Pranking with Ranking

Koby Crammer and Yoram Singer

Presented by : Soham Dan

Content and some figures borrowed from [Crammer, Koby, and Yoram Singer. Pranking with ranking.NIPS. 2002] and talk slides.

Introduction

\blacktriangleright Problem

- Input : Sequence of instance-rank pairs $(x^1, y^1)...(x^t, y^t)$
- \triangleright Output : A model(essentially a rank prediction rule) which assigns to each instance a rank.
- \triangleright Goal: To have the predicted rank as close as possible to the true rank.
- \triangleright Note : The ranks need not be unique!

Introduction

\blacktriangleright Problem

- Input : Sequence of instance-rank pairs $(x^1, y^1)...(x^t, y^t)$
- \triangleright Output : A model(essentially a rank prediction rule) which assigns to each instance a rank.
- \triangleright Goal: To have the predicted rank as close as possible to the true rank.
- \triangleright Note : The ranks need not be unique!
- \blacktriangleright Similarity with
	- \triangleright Classification Problems : Assign one of k possible labels to a new instance.
	- \triangleright Regression Problems : Set of k labels is structured as there is a total order relation between labels.

Introduction

\blacktriangleright Problem

- Input : Sequence of instance-rank pairs $(x^1, y^1)...(x^t, y^t)$
- \triangleright Output : A model(essentially a rank prediction rule) which assigns to each instance a rank.
- \triangleright Goal: To have the predicted rank as close as possible to the true rank.
- \triangleright Note : The ranks need not be unique!
- \blacktriangleright Similarity with
	- \triangleright Classification Problems : Assign one of k possible labels to a new instance.
	- \triangleright Regression Problems : Set of k labels is structured as there is a total order relation between labels.

Natural Settings to rank / rate instances Information Retrieval , Collaborative Filtering

Problem

Figure 1: Movie rating prediction (Example : Netflix challenge)

Possible Solutions

 \triangleright Cast as a regression or classification problem

Possible Solutions

- \triangleright Cast as a regression or classification problem
- \triangleright Reduce a total order into a set of preference over pairs. Drawback : Sample size blowup from *n* to $\varnothing(n^2)$. Also, no easy adaptation for online settings.

Possible Solutions

- \triangleright Cast as a regression or classification problem
- \triangleright Reduce a total order into a set of preference over pairs. Drawback : Sample size blowup from *n* to $\varnothing(n^2)$. Also, no easy adaptation for online settings.
- \triangleright PRank Algorithm : Directly maintains totally ordered set by projection of instances into reals, associating ranks with distinct sub-intervals of the reals and adapting the support of each subinterval while learning.

 \blacktriangleright Input Stream: Sequence of instance-rank pairs $(x^1, y^1)...(x^t, y^t)$ where each instance $x_t \in \mathbb{R}^n$. Corresponding rank $y^t \in \mathcal{Y}$ which is a finite set with a total order relation (structured). W.l.o.g. $\mathcal{Y} = 1, 2, 3..., k$ with $>$ as the order relation. $1 \prec 2 \prec ... \prec k$

- \blacktriangleright Input Stream: Sequence of instance-rank pairs $(x^1, y^1)...(x^t, y^t)$ where each instance $x_t \in \mathbb{R}^n$. Corresponding rank $y^t \in \mathcal{Y}$ which is a finite set with a total order relation (structured). W.l.o.g. $\mathcal{Y} = 1, 2, 3, ..., k$ with $>$ as the order relation. $1 \prec 2 \prec ... \prec k$
- **Ranking Rule** (\mathcal{H}) **: Mapping from instances to ranks,** $\mathbb{R}^n \to \mathcal{Y}$. The family of ranking rules considered here : $w \in \mathbb{R}^n$ and k thresholds : $b_1 \leq b_2 \leq ... \leq b_k = \infty$

- \blacktriangleright Input Stream: Sequence of instance-rank pairs $(x^1, y^1)...(x^t, y^t)$ where each instance $x_t \in \mathbb{R}^n$. Corresponding rank $y^t \in \mathcal{Y}$ which is a finite set with a total order relation (structured). W.l.o.g. $\mathcal{Y} = 1, 2, 3, ..., k$ with $>$ as the order relation. $1 \prec 2 \prec ... \prec k$
- **Ranking Rule** (\mathcal{H}) **: Mapping from instances to ranks,** $\mathbb{R}^n \to \mathcal{Y}$. The family of ranking rules considered here : $w \in \mathbb{R}^n$ and k thresholds : $b_1 \leq b_2 \leq ... \leq b_k = \infty$
- Given a ranking rule defined by w and b, the predicted rank (\hat{y}^t) on a new instance x is $H(x) = \min_{r \in 1, 2, ..., k} \{r : w \cdot x - b_r < 0\}$

- \blacktriangleright Input Stream: Sequence of instance-rank pairs $(x^1, y^1)...(x^t, y^t)$ where each instance $x_t \in \mathbb{R}^n$. Corresponding rank $y^t \in \mathcal{Y}$ which is a finite set with a total order relation (structured). W.l.o.g. $\mathcal{Y} = 1, 2, 3, ..., k$ with $>$ as the order relation. $1 \prec 2 \prec ... \prec k$
- **Ranking Rule** (\mathcal{H}) **: Mapping from instances to ranks,** $\mathbb{R}^n \to \mathcal{Y}$. The family of ranking rules considered here : $w \in \mathbb{R}^n$ and k thresholds : $b_1 \leq b_2 \leq ... \leq b_k = \infty$
- Given a ranking rule defined by w and b, the predicted rank (\hat{y}^t) on a new instance x is $H(x) = \min_{r \in 1, 2, ..., k} \{r : w \cdot x - b_r < 0\}$
- Algorithm makes a mistake on instance x^t if $\hat{y}^t \neq y^t$ and loss on that input is $|\hat{y}^t - y^t|$.
- ► Loss after T rounds is $\sum_{t=1}^{T} |\hat{y}^t y^t|$

Perceptron Recap

 \triangleright Online Algorithm

- \triangleright Online Algorithm
- In each round the ranking algorithm
	- \blacktriangleright Gets an input instance
	- \triangleright Outputs the rank as prediction
	- \triangleright Receives the correct rank value
	- \blacktriangleright If there is an error
		- \blacktriangleright Computes loss
		- \blacktriangleright Updates the rank-prediction rule

- \triangleright Online Algorithm
- In each round the ranking algorithm
	- \triangleright Gets an input instance
	- \triangleright Outputs the rank as prediction
	- \blacktriangleright Receives the correct rank value
	- \blacktriangleright If there is an error
		- \blacktriangleright Computes loss
		- \blacktriangleright Updates the rank-prediction rule
- \triangleright Conservative or Mistake driven algorithm : The algorithm updates its ranking rule only on rounds on which it made ranking mistakes.

- \triangleright Online Algorithm
- In each round the ranking algorithm
	- \triangleright Gets an input instance
	- \triangleright Outputs the rank as prediction
	- \triangleright Receives the correct rank value
	- \blacktriangleright If there is an error
		- \blacktriangleright Computes loss
		- \blacktriangleright Updates the rank-prediction rule
- \triangleright Conservative or Mistake driven algorithm : The algorithm updates its ranking rule only on rounds on which it made ranking mistakes.
- \triangleright No statistical assumptions over data. The algorithm should do well irrespectively of specific sequence of inputs and target labels

$$
E = \begin{cases} b_2, b_3 \end{cases}
$$

\n
$$
\cdot
$$
 Direction w,
\nThresholds $b_{k_1},...,b$
\n
$$
\cdot
$$
 Rank a new instance
\n
$$
\cdot
$$
 Get the correct rank y
\n
$$
\cdot
$$
 Compute Error-Set E
\n
$$
\cdot
$$
 Update :
\n
$$
b_1 \t b_2 \t b_3 \t b_4 \t - b_r \leftarrow b_r - 1 r \in
$$

\n- Direction **w**,
\n- Thresholds
$$
b_{k-1}, \ldots, b_1
$$
\n

- $\pmb{\times}$
-

$$
- b_r \leftarrow b_r - 1 r \in E
$$

Algorithm

Initialize: Set $\mathbf{w}^1 = 0$, $b_1^1, \ldots, b_{k-1}^1 = 0, b_k^1 = \infty$. Loop: For $t = 1, 2, \ldots, T$ • Get a new rank-value $\mathbf{x}^t \in \mathbb{R}^n$. • Predict $\hat{y}^t = \min_{r \in \{1, ..., k\}} \{r : \mathbf{w}^t \cdot \mathbf{x}^t - b_r^t < 0\}.$ • Get a new label y^t . • If $\hat{y}^t \neq y^t$ update \mathbf{w}^t (otherwise set $\mathbf{w}^{t+1} = \mathbf{w}^t$, $\forall r : b_r^{t+1} = b_r^t$): 1. For $r = 1, ..., k-1$: If $y^t \leq r$ Then $y_r^t = -1$ Else $u^t = 1$. 2. For $r = 1, ..., k-1$: If $(\mathbf{w}^t \cdot \mathbf{x}^t - b_r^t)y_r^t \leq 0$ Then $\tau_r^t = y_r^t$ Else $\tau_r^t = 0$. 3. Update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + (\sum_i \tau_r^t) \mathbf{x}^t$. For $r = 1, \ldots, k-1$ update: $b_r^{t+1} \leftarrow b_r^t - \tau_r^t$ Output: $H(\mathbf{x}) = \min_{r \in \{1, ..., k\}} \{r : \mathbf{w}^{T+1} \cdot \mathbf{x} - b_r^{T+1} < 0\}.$

Figure 2: The PRank Algorithm

Algorithm

Initialize: Set $\mathbf{w}^1 = 0$, $b_1^1, \ldots, b_{k-1}^1 = 0, b_k^1 = \infty$. Loop: For $t = 1, 2, \ldots, T$ • Get a new rank-value $\mathbf{x}^t \in \mathbb{R}^n$. • Predict $\hat{y}^t = \min_{r \in \{1, ..., k\}} \{r : \mathbf{w}^t \cdot \mathbf{x}^t - b_r^t < 0\}.$ • Get a new label y^t . • If $\hat{y}^t \neq y^t$ update \mathbf{w}^t (otherwise set $\mathbf{w}^{t+1} = \mathbf{w}^t$, $\forall r : b_r^{t+1} = b_r^t$): 1. For $r = 1, ..., k-1$: If $y^t \leq r$ Then $y_r^t = -1$ Else $u^t = 1$. 2. For $r = 1, ..., k-1$: If $(\mathbf{w}^t \cdot \mathbf{x}^t - b_r^t)y_r^t \leq 0$ Then $\tau_r^t = y_r^t$ Else $\tau^t = 0$. 3. Update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + (\sum_{r} \tau_r^t) \mathbf{x}^t$. For $r = 1, ..., k - 1$ update: $b_r^{t+1} \leftarrow b_r^t - \tau_r^t$ **Output :** $H(\mathbf{x}) = \min_{r \in \{1, ..., k\}} \{r : \mathbf{w}^{T+1} \cdot \mathbf{x} - b_r^{T+1} < 0\}.$

Figure 2: The PRank Algorithm

- ► Rank y is expanded into $k-1$ virtual variables $y_1, ..., y_{k-1}$, where $y_r = +1$ if $w \cdot x > b_r$ and $y_r = -1$ otherwise.
- \triangleright On mistakes, b and $w \cdot x$ are moved towards each other.

Analysis

"I THINK YOU SHOULD BE MORE
EXPLICIT HERE IN STEP TWO."

1. Lemma : Order Preservation

2. Theorem : Mistake Bound

Can this happen ?

Can this happen ?

NO

Can this happen ?

Let w_t and b_t be the current ranking rule, where $b^t_1 \leq ... \leq b^t_{k-1}$ and let $\left(x_t, y_t\right)$ be an instance-rank pair fed to PRank on round t. Denote by w_{t+1} and b_{t+1} the resulting ranking rule after the update of PRank, then $b_1^{t+1} \leq ... \leq b_{k-1}^{t+1}$ $k-1$

Let w_t and b_t be the current ranking rule, where $b_1^t \leq ... \leq b_{k-1}^t$ and let (x_t, y_t) be an instance-rank pair fed to PRank on round t. Denote by w_{t+1} and b_{t+1} the resulting ranking rule after the update of PRank, then $b_1^{t+1} \leq ... \leq b_{k-1}^{t+1}$ k−1

Proof Sketch :

- \blacktriangleright b_r^t are integers for all r and t since for all r we initialize $b_r^1 = 0$, and $b_r^{t+1} - b_r^t \in \{-1, 0, +1\}$.
- \blacktriangleright Proof by Induction : Showing $b^{t+1}_{r+1} \geq b^{t+1}_{r}$ is equivalent to proving

$$
b_{r+1}^t - b_r^t \geq y_{r+1}^t [(w_t \cdot x_t - b_{r+1}^t) y_{r+1}^t \leq 0] - y_r^t [(w_t \cdot x_t - b_r^t) y_r^t \leq 0]
$$

Theorem : Mistake Bound

Let $(x_l, y_1), ..., (x_{\mathcal{T}}, y_{\mathcal{T}})$ be an input sequence for PRank where $x_t \in \mathbb{R}^n$ and $y_t \in I,...,k.$ Denote by $R^2 = \mathsf{max}_t \, ||x_t||^2.$ Assume that there is a ranking rule $v^* = (w^*, b^*)$ with $b_1^* \leq ... \leq b_{k-1}^*$ of a unit norm that classifies the entire sequence correctly with margin $\gamma = \mathsf{min}_{r,t} \left(w^* \cdot x_t - b_r^* \right) y_r^t > 0$. Then, the rank loss of the algorithm $\sum_{t=1}^{\mathcal{T}}|\hat{\mathbf{y}}^{t} - y^{t}|$, is at most $\frac{(k-1)(R^2+1)}{\gamma^2}$ $\frac{10^{n+1}}{\gamma^2}$.

Proof of Theorem

$$
\blacktriangleright w_{t+1} = w_t + (\sum_r \tau_r^t) x_t \text{ and } b_r^{t+1} = b_r^t - \tau_r^t
$$

- \blacktriangleright Let $n_t=|\hat{y}^t- y^t|$ be difference between the true rank and the predicted rank. Clearly, $n^t = \sum_r |\tau_r^t|$
- \blacktriangleright To prove the theorem we bound $\sum_{t} n^{t}$ from above by bounding $||v^t||^2$ from above and below.

$$
\blacktriangleright v^* \cdot v^{t+1} = v^* \cdot v^t + \sum_{r=1}^{k-1} \tau_r^t (w^* x^t - b_r^*)
$$

 $\blacktriangleright \sum_{r=1}^{k-1} \tau_r^t(w^*x^t - b_r^*) \geq n^t \gamma \implies v^*v^{T+1} \geq \gamma \sum_t n^t \implies$ $||v^{T+1}||^2 \ge \gamma^2 (\sum_t n^t)^2$

 \blacktriangleright To bound the norm of v from above :

$$
\sum_{r} \frac{||v^{t+1}||^2}{(\sum_{r} \tau_r^t)^2||x^t||^2 + (\sum_{r} (\tau_r^t)^2)} + 2 \sum_{r} \tau_r^t (w^t \cdot x^t - b_r^t) +
$$

Since, $(\sum_r \tau_r^t)^2 \leq (n^t)^2$ and $\sum_r (\tau_r^t)^2 = n^t$

$$
\blacktriangleright ||v^{t+1}||^2 = ||v^t||^2 + 2 \sum_r \tau_r^t (w^t \cdot x^t - b_r^t) + (n^t)^2 ||x^t||^2 + n^t
$$

$$
\sum_r \tau_r^t(w^t \cdot x^t - b_r^t) = \sum_r [(w^t \cdot x^t - b_r^t) \leq 0] (w^t \cdot x^t - b_r^t) y_r \leq 0
$$

► Since,
$$
||x^t||^2 \le R^2
$$
 \implies $||v^{t+1}||^2 = ||v^t||^2 + (n^t)^2 R^2 + n^t$

▶ Using the lower bound, we get, $\sum_t n^t \leq \frac{R^2 [\sum_t (n^t)^2]/[\sum_t n^t] + 1}{\gamma^2}$ γ^2

$$
\triangleright n^t \leq k-1 \implies \sum_t (n^t)^2 \leq (k-1) \sum_t n^t \implies \sum_t n^t \leq \frac{(k-1)(R^2+1)}{\gamma^2}
$$

- \blacktriangleright Models
	- \blacktriangleright Multi-class Generalization of Perceptron (MCP) : kn parameters : under-constrained
	- \triangleright Widrow Hoff Algorithm for Online Regression (WH): n parameters : over-constrained
	- **•** PRank : $n + k 1$ parameters : accurately constrained

- \blacktriangleright Models
	- \triangleright Multi-class Generalization of Perceptron (MCP) : kn parameters : under-constrained
	- \triangleright Widrow Hoff Algorithm for Online Regression (WH): *n* parameters : over-constrained
	- ► PRank : $n + k 1$ parameters : accurately constrained
- \blacktriangleright Datasets
	- \blacktriangleright Synthetic dataset
	- \blacktriangleright EachMovie dataset-used for collaborative filtering tasks
	- \triangleright Evaluation in batch setting- outperforms multi-class SVM, SVR

- \blacktriangleright Models
	- \triangleright Multi-class Generalization of Perceptron (MCP) : kn parameters : under-constrained
	- \triangleright Widrow Hoff Algorithm for Online Regression (WH): *n* parameters : over-constrained
	- ► PRank : $n + k 1$ parameters : accurately constrained
- \blacktriangleright Datasets
	- \blacktriangleright Synthetic dataset
	- \blacktriangleright EachMovie dataset-used for collaborative filtering tasks
	- \triangleright Evaluation in batch setting- outperforms multi-class SVM, SVR

Figure 4: Time-averaged ranking-loss comparison of MCP,WH,PRank on the synthetic dataset, EachMovie-100 and 200 datasets respectively

Key takeaways

1. The ranking problem is a structured prediction task because of the total order between the different ratings.

Key takeaways

- 1. The ranking problem is a structured prediction task because of the total order between the different ratings.
- 2. Online algorithm for ranking problem via projections and conservative update of the projection's direction and the threshold values.

Key takeaways

- 1. The ranking problem is a structured prediction task because of the total order between the different ratings.
- 2. Online algorithm for ranking problem via projections and conservative update of the projection's direction and the threshold values.
- 3. Experiments indicate this algorithm performs better than regression and classification models for ranking tasks.

Further Reading

Types of Ranking Algorithms:

- \triangleright Point-wise Approaches PRanking
- ▶ Pair-wise Approaches RankSVM, RankNet, Rankboost
- \blacktriangleright List-wise Approaches SVM^{map} , AdaRank, SoftRank

Further Reading

Types of Ranking Algorithms:

- \triangleright Point-wise Approaches PRanking
- ▶ Pair-wise Approaches RankSVM, RankNet, Rankboost
- \blacktriangleright List-wise Approaches SVM^{map} , AdaRank, SoftRank References:
	- \blacktriangleright Liu, Tie-Yan. Learning to rank for information retrieval. Foundations and Trends R in Information Retrieval 3.3 (2009): 225-331.

Further Reading

Types of Ranking Algorithms:

- \triangleright Point-wise Approaches PRanking
- ▶ Pair-wise Approaches RankSVM, RankNet, Rankboost
- \blacktriangleright List-wise Approaches SVM^{map} , AdaRank, SoftRank References:
	- \blacktriangleright Liu, Tie-Yan. Learning to rank for information retrieval. Foundations and Trends R in Information Retrieval 3.3 (2009): 225-331.
	- ▶ Agarwal, Shivani, and Partha Niyogi. Generalization bounds for ranking algorithms via algorithmic stability. Journal of Machine Learning Research 10.Feb (2009): 441-474.