NETFLIX Movie Recommendations

Virgil Pavlu Shahzad Rajput Keshi Dai

Movie ratings: 1 (bad) - 5 (good)

Movie ratings

	NU DESIGNAL			UNITIAL STREED and CASSINO VALUE AUTO SLADS AT THE TAT KNEYVER.	
	5	3	2		5
	3		5	4	
	4	4		3	5
6700		5	3	2	4

COLLABORATIVE FILTERING; PEARSON FORMULA compute for each user u mean and variance. Let N_u = number of movies rated by user u; R_{um} is the rating of user u for movie m

$$\mu_u = \frac{\sum_m R_{um}}{N_u}$$

$$\sigma_u = \frac{\sum_m R_{um}^2}{N_u} - \mu_u^2$$

normalize each ratings by substracting the user mean and dividing by user variance

$$\bar{r}_{um} = \frac{R_{um} - \mu_u}{\sigma_u}$$

compute user similarity between any two users u and v

$$\rho_{uv} = \frac{1}{\text{movies in common } m} \sum_{m} \bar{r}_{um}$$

predict the rating for a new movie by accounting for all other users' v rating on the movie

$$predict(u,m) = \mu_u + \frac{\sum_v \rho_{uv} \cdot \bar{r}_{vm}}{\sum_v |\rho_{uv}|}$$

 $\cdot \bar{r}_{vm}$

$$\cdot \sigma_u$$

Users-item-ratings problem

- Usually very sparse
- Many applications
 - article recommendation
- Amazon, Netflix, iTunes and many others
 - pretty much all online stores/services
 - "automatic" reviews
 - some items (movie, books) easier than others
- Content vs Collaborative approach

NETFLIX dataset

- Rent movies via postal service
 - recently also online
- 18000 movies
- .5 million users
- Training: 100 million ratings
- Testing : 1 million ratings
 - measure perfomance : RMSE

37918 teams / 180 countries

.ea	aderboard		Display top	40 leaders.
Rank	Team Name No Grand Prize candidates yet	Best Score	% Improvement	Last Submit Time
Grand	<u> Prize</u> - RMSE <= 0.8563			
	PracmaticTheory BellKor in BigChaos Cace Grand Prize Team	08597 08598 08606 08609	8.64 8.63 8.54 9.51	2009-03-14 02 00 01 2009-01-05 22 05 26 2009-03-11 00 12 12 2009-03-12 17 56 36
Progr	ess Prize 2008 RNSE = 0.8616	Winning Tea	m: BellKor in BigCl	haos
	<u>BigChaos</u> <u>BellKor</u> <u>Gravity</u>	0 8624 0 8628 0 8651	£.35 £.31 £.07	2C09-02-07 13 06 32 2C08-12-31 11 50 49 2C09-01-23 06 58 01
c	Ces <u>Cpera Solutions</u> NewNetflixTesm	08654 08654 08657	ዩ.04 ۶ በ4 ዩ.01	2009-03-09 03 03 22 2009-03-13 08 00 07 2009-03-12 05 53 42
1	<u>J Dennis Su</u> BruceDengDaoCiYiYou	08658	6.00 6.98	2009 03 11 09 41 54 2009-03-11 01 24 48
4 E	Feeds2 pengpengzhou	08635 08635 08636	E.97 E.92 E.91	2009-03-1110 3916 2009-03-1017 34 20 2009-03-11 00 49 53
E 7 E	Ny Brain and His Chain <u>Just a quy in a garace</u> scientist	08638 08639 08670	8.89 8.88 8.87	2008-09-30 02 19 47 2009-02-17 18 10 59 2009-03-11 23 45 07
1¢ 2C	When Gravity and Dinosaurs Unite IDEA2	0.8675	F 82 E.82	2008-10-05141653 2009-03-13101513

Collaborative Filtering

- Use similarity between users/items
- Many solutions, old and new
 - Simple : Pearson's formula
 - measure statistical correlation between users/items
 - Simple : Rule-based
 - k-Nearest Neighbor/k-Means + regression
 - Model effects due to user/movie/time etc
 - Star Wars may not be as likeable now as 30 years ago
 - Matrix factorization

Content-based training

- Identify movies by content features
 - Actors, genre, director, writer etc
 - 6000 features to cover 90% of NETFLIX dataset
 - We use content data from IMDB
- Learn a profile for each user

User profile

profile 2.5 4 5 3 3.3 4

Content + Collaborative

Fix a movie m

rainin

resti

Build a training set with content+collab features

profile collaborative

	date	c_1	c_2	c_3	<i>C</i> ₄	m_1	m_2	m_3	rating
u_1	.28	1.2	4.3	-	3.8	5	2	1	3
u_2	.35	2.5	2.1	1.5	4.1	4	3	4	4
u_3	.78	1.4	1.2	-	3.2	Щ	_	1	1
u_4	.32	-	-	1.7	2.8	3	1	- •••	5
u_5	.34	2.1	4.0	2.3	2.0	-	2	1	1
u_6	.31	2.8	3.5	2.6	3.4	2	-	1	2
u_7	.38	-	4.2	2.9	2.8	4	3		?
u_8	.29	2.4	4.5		2.0	H	2	2	?
u_9	.30	1.9	3.8	3.1	3.4	-	4	3	?

Run decision tree + regression

Content + Collaborative

- On some movies content features dominant
- On others, collab features dominant

			protile			collaborative				
	Ϋ́.	date	c_1	c_2	c_3	C4	m_1	m_2	m_3	rating
	u_1	.28	1.2	4.3	-	3.8	5	2	1	3
	u_2	.35	2.5	2.1	1.5	4.1	4	3	4	4
	u_3	.78	1.4	1.2	-	3.2	-	-	1	1
5	u_4	.32	-	=	1.7	2.8	3	1		5
	u_5	.34	2.1	4.0	2.3	2.0	-	2	1	1
	u_6	.31	2.8	3.5	2.6	3.4	2	-	1	2
	u_7	.38	-	4.2	2.9	2.8	4	3		?
	u_8	.29	2.4	4.5		2.0	-	2	2	?
5	u_9	.30	1.9	3.8	3.1	3.4	-	4	3	?

[Preliminary] results

About 600 movies, chosen randomly

- Train on 90% of data
- Test on 10% of data
- Overall RMSE=.95
- Problems with movies with few ratings