Pranking with Ranking

Koby Crammer and Yoram Singer

Presented by : Soham Dan

Content and some figures borrowed from [Crammer, Koby, and Yoram Singer. Pranking with ranking.NIPS. 2002] and talk slides.

Introduction

Problem

- Input : Sequence of instance-rank pairs $(x^1, y^1)...(x^t, y^t)$
- Output : A model(essentially a rank prediction rule) which assigns to each instance a rank.
- Goal: To have the predicted rank as close as possible to the true rank.
- Note : The ranks need not be unique!

Introduction

Problem

- Input : Sequence of instance-rank pairs $(x^1, y^1)...(x^t, y^t)$
- Output : A model(essentially a rank prediction rule) which assigns to each instance a rank.
- Goal: To have the predicted rank as close as possible to the true rank.
- Note : The ranks need not be unique!
- Similarity with
 - Classification Problems : Assign one of k possible labels to a new instance.
 - Regression Problems : Set of k labels is structured as there is a total order relation between labels.

Introduction

Problem

- Input : Sequence of instance-rank pairs $(x^1, y^1)...(x^t, y^t)$
- Output : A model(essentially a rank prediction rule) which assigns to each instance a rank.
- Goal: To have the predicted rank as close as possible to the true rank.
- Note : The ranks need not be unique!
- Similarity with
 - Classification Problems : Assign one of k possible labels to a new instance.
 - Regression Problems : Set of k labels is structured as there is a total order relation between labels.

Natural Settings to rank / rate instances Information Retrieval , Collaborative Filtering

Problem

	GRIDD BARDS UARDS	SHREK View Billing State		PLANET	
Machine Prediction	\clubsuit	मिमेनेने रेगेरे	☆	\bigstar	
User's Rating		\overleftrightarrow		क्रिके केर्फे	***
Ranking Loss	3	3	0	3	1

Figure 1: Movie rating prediction (Example : Netflix challenge)

Possible Solutions

Cast as a regression or classification problem

Possible Solutions

- Cast as a regression or classification problem
- Reduce a total order into a set of preference over pairs. Drawback : Sample size blowup from n to Ø(n²). Also, no easy adaptation for online settings.

Possible Solutions

- Cast as a regression or classification problem
- ▶ Reduce a total order into a set of preference over pairs. Drawback : Sample size blowup from *n* to $Ø(n^2)$. Also, no easy adaptation for online settings.
- PRank Algorithm : Directly maintains totally ordered set by projection of instances into reals, associating ranks with distinct sub-intervals of the reals and adapting the support of each subinterval while learning.

Input Stream: Sequence of instance-rank pairs (x¹, y¹)...(x^t, y^t) where each instance x_t ∈ ℝⁿ. Corresponding rank y^t ∈ Y which is a finite set with a total order relation (structured) . W.I.o.g. Y = 1, 2, 3..., k with > as the order relation. 1 ≺ 2 ≺ ... ≺ k

- Input Stream: Sequence of instance-rank pairs (x¹, y¹)...(x^t, y^t) where each instance x_t ∈ ℝⁿ. Corresponding rank y^t ∈ Y which is a finite set with a total order relation (structured) . W.I.o.g. Y = 1, 2, 3..., k with > as the order relation. 1 ≺ 2 ≺ ... ≺ k
- Ranking Rule (*H*) : Mapping from instances to ranks, *ℝⁿ* → *Y*. The family of ranking rules considered here : *w* ∈ *ℝⁿ* and *k* thresholds : *b*₁ ≤ *b*₂ ≤ ... ≤ *b_k* = ∞

- Input Stream: Sequence of instance-rank pairs (x¹, y¹)...(x^t, y^t) where each instance x_t ∈ ℝⁿ. Corresponding rank y^t ∈ Y which is a finite set with a total order relation (structured) . W.I.o.g. Y = 1, 2, 3..., k with > as the order relation. 1 ≺ 2 ≺ ... ≺ k
- Ranking Rule (*H*) : Mapping from instances to ranks,
 ℝⁿ → *Y*. The family of ranking rules considered here :
 W ∈ ℝⁿ and k thresholds : b₁ ≤ b₂ ≤ ... ≤ b_k = ∞
- Given a ranking rule defined by w and b, the predicted rank (ŷ^t) on a new instance x is H(x) = min_{r∈1,2,..,k} {r : w ⋅ x − b_r < 0}</p>

- Input Stream: Sequence of instance-rank pairs (x¹, y¹)...(x^t, y^t) where each instance x_t ∈ ℝⁿ. Corresponding rank y^t ∈ Y which is a finite set with a total order relation (structured) . W.I.o.g. Y = 1, 2, 3..., k with > as the order relation. 1 ≺ 2 ≺ ... ≺ k
- ▶ Ranking Rule (*H*) : Mapping from instances to ranks,
 ℝⁿ → *Y*. The family of ranking rules considered here :
 W ∈ ℝⁿ and k thresholds : b₁ ≤ b₂ ≤ ... ≤ b_k = ∞
- Given a ranking rule defined by w and b, the predicted rank (ŷ^t) on a new instance x is
 H(x) = min_{r∈1,2,..,k} {r : w ⋅ x − b_r < 0}
- ► Algorithm makes a mistake on instance x^t if ŷ^t ≠ y^t and loss on that input is |ŷ^t y^t|.
- Loss after T rounds is $\sum_{t=1}^{T} |\hat{y}^t y^t|$

Perceptron Recap

Online Algorithm

- Online Algorithm
- In each round the ranking algorithm
 - Gets an input instance
 - Outputs the rank as prediction
 - Receives the correct rank value
 - If there is an error
 - Computes loss
 - Updates the rank-prediction rule

- Online Algorithm
- In each round the ranking algorithm
 - Gets an input instance
 - Outputs the rank as prediction
 - Receives the correct rank value
 - If there is an error
 - Computes loss
 - Updates the rank-prediction rule
- Conservative or Mistake driven algorithm :The algorithm updates its ranking rule only on rounds on which it made ranking mistakes.

- Online Algorithm
- In each round the ranking algorithm
 - Gets an input instance
 - Outputs the rank as prediction
 - Receives the correct rank value
 - If there is an error
 - Computes loss
 - Updates the rank-prediction rule
- Conservative or Mistake driven algorithm :The algorithm updates its ranking rule only on rounds on which it made ranking mistakes.
- No statistical assumptions over data. The algorithm should do well irrespectively of specific sequence of inputs and target labels

$$\mathbf{E} = \left\{ \begin{array}{c} b_2, b_3 \end{array} \right\}$$
• Direction w,
Thresholds $\mathbf{b}_{k,1}, \dots, \mathbf{b}_1$
• Rank a new instance x
• Get the correct rank y
• Compute Error-Set E
• Update :
- $\mathbf{b}_r \leftarrow \mathbf{b}_r - 1 \ \mathbf{r} \in \mathbf{E}$

Algorithm

Initialize: Set $\mathbf{w}^1 = 0$, $b_1^1, \dots, b_{k-1}^1 = 0, b_k^1 = \infty$. **Loop:** For t = 1, 2, ..., T• Get a new rank-value $\mathbf{x}^t \in \mathbb{R}^n$. • Predict $\hat{y}^t = \min_{r \in \{1,...,k\}} \{r : \mathbf{w}^t \cdot \mathbf{x}^t - b_r^t < 0\}.$ • Get a new label y^t . • If $\hat{y}^t \neq y^t$ update \mathbf{w}^t (otherwise set $\mathbf{w}^{t+1} = \mathbf{w}^t$, $\forall r : b_r^{t+1} = b_r^t$): 1. For r = 1, ..., k - 1 : If $y^t < r$ Then $y_r^t = -1$ Else $y_n^t = 1$. 2. For $r = 1, \ldots, k-1$: If $(\mathbf{w}^t \cdot \mathbf{x}^t - b_r^t) y_r^t \leq 0$ Then $\tau_r^t = y_r^t$ Else $\tau_r^t = 0$. 3. Update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + (\sum_r \tau_r^t) \mathbf{x}^t$. For $r = 1, \ldots, k - 1$ update: $b_n^{t+1} \leftarrow b_n^t - \tau_n^t$ $\mathbf{Output}: \ \ H(\mathbf{x}) = \min_{r \in \{1, \dots, k\}} \{r: \mathbf{w}^{T+1} \cdot \mathbf{x} - b_r^{T+1} < 0\}.$

Figure 2: The PRank Algorithm

Algorithm

Initialize: Set $\mathbf{w}^1 = 0$, $b_1^1, \dots, b_{k-1}^1 = 0, b_k^1 = \infty$. **Loop:** For t = 1, 2, ..., T• Get a new rank-value $\mathbf{x}^t \in \mathbb{R}^n$. • Predict $\hat{y}^t = \min_{r \in \{1,...,k\}} \{r : \mathbf{w}^t \cdot \mathbf{x}^t - b_r^t < 0\}.$ • Get a new label y^t . • If $\hat{y}^t \neq y^t$ update \mathbf{w}^t (otherwise set $\mathbf{w}^{t+1} = \mathbf{w}^t$, $\forall r : b_r^{t+1} = b_r^t$): 1. For r = 1, ..., k - 1 : If $y^t \le r$ Then $y^t_r = -1$ Else $y_n^t = 1$. 2. For $r = 1, \ldots, k-1$: If $(\mathbf{w}^t \cdot \mathbf{x}^t - b_r^t) y_r^t \leq 0$ Then $\tau_r^t = y_r^t$ Else $\tau_r^t = 0$. 3. Update $\mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + (\sum_r \tau_r^t) \mathbf{x}^t$. For $r = 1, \ldots, k - 1$ update: $b_r^{t+1} \leftarrow b_r^t - \tau_r^t$ $\mathbf{Output}: \ \ H(\mathbf{x}) = \min_{r \in \{1, \dots, k\}} \{r: \mathbf{w}^{T+1} \cdot \mathbf{x} - b_r^{T+1} < 0\}.$

Figure 2: The PRank Algorithm

- ▶ Rank y is expanded into k 1 virtual variables $y_1, ..., y_{k-1}$, where $y_r = +1$ if $w \cdot x > b_r$ and $y_r = -1$ otherwise.
- On mistakes, b and $w \cdot x$ are moved towards each other.

Analysis

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO." 1. Lemma : Order Preservation

2. Theorem : Mistake Bound

Can this happen ?

Can this happen ?

NO

Can this happen ?

NO

Let w_t and b_t be the current ranking rule, where $b_1^t \leq ... \leq b_{k-1}^t$ and let (x_t, y_t) be an instance-rank pair fed to PRank on round t. Denote by w_{t+1} and b_{t+1} the resulting ranking rule after the update of PRank, then $b_1^{t+1} \leq \ldots \leq b_{k-1}^{t+1}$

Let w_t and b_t be the current ranking rule, where $b_1^t \leq ... \leq b_{k-1}^t$ and let (x_t, y_t) be an instance-rank pair fed to PRank on round t. Denote by w_{t+1} and b_{t+1} the resulting ranking rule after the update of PRank, then $b_1^{t+1} \leq ... \leq b_{k-1}^{t+1}$

Proof Sketch :

- ▶ b_r^t are integers for all r and t since for all r we initialize $b_r^1 = 0$, and $b_r^{t+1} b_r^t \in \{-1, 0, +1\}$.
- Proof by Induction : Showing $b_{r+1}^{t+1} \ge b_r^{t+1}$ is equivalent to proving

$$b_{r+1}^t - b_r^t \ge y_{r+1}^t [(w_t \cdot x_t - b_{r+1}^t)y_{r+1}^t \le 0] - y_r^t [(w_t \cdot x_t - b_r^t)y_r^t \le 0]$$

Theorem : Mistake Bound

Let $(x_l, y_1), ..., (x_T, y_T)$ be an input sequence for PRank where $x_t \in \mathbb{R}^n$ and $y_t \in l, ..., k$. Denote by $R^2 = \max_t ||x_t||^2$. Assume that there is a ranking rule $v^* = (w^*, b^*)$ with $b_1^* \le ... \le b_{k-1}^*$ of a unit norm that classifies the entire sequence correctly with margin $\gamma = \min_{r,t} (w^* \cdot x_t - b_r^*) y_r^t > 0$. Then, the rank loss of the algorithm $\sum_{t=1}^T |\hat{y}^t - y^t|$, is at most $\frac{(k-1)(R^2+1)}{\gamma^2}$.

Proof of Theorem

•
$$w_{t+1} = w_t + (\sum_r \tau_r^t) x_t$$
 and $b_r^{t+1} = b_r^t - \tau_r^t$

- ▶ Let $n_t = |\hat{y}^t y^t|$ be difference between the true rank and the predicted rank. Clearly, $n^t = \sum_r |\tau_r^t|$
- ► To prove the theorem we bound ∑_t n^t from above by bounding ||v^t||² from above and below.

•
$$v^* \cdot v^{t+1} = v^* \cdot v^t + \sum_{r=1}^{k-1} \tau_r^t (w^* x^t - b_r^*)$$

 $\sum_{\substack{r=1\\r=1}}^{k-1} \tau_r^t (w^* x^t - b_r^*) \ge n^t \gamma \implies v^* v^{T+1} \ge \gamma \sum_t n^t \implies ||v^{T+1}||^2 \ge \gamma^2 (\sum_t n^t)^2$

To bound the norm of v from above :

$$||v^{t+1}||^2 = ||w^t||^2 + ||b^t||^2 + 2\sum_r \tau_r^t (w^t \cdot x^t - b_r^t) + (\sum_r \tau_r^t)^2 ||x^t||^2 + \sum_r (\tau_r^t)^2$$

• Since, $(\sum_r \tau_r^t)^2 \leq (n^t)^2$ and $\sum_r (\tau_r^t)^2 = n^t$

$$||v^{t+1}||^2 = ||v^t||^2 + 2\sum_r \tau_r^t (w^t \cdot x^t - b_r^t) + (n^t)^2 ||x^t||^2 + n^t$$

$$\sum_{r} \tau_r^t (w^t \cdot x^t - b_r^t) = \sum_{r} [(w^t \cdot x^t - b_r^t) \le 0] (w^t \cdot x^t - b_r^t) y_r \le 0$$

► Since,
$$||x^t||^2 \le R^2 \implies ||v^{t+1}||^2 = ||v^t||^2 + (n^t)^2 R^2 + n^t$$

▶ Using the lower bound, we get, $\sum_t n^t \leq \frac{R^2 [\sum_t (n^t)^2] / [\sum_t n^t] + 1}{\gamma^2}$

$$h^{t} \leq k-1 \implies \sum_{t} (n^{t})^{2} \leq (k-1) \sum_{t} n^{t} \implies \sum_{t} n^{t} \leq \frac{(k-1)(R^{2}+1)}{\gamma^{2}}$$

- Models
 - Multi-class Generalization of Perceptron (MCP) : kn parameters : under-constrained
 - Widrow Hoff Algorithm for Online Regression (WH): n parameters : over-constrained
 - PRank : n + k 1 parameters : accurately constrained

- Models
 - Multi-class Generalization of Perceptron (MCP) : kn parameters : under-constrained
 - Widrow Hoff Algorithm for Online Regression (WH): n parameters : over-constrained
 - PRank : n + k 1 parameters : accurately constrained
- Datasets
 - Synthetic dataset
 - EachMovie dataset-used for collaborative filtering tasks
 - Evaluation in batch setting- outperforms multi-class SVM, SVR

- Models
 - Multi-class Generalization of Perceptron (MCP) : kn parameters : under-constrained
 - Widrow Hoff Algorithm for Online Regression (WH): n parameters : over-constrained
 - PRank : n + k 1 parameters : accurately constrained
- Datasets
 - Synthetic dataset
 - EachMovie dataset-used for collaborative filtering tasks
 - Evaluation in batch setting- outperforms multi-class SVM, SVR

Figure 4: Time-averaged ranking-loss comparison of MCP,WH,PRank on the synthetic dataset, EachMovie-100 and 200 datasets respectively

Key takeaways

1. The ranking problem is a structured prediction task because of the total order between the different ratings.

Key takeaways

- 1. The ranking problem is a structured prediction task because of the total order between the different ratings.
- 2. Online algorithm for ranking problem via projections and conservative update of the projection's direction and the threshold values.

Key takeaways

- 1. The ranking problem is a structured prediction task because of the total order between the different ratings.
- 2. Online algorithm for ranking problem via projections and conservative update of the projection's direction and the threshold values.
- 3. Experiments indicate this algorithm performs better than regression and classification models for ranking tasks.

Further Reading

Types of Ranking Algorithms:

- Point-wise Approaches PRanking
- Pair-wise Approaches RankSVM, RankNet, Rankboost
- List-wise Approaches SVM^{map}, AdaRank, SoftRank

Further Reading

Types of Ranking Algorithms:

- Point-wise Approaches PRanking
- Pair-wise Approaches RankSVM, RankNet, Rankboost
- ► List-wise Approaches *SVM^{map}*, AdaRank, SoftRank References:
 - ► Liu, Tie-Yan. Learning to rank for information retrieval. Foundations and Trends[®] in Information Retrieval 3.3 (2009): 225-331.

Further Reading

Types of Ranking Algorithms:

- Point-wise Approaches PRanking
- Pair-wise Approaches RankSVM, RankNet, Rankboost
- ► List-wise Approaches *SVM^{map}*, AdaRank, SoftRank References:
 - ► Liu, Tie-Yan. Learning to rank for information retrieval. Foundations and Trends® in Information Retrieval 3.3 (2009): 225-331.
 - Agarwal, Shivani, and Partha Niyogi. Generalization bounds for ranking algorithms via algorithmic stability. Journal of Machine Learning Research 10.Feb (2009): 441-474.