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Introduction

I Problem
I Input : Sequence of instance-rank pairs (x1, y1)...(x t , y t)
I Output : A model(essentially a rank prediction rule) which

assigns to each instance a rank.
I Goal: To have the predicted rank as close as possible to the

true rank.
I Note : The ranks need not be unique!

I Similarity with
I Classification Problems : Assign one of k possible labels to a

new instance.
I Regression Problems : Set of k labels is structured as there is a

total order relation between labels.

Natural Settings to rank / rate instances

Information Retrieval , Collaborative Filtering
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Problem

Figure 1: Movie rating prediction (Example : Netflix challenge)



Possible Solutions

I Cast as a regression or classification problem

I Reduce a total order into a set of preference over pairs.
Drawback : Sample size blowup from n to Ø(n2). Also, no
easy adaptation for online settings.

I PRank Algorithm : Directly maintains totally ordered set by
projection of instances into reals, associating ranks with
distinct sub-intervals of the reals and adapting the support of
each subinterval while learning.
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Problem Setup

I Input Stream: Sequence of instance-rank pairs
(x1, y1)...(x t , y t) where each instance xt ∈ Rn.
Corresponding rank y t ∈ Y which is a finite set with a total
order relation (structured) . W.l.o.g. Y = 1, 2, 3..., k with >
as the order relation. 1 ≺ 2 ≺ ... ≺ k

I Ranking Rule (H) : Mapping from instances to ranks,
Rn → Y. The family of ranking rules considered here :
w ∈ Rn and k thresholds : b1 ≤ b2 ≤ ... ≤ bk =∞

I Given a ranking rule defined by w and b, the predicted rank
(ŷ t) on a new instance x is
H(x) = minr∈1,2,..,k {r : w · x − br < 0}

I Algorithm makes a mistake on instance x t if ŷ t 6= y t and loss
on that input is |ŷ t − y t |.

I Loss after T rounds is
∑T

t=1 |ŷ t − y t |
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Perceptron Recap



Overview of Algorithm

I Online Algorithm

I In each round the ranking algorithm
I Gets an input instance
I Outputs the rank as prediction
I Receives the correct rank value
I If there is an error

I Computes loss
I Updates the rank-prediction rule

I Conservative or Mistake driven algorithm :The algorithm
updates its ranking rule only on rounds on which it made
ranking mistakes.

I No statistical assumptions over data.The algorithm should do
well irrespectively of specific sequence of inputs and target
labels
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Algorithm

Figure 2: The PRank Algorithm

I Rank y is expanded into k − 1 virtual variables y1, .., yk−1,
where yr = +1 if w · x > br and yr = −1 otherwise.

I On mistakes, b and w · x are moved towards each other.
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Analysis

1. Lemma : Order
Preservation

2. Theorem : Mistake Bound



Lemma : Order Preservation

Can this happen ?

NO

Let wt and bt be the current ranking rule, where bt1 ≤ ... ≤ btk−1
and let (xt , yt) be an instance-rank pair fed to PRank on round t.
Denote by wt+1 and bt+1 the resulting ranking rule after the
update of PRank, then bt+1

1 ≤ ... ≤ bt+1
k−1
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Lemma : Order Preservation

Let wt and bt be the current ranking rule, where bt1 ≤ ... ≤ btk−1
and let (xt , yt) be an instance-rank pair fed to PRank on round t.
Denote by wt+1 and bt+1 the resulting ranking rule after the
update of PRank, then bt+1

1 ≤ ... ≤ bt+1
k−1

Proof Sketch :

I btr are integers for all r and t since for all r we initialize
b1r = 0, and bt+1

r − btr ∈ {−1, 0,+1}.
I Proof by Induction :

Showing bt+1
r+1 ≥ bt+1

r is equivalent to proving

btr+1−btr ≥ y tr+1[(wt ·xt−btr+1)y tr+1 ≤ 0]−y tr [(wt ·xt−btr )y tr ≤ 0]



Lemma : Order Preservation

Figure 3: Intuitive Proof of Lemma



Theorem : Mistake Bound

Let (xl , y1), ..., (xT , yT ) be an input sequence for PRank where
xt ∈ Rn and yt ∈ l , ..., k . Denote by R2 = maxt ||xt ||2. Assume
that there is a ranking rule v∗ = (w∗, b∗) with b∗1 ≤ ... ≤ b∗k−1 of a
unit norm that classifies the entire sequence correctly with margin
γ = minr ,t (w∗ · xt − b∗r )y tr > 0. Then, the rank loss of the

algorithm
∑T

t=1 |ŷ t − y t |, is at most (k−1)(R2+1)
γ2

.



Proof of Theorem

I wt+1 = wt + (
∑

r τ
t
r )xt and bt+1

r = btr − τ tr
I Let nt = |ŷ t − y t | be difference between the true rank and the

predicted rank. Clearly, nt =
∑

r |τ tr |
I To prove the theorem we bound

∑
t n

t from above by
bounding ||v t ||2 from above and below.

I v∗ · v t+1 = v∗ · v t +
∑k−1

r=1 τ
t
r (w∗x t − b∗r )

I
∑k−1

r=1 τ
t
r (w∗x t − b∗r ) ≥ ntγ =⇒ v∗vT+1 ≥ γ

∑
t n

t =⇒
||vT+1||2 ≥ γ2(

∑
t n

t)2



I To bound the norm of v from above :

I ||v t+1||2 = ||w t ||2 + ||bt ||2 + 2
∑

r τ
t
r (w t · x t − btr ) +

(
∑

r τ
t
r )2||x t ||2 +

∑
r (τ tr )2

I Since, (
∑

r τ
t
r )2 ≤ (nt)2 and

∑
r (τ tr )2 = nt

I ||v t+1||2 = ||v t ||2 + 2
∑

r τ
t
r (w t · x t − btr ) + (nt)2||x t ||2 + nt

I
∑

r τ
t
r (w t ·x t−btr ) =

∑
r [(w t ·x t−btr ) ≤ 0](w t ·x t−btr )yr ≤ 0

I Since, ||x t ||2 ≤ R2 =⇒ ||v t+1||2 = ||v t ||2 + (nt)2R2 + nt

I Using the lower bound, we get,
∑

t n
t ≤ R2[

∑
t(n

t)2]/[
∑

t n
t ]+1

γ2

I nt ≤ k − 1 =⇒
∑

t(n
t)2 ≤ (k − 1)

∑
t n

t =⇒
∑

t n
t ≤

(k−1)(R2+1)
γ2
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Experiments

I Models
I Multi-class Generalization of Perceptron (MCP) : kn

parameters : under-constrained
I Widrow Hoff Algorithm for Online Regression (WH): n

parameters : over-constrained
I PRank : n + k − 1 parameters : accurately constrained

I Datasets
I Synthetic dataset
I EachMovie dataset-used for collaborative filtering tasks
I Evaluation in batch setting- outperforms multi-class SVM, SVR

Figure 4: Time-averaged ranking-loss comparison of MCP,WH,PRank on
the synthetic dataset, EachMovie-100 and 200 datasets respectively
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Key takeaways

1. The ranking problem is a structured prediction task because
of the total order between the different ratings.

2. Online algorithm for ranking problem via projections and
conservative update of the projection’s direction and the
threshold values.

3. Experiments indicate this algorithm performs better than
regression and classification models for ranking tasks.
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Further Reading

Types of Ranking Algorithms:

I Point-wise Approaches - PRanking

I Pair-wise Approaches - RankSVM, RankNet, Rankboost

I List-wise Approaches - SVMmap, AdaRank, SoftRank

References:

I Liu, Tie-Yan. Learning to rank for information retrieval.
Foundations and Trends R© in Information Retrieval 3.3
(2009): 225-331.

I Agarwal, Shivani, and Partha Niyogi. Generalization bounds
for ranking algorithms via algorithmic stability. Journal of
Machine Learning Research 10.Feb (2009): 441-474.
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