— Depth-k pooling, stratified sampling

Harmful to select too many relevant docs

Harmful to select relevant and non-relevant
docs that are too similar



