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Learning to Rank 
for Information Retrieval

Tie-Yan Liu

Microsoft Research Asia

A tutorial at WWW 2009

This Tutorial

• Learning to rank for information retrieval
– But not ranking problems in other fields.

• Supervised learning
– But not unsupervised or semi-supervised learning.

• Learning in vector space
– But not on graphs or other structured data.

• Mainly based on papers at SIGIR, WWW, ICML, and NIPS.
– Papers at other conferences and journals might not be covered 

comprehensively.
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Background Knowledge Required

• Information Retrieval.

• Machine Learning.

• Probability Theory.
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Outline

• Introduction

• Learning to Rank Algorithms
– Pointwise approach

– Pairwise approach

– Listwise approach

– Analysis of the approaches

• Statistical Ranking Theory
– Query-level ranking framework

– Generalization analysis for ranking

• Benchmarking Learning to Rank methods

• Summary
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Introduction

Overwhelmed by Flood of Information
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Facts about the Web

• According to www.worldwidewebsize.com, there are 
more than 25 billion pages on the Web.

• Major search engines indexed at least tens of billions 
of web pages.

• CUIL.com indexed more than 120 Billion web pages.
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Ranking is Essential
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Indexed 
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Applications of Ranking

• Document retrieval

• Collaborative filtering

• Key term extraction 

• Definition finding

• Important email routing 

• Sentiment analysis, 

• Product rating

• Anti Web spam

• ……
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Scenarios of Ranking
(Document Retrieval as Example)

• Rank the documents purely according to their relevance with 
regards to the query.

• Consider the relationships of similarity, website structure, and 
diversity between documents in the ranking process 
(relational ranking).

• Aggregate several candidate ranked lists to get a better ranked 
list (meta search).

• Find whether and to what degree a property of a webpage 
influences the ranking result (reverse engineering).

• …

4/20/2009 Tie-Yan Liu @ WWW 2009 Tutorial on Learning to Rank 11

Evaluation of Ranking Results

• Construct a test set containing a large number of 
(randomly sampled) queries, their associated 
documents, and relevance judgment for each query-
document pair.

• Evaluate the ranking result for a particular query in 
the test set with an evaluation measure.

• Use the average measure over the entire test set to 
represent the overall ranking performance.
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Collecting Documents for A Query

• Pooling strategy used in TREC

– A pool of possibly relevant documents is created 
by taking a sample of documents selected by the 
various participating systems.

– Top 100 documents retrieved in each submitted 
run for a given query are selected and merged into 
the pool for human assessment.

– On average, an assessor judges the relevance of 
approximately 1500 documents per query.
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Relevance Judgment

• Degree of relevance

– Binary: relevant vs. irrelevant

– Multiple ordered categories: Perfect > Excellent > Good > 
Fair > Bad

• Pairwise preference

– Document A is more relevant than 
document B

• Total order

• Documents are ranked as {A,B,C,..} 
according to their relevance
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Evaluation Measure - MAP

• Precision at position k for query q:

• Average precision for query q:

• MAP: averaged over all queries.

15
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Evaluation Measure - NDCG

• NDCG at position n for query q: 

• Averaged over all queries.
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Evaluation Measure - Summary

• Query-level: every query contributes equally to the 
measure.

– Computed on documents associated with the same query.

– Bounded for each query.

– Averaged over all test queries.

• Position-based: rank position is explicitly used.

– Top-ranked objects are more important.

– Relative order vs. relevance score of each document.

– Non-continuous and non-differentiable w.r.t. scores
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Conventional Ranking Models

• Query-dependent

– Boolean model, extended Boolean model, etc.

– Vector space model, latent semantic indexing (LSI), etc.

– BM25 model, statistical language model, etc.

– Span based model, distance aggregation model, etc.

• Query-independent

– PageRank, TrustRank, BrowseRank, etc.
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Problems with Conventional Models

• Manual parameter tuning is usually difficult, 
especially when there are many parameters and the 
evaluation measures are non-smooth.

• Manual parameter tuning sometimes leads to over-
fitting.

• It is non-trivial to combine the large number of 
models proposed in the literature to obtain an even 
more effective model.
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Machine Learning Can Help

• Machine learning is an effective tool

– To automatically tune parameters.

– To combine multiple evidences.

– To avoid over-fitting  (by means of regularization, etc.)

• “Learning to Rank”

– In general, those methods that use 
machine learning technologies to solve 
the problem of ranking can be named as 
“learning to rank” methods.
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Learning to Rank

• In most recent works, learning to rank is 
defined as having the following two properties:

– Feature based;

– Discriminative training.
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Feature Based

• Documents represented by feature vectors.

– Even if a feature is the output of an existing retrieval 
model, one assumes that the parameter in the model is 
fixed, and only learns the optimal way of combining these 
features.

• The capability of combining a large number of 
features is very promising. 

– It can easily incorporate any new progress on retrieval 
model, by including the output of the model as a feature.
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Discriminative Training

• An automatic learning process based on the training 
data, 

– With the following four pillars: Input space, output space, 
hypothesis space, loss function.

– Not even necessary to have a probabilistic explanation.

• This is highly demanding for real search engines,

– Everyday these search engines will receive a lot of user 
feedback and usage logs 

– It is very important to automatically learn from the 
feedback and constantly improve the ranking mechanism.
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Learning to Rank

• In most recent works, learning to rank is 
defined as having the following two properties:
– Feature based;

– Discriminative training.

• Automatic parameter tuning for existing 
ranking models, and learning-based 
generative ranking models do not belong to 
the current definition of “learning to rank.”
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Learning to Rank Framework
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Learning to Rank Algorithms
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Ranking SVM (ICANN 1999)

RankBoost (JMLR 2003)

Discriminative model for IR (SIGIR 2004)

LDM (SIGIR 2005)

RankNet (ICML 2005)
IRSVM (SIGIR 2006)

LambdaRank (NIPS 2006) Frank (SIGIR 2007)

GBRank (SIGIR 2007)QBRank (NIPS 2007)

MPRank (ICML 2007)

McRank (NIPS 2007) 

AdaRank (SIGIR 2007)

SVM-MAP (SIGIR 2007)

SoftRank (LR4IR 2007)

GPRank (LR4IR 2007)

CCA (SIGIR 2007)

MHR (SIGIR 2007)

RankCosine (IP&M 2007)

ListNet (ICML 2007)

ListMLE (ICML 2008)

Query refinement (WWW 2008)

Supervised Rank Aggregation (WWW 2007)

Relational ranking (WWW 2008)

SVM Structure (JMLR 2005)

Nested Ranker (SIGIR 2006)

Least Square Retrieval Function
(TOIS  1989)

Subset Ranking (COLT 2006)

Pranking (NIPS 2002)

OAP-BPM (ICML 2003)

Large margin ranker (NIPS 2002)

Constraint Ordinal Regression (ICML 2005)

Learning to retrieval info (SCC 1995)

Learning to order things (NIPS 1998)

Round robin ranking (ECML 2003)
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Key Questions to Answer

• To what respect are these learning to rank algorithms similar 
and in which aspects do they differ? What are the strengths 
and weaknesses of each algorithm?

• What are the unique theoretical issues for ranking that should 
be investigated?

• Empirically speaking, which of those many learning to rank 
algorithms perform the best?

• Are there many remaining issues regarding learning to rank to 
study in the future?
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Learning to Rank Algorithms
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Categorization of the Algorithms
Category Algorithms

Pointwise
Approach

Regression: Least Square Retrieval Function (TOIS 1989), Regression Tree for Ordinal 
Class Prediction (Fundamenta Informaticae, 2000), Subset Ranking using Regression 
(COLT 2006), …
Classification: Discriminative model for IR (SIGIR 2004), McRank (NIPS 2007), …
Ordinal regression: Pranking (NIPS 2002), OAP-BPM (EMCL 2003), Ranking with 
Large Margin Principles  (NIPS 2002), Constraint Ordinal Regression (ICML 2005), …

Pairwise 
Approach

Learning to Retrieve Information (SCC 1995), Learning to Order Things (NIPS 1998), 
Ranking SVM (ICANN 1999), RankBoost (JMLR 2003), LDM (SIGIR 2005), RankNet
(ICML 2005), Frank (SIGIR 2007), MHR(SIGIR 2007), GBRank (SIGIR 2007), QBRank
(NIPS 2007), MPRank (ICML 2007), IRSVM (SIGIR 2006), …

Listwise
Approach

Listwise loss minimization: RankCosine (IP&M 2008), ListNet (ICML 2007), ListMLE
(ICML 2008), …
Direct optimization of IR measure: LambdaRank (NIPS 2006), AdaRank (SIGIR 2007), 
SVM-MAP (SIGIR 2007), SoftRank (LR4IR 2007), GPRank (LR4IR 2007), CCA (SIGIR 
2007),  …
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Characterizing the Approaches

• Four pillars of discriminative learning

– Input space

– Output space

– Hypothesis space

– Loss function
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2009/4/12

16

The Pointwise Approach

The Pointwise Approach

Regression Classification Ordinal Regression

Input Space Single documents yj

Output Space Real values
Non-ordered 

Categories
Ordinal categories

Hypothesis Space Scoring function

Loss Function

Regression loss Classification loss
Ordinal regression 

loss
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The Pointwise Approach

• Reduce ranking to

– Regression

• Subset Ranking

– Classification

• Discriminative model for IR

• MCRank

– Ordinal regression

• Pranking

• Ranking with large margin principle
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Subset Ranking using Regression
(D. Cossock and T. Zhang,  COLT 2006)

• Regard relevance degree as real number, and use 
regression to learn the ranking function.
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Discriminative Model for IR
(R. Nallapati, SIGIR 2004)

• Classification is used to learn the ranking function

– Treat relevant documents as positive examples (yj=+1), 
while irrelevant documents as negative examples (yj=-1).

– is surrogate loss of 

• Different algorithms optimize different surrogate 
losses.

– e.g., Support Vector Machines (hinge loss)
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McRank
(P. Li, C. Burges, et al. NIPS 2007)

• Multi-class classification is used to learn the ranking 
function.

• Ranking is produced by combining the outputs of the 
classifiers.
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Pranking with Ranking
(K. Krammer and Y. Singer, NIPS 2002)
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• Ranking is solved by ordinal regression
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Ranking with Large Margin Principles 
(A. Shashua and A. Levin, NIPS 2002)

• Fixed margin strategy

– Margin: 

– Constraints:  every document is correctly placed in its 
corresponding category. 
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• Sum of margins strategy

– Margin:

– Constraints: every document is correctly placed in its 
corresponding category

Ranking with Large Margin Principles 
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Problem with Pointwise Approach

• Properties of IR evaluation measures have not been 
well considered.

– The fact is ignored that some documents are associated 
with the same query and some are not. When the number 
of associated documents varies largely for different 
queries, the overall loss function will be dominated by 
those queries with a large number of documents.

– The position of documents in the ranked list is invisible to 
the loss functions. The pointwise loss function may 
unconsciously emphasize too much those unimportant 
documents.
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The Pairwise Approach
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The Pairwise Approach

Input Space Document pairs (xu,xv)

Output Space Preference 

Hypothesis Space Preference function 

Loss Function Pairwise classification loss 
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The Pairwise Approach

• Reduce ranking to pairwise classification

– Learning to order things

– RankNet and Frank

– RankBoost

– Ranking SVM

– Multi-hyperplane ranker

– IR-SVM
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Learning to Order Things
(W. Cohen, R. Schapire, et al. NIPS 1998)

• Pairwise loss function

• Pairwise ranking function

– Weighted majority algorithm, e.g., the Hedge algorithm, is used to learn 
the parameters w.

– From preference to total order:
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• Target probability:

• Modeled probability:

• Cross entropy as the loss function

• Use Neural Network as model, and gradient descent as 
algorithm, to optimize the cross-entropy loss.

RankNet
(C. Burges, T. Shaked, et al. ICML 2005)
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FRank
(M. Tsai, T.-Y. Liu, et al. SIGIR 2007)

• Similar setting to that of RankNet

• New loss function: fidelity
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RankBoost
(Y. Freund, R. Iyer, et al. JMLR 2003)

• Exponential loss
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Ranking SVM
(R. Herbrich, T. Graepel, et al. , Advances in Large Margin Classifiers, 2000;  

T. Joachims, KDD 2002)

• Hinge loss
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Extensions of the Pairwise Approach

• When constructing document pairs, category information has 
been lost: different pairs of labels are treated identically.

– Can we maintain more information about ordered category?

– Can we use different learner for different kinds of pairs?

• Solutions

– Multi-hyperplane ranker
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Multi-Hyperplane Ranker
(T. Qin, T.-Y. Liu, et al. SIGIR 2007)

• If we have K categories, then will have K(K-1)/2 pairwise
preferences between two labels.
– Learn a model fk,l for the pair of categories k and l, using any previous 

method (for example Ranking SVM).

• Testing
– Rank Aggregation
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Improvement of Pairwise Approach

• Advantage

– Predicting relative order is closer to the nature of ranking 
than predicting class label or relevance score.
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• Problem 
– The distribution of 

document pair number is 
more skewed than the 
distribution of document 
number, with respect to 
different queries.
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IR-SVM

• Introduce query-level normalization to the pairwise loss 
function.

• IRSVM (Y. Cao, J. Xu, et al. SIGIR 2006; T. Qin, T.-Y. Liu, et al. IPM 2007)
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Query-level normalizer

Significant improvement has been observed by using the query-level normalizer.
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The Listwise Approach
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The Listwise Approach

Listwise Loss Minimization
Direct Optimization of IR 

Measure

Input Space Document set

Output Space Permutation Ordered categories

Hypothesis Space

Loss Function Listwise loss 1-surrogate measure
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Listwise Ranking: Two Major Branches

• Direct optimization of IR measures

– Try to optimize IR evaluation measures, or at least 
something correlated to the measures.

• Listwise loss minimization

– Minimize a loss function defined on permutations, 
which is designed by considering the properties of 
ranking for IR.
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Direct Optimization of IR Measures

• It is natural to directly optimize what is used to evaluate the 
ranking results.

• However, it is non-trivial.
– Evaluation measures such as NDCG are non-continuous and non-

differentiable since they depend on the rank positions.
(S. Robertson and H. Zaragoza, Information Retrieval 2007;  J. Xu, T.-Y. 
Liu, et al. SIGIR 2008).

– It is challenging to optimize such objective functions, since most 
optimization techniques in the literature were developed to handle 
continuous and differentiable cases.

534/20/2009 Tie-Yan Liu @ WWW 2009 Tutorial on Learning to Rank

Tackle the Challenges

• Approximate the objective
– Soften (approximate) the evaluation measure so as to make it smooth 

and differentiable (SoftRank)

• Bound the objective
– Optimize a smooth and differentiable upper bound of the evaluation 

measure (SVM-MAP)

• Optimize the non-smooth objective directly
– Use IR measure to update the distribution in Boosting (AdaRank)

– Use genetic programming (RankGP)
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SoftRank
(M. Taylor, J. Guiver, et al. LR4IR 2007/WSDM 2008)

• Key Idea:
– Avoid sorting by treating scores as random variables

• Steps
– Construct score distribution

– Map score distribution to rank distribution

– Compute expected NDCG (SoftNDCG) which is smooth and 
differentiable.

– Optimize SoftNDCG by gradient descent.
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Construct Score Distribution

• Considering the score for each document sj as random 
variable, by using Gaussian.
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From Scores to Rank Distribution

• Probability of du being ranked before dv

• Rank Distribution
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Define the probability of a document being ranked at a particular position
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Soft NDCG

• Expected NDCG as the objective, or in the language of loss 
function, 

• A neural network is used as the model, and gradient descent 
is used as the algorithm to optimize the above loss function.
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SVM-MAP
(Y. Yue, T. Finley, et al. SIGIR 2007)

• Use the framework of Structured SVM for optimization 
– I. Tsochantaridis, et al. ICML 2004; T. Joachims, ICML 2005.

• Sum of slacks ∑ξ upper bounds ∑ (1-AP).
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Challenges in SVM-MAP

• For AP, the true ranking is a ranking where the relevant 
documents are all ranked in the front, e.g.,

• An incorrect ranking would be any other ranking, e.g.,

• Exponential number of rankings, thus an exponential number 
of constraints!
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Structural SVM Training

• STEP 1: Perform optimization on only current working set of 
constraints.

• STEP 2: Use the model learned in STEP 1 to find the most 
violated constraint from the exponential set of constraints.

• STEP 3: If the constraint returned in STEP 2 is more violated 
than the most violated constraint in the working set, add it to 
the working set.

STEP 1-3 is guaranteed to loop for at most a polynomial number of 
iterations.  [I. Tsochantaridis et al. 2005]
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Finding the Most Violated Constraint

• Most violated y’:

• If the relevance at each position is fixed, Δ(y,y’) will be the same. But 
if the documents are sorted by their scores in descending order, the 
second term will be maximized.

• Strategy (with a complexity of O(mlogm))
– Sort the relevant and irrelevant documents and form a perfect ranking.

– Start with the perfect ranking and swap two adjacent relevant and 
irrelevant documents, so as to find the optimal interleaving of the two 
sorted lists.
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AdaRank
(J. Xu, H. Li. SIGIR 2007)

• Given: initial distribution D1 for each query.

• For t=1,…, T:

– Train weak learner using distribution Dt

– Get weak ranker ht: X  R

– Choose 

– Create

– Update: 

• Output the final ranker:
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Emphasize those hard 
queries by setting their 

distributions.

Weak learner that can
rank important queries
more correctly will have

larger weight α

Embed IR evaluation measure in the distribution update of Boosting

RankGP
(J. Yeh, J. Lin, et al. LR4IR 2007)

• Define ranking function as a tree

• Learning

– Single-population GP, which has been widely used to 
optimize non-smoothing non-differentiable objectives.

• Evolution mechanism

– Crossover, mutation, reproduction, tournament selection.

• Fitness function

– IR evaluation measure (MAP).
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Listwise Loss Minimization

• Defining listwise loss functions based on the 
understanding on the unique properties of ranking 
for IR.

• Representative Algorithms

– ListNet

– ListMLE
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Ranking Loss is Non-trivial!
• An example:

– function f: f(A)=3,  f(B)=0,  f(C)=1 ACB

– function h: h(A)=4, h(B)=6, h(C)=3 BAC

– ground truth g: g(A)=6, g(B)=4, g(C)=3 ABC

• Question:  which function is closer to ground truth?
– Based on pointwise similarity:  sim(f,g) < sim(g,h).
– Based on pairwise similarity:    sim(f,g) = sim(g,h)

– Based on cosine similarity between score vectors?
f: <3,0,1>   g:<6,4,3> h:<4,6,3>

• However, according to NDCG, f should be closer to g!

664/20/2009 Tie-Yan Liu @ WWW 2009 Tutorial on Learning to Rank

sim(g,h)=0.93sim(f,g)=0.85

Closer!
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Permutation Probability Distribution

• Question:  

– How to represent a ranked list?

• Solution

– Ranked list ↔ Permutation probability distribution

– More informative representation for ranked list: permutation 
and ranked list has 1-1 correspondence.
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Luce Model: 
Defining Permutation Probability

• Probability of a permutation 𝜋 is defined as

• Example:
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P(A ranked No.1)

P(B ranked No.2 | A ranked No.1)
= P(B ranked No.1)/(1- P(A ranked No.1))

P(C ranked No.3 | A ranked No.1, B ranked No.2)
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Properties of Luce Model

• Continuous, differentiable, and concave w.r.t. score s.

• Suppose f(A) = 3, f(B)=0, f(C)=1, P(ACB) is largest and P(BCA) is 
smallest; for the ranking based on f: ACB, swap any two, 
probability will decrease, e.g., P(ACB) > P(ABC)

• Translation invariant, when 

• Scale invariant, when 

)exp()( ss 

sas )(
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Distance between Ranked Lists

dis(f,g) = 0.46

dis(g,h) = 2.56  

φ = exp

704/20/2009

Using KL-divergence
to measure difference 
between distributions

Tie-Yan Liu @ WWW 2009 Tutorial on Learning to Rank
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ListNet
(Z. Cao, T. Qin, T.-Y. Liu, et al. ICML 2007)

• Loss function = KL-divergence between two permutation 
probability distributions (φ = exp)

• Model = Neural Network

• Algorithm = Gradient Descent

     )(|||),;( xx fPPDfL yy  
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Probability distribution defined 
by the ground truth

Probability distribution defined 
by the model output

Limitations of ListNet

• Too complex to use in practice: O(m⋅m!)

• By using the top-k Luce model, the complexity of ListNet can 
be reduced to polynomial order of m.

• However,
– When k is large, the complexity is still high!

– When k is small, the information loss in the top-k Luce model will 
affect the effectiveness of ListNet.
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Solution

• Given the scores outputted by the ranking model, compute 
the likelihood of a ground truth permutation, and maximize it 
to learn the model parameter.

• The complexity is reduced from O(m⋅m!) to O(m).
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ListMLE Algorithm
(F. Xia, T.-Y. Liu, et al. ICML 2008)

• Likelihood Loss

• Model = Neural Network

• Algorithm = Stochastic Gradient Descent

4/20/2009 Tie-Yan Liu @ WWW 2009 Tutorial on Learning to Rank 74

)))((|(log),;( xfPxfL yy  



2009/4/12

38

Extension of ListMLE

• Dealing with other types of ground truth labels using 
the concept of “equivalent permutation set”.

– For relevance degree

– For pairwise preference
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Discussions

• Advantages

– Take all the documents associated with the same 
query as the learning instance

– Rank position is visible to the loss function

• Problems

– Complexity issue.

– The use of the position information is insufficient.
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Analysis of the Approaches

• Different loss functions are used in different 
approaches, while the models learned with all the 
approaches are evaluated by IR measures.

• Question

– What are the relationship between the loss 
functions and IR evaluation measures?
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Pointwise Approach

• For regression based algorithms (D. Cossock and T. Zhang,  
COLT 2006)

• For multi-class classification based algorithms  (P. Li, C. Burges, 
et al. NIPS 2007) 
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Pointwise Approach

• Although it seems the loss functions can bound (1-
NDCG), the constants before the losses seem too 
large.

4/20/2009 Tie-Yan Liu @ WWW 2009 Tutorial on Learning to Rank 79





















1,

2,

3,

4,

4

3

2

1

x

x

x

x





















0,

1,

2,

3,

4

3

2

1

x

x

x

x

ii yx , )(, ii xfx
4.21mZ

4.21)( fDCG

115.1
)1log(

1

)1log(

1
2

15

1

)}({

1 1

2
2







































 




 

m

j

xfy

m

j

m

j

m

m
jj

I
j

m
jZ

 0)(1  fNDCG

Pairwise Approach

• Unified loss

– Model ranking as a sequence of classifications
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Pairwise Approach
(W. Chen, T.-Y. Liu, et al. 2009)

• Unified loss vs. (1-NDCG)

– When                    ,         is a tight bound of (1-NDCG).

• Surrogate function of Unified loss
– After introducing weights βt, loss functions in 

Ranking SVM, RankBoost, RankNet are Cost-
sensitive Pairwise Comparison surrogate functions, 
and thus are consistent with and are upper bounds 
of the unified loss.  

– Consequently, they also upper bound (1-NDCG).
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Listwise Approach
(W. Chen, T.-Y. Liu, et al. 2009)

• Listwise ranking loss minimization

– After introducing weights βt, the loss function in 
ListMLE is the Unconstrained Background 
Discriminative surrogate function of the unified 
loss, and thus are consistent with and are upper 
bounds of the unified loss. 

– Consequently, it also upper bounds (1-NDCG).
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Listwise Approach
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• Direct optimization

– Many direct optimization methods try to optimize smooth 
surrogates of IR measures, and this is why they are called 
direct optimization.

– Question, are they really direct?

– Directness

The Listwise Approach: Directness
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Listwise Approach
(Y. He, T.-Y. Liu, et al. 2008)

• Direct optimization

– For SoftRank, it has been proved that the 
surrogate measure can be as direct as possible to 
NDCG, by setting σs as small as possible.

– For SVM-MAP, there always exists some instances 
in the input /output space that make the 
surrogate measure not direct to AP on them.

• Good or bad?
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Discussions

• The tools to prove the bounds are not yet 
“unified”.

– What about the pointwise approach?

• Quantitative analysis between different 
bounds is missing.

• Upper bounds may not mean too much.

• Directness vs. Consistency.
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Statistical Ranking Theory

Query-level Ranking Framework

Query-level Generalization Analysis 
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Conventional Learning Framework

• Mainly about the pairwise approach.

• Assume (Xu,Yu) and (Xv,Yv) are i.i.d. samples, define
, then the expected and empirical risks are 

defined as below.
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U-statistics

Statistical Ranking Theory: Conventional Learning Framework 

• The goal of Learning to Rank: to minimize the expected query-
level risk           . 

• However, as the distribution is unknown, one minimizes the 
empirical query-level risk           .

• The generalization in ranking is concerned with the bound of 
the difference between the expected and empirical risks. 

• Intuitively, the generalization ability in ranking can be 
understood as whether the ranking model learned from the 
training set can have a good performance on new test queries.
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Generalization in Learning to Rank

Statistical Ranking Theory: Generalization in Learning to Rank 
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Conventional Generalization Analysis

• VC dimension

• Rank shatter coefficient

• Stability theory
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Statistical Ranking Theory: Conventional Learning Framework 

Complexity of the 
function class

Robustness of the 
algorithm

Limitations of Previous Works

• Considering that IR evaluations are conducted at the 
query level, the generalization ability should also be 
analyzed at the query level.

• Existing work can only give the generalization ability 
at document level or document pair level, which is 
not consistent with the evaluation in information 
retrieval.

4/20/2009 Tie-Yan Liu @ WWW 2009 Tutorial on Learning to Rank 90

Statistical Ranking Theory: Conventional Learning Framework 



2009/4/12

46

Query-level Ranking Framework

• Assume queries as i.i.d. random variables

• Query-level risks

4/20/2009 Tie-Yan Liu @ WWW 2009 Tutorial on Learning to Rank 91

Statistical Ranking Theory:  Query-level Ranking Framework

Query-level Ranking Framework

• The pointwise approach

– Further assume documents as i.i.d. random variables.
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Statistical Ranking Theory: Query-level Ranking Framework 
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Query-level Ranking Framework

• The pairwise approach

– The U-statistics view: further assume document as i.i.d. 
random variables.

– The Average view: further assume document pairs as i.i.d. 
random variables.
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Statistical Ranking Theory: Query-level Ranking Framework 

Query-level Ranking Framework

• The listwise approach

– Listwise loss minimization

– Direct optimization of IR measure
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Statistical Ranking Theory: Query-level Ranking Framework 
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Case Studies: The Pairwise Approach

• Query-Level Stability

– Query-level stability represents the degree of change in 
the loss of prediction when randomly removing a query 
and its associates from the training data.
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Function learned 
from the original 
training data.

Function learned from the training data that 
eliminate the j-th “samples” (both the query and 
the associates) from the original training data.

Stability 
coefficient

Statistical Ranking Theory: Generalization for the Pairwise Approach 

Case Studies: The Pairwise Approach

• Generalization Bound based on Query-Level Stability
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– The bound is related to the number of training queries n, 
and the stability coefficient         .

– If         0 very fast as n∞, then the bound will tend to 
zero, i.e. the generalization ability is good.

Statistical Ranking Theory: Generalization for the Pairwise Approach 
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• Ranking SVM

• IRSVM
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Stability of Ranking SVM and IRSVM

The generalization bound for Ranking SVM is much looser 
than that for IRSVM

Statistical Ranking Theory: Generalization for the Pairwise Approach 

Case Studies: The Listwise Approach

• Rademacher Average based generalization theory.
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Statistical Ranking Theory: Generalization for the Listwise Approach 
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Case Studies: The Listwise Approach

• Detailed analysis for ListNet and ListMLE.
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Convergence rate:
 Both algorithms: O(n-½)

Generalization ability:
 ListMLE > ListNet, especially when m is large
Linear transformation function has the best 
generalization ability.

Statistical Ranking Theory: Generalization for the Listwise Approach 

Discussion

• Generalization is not the entire story.

– Generalization is defined with respect to a 
surrogate loss function L.

– Consistency further discusses whether the risk 
defined by L can converge to the risk defined by 
the true loss for ranking, at the large sample limit.

• What is the true loss for ranking?

– Permutation level 0-1?

– IR measures?
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Benchmarking Learning to Rank 
Methods

Role of a Benchmark Dataset

• Enable researchers to focus on technologies 
instead of experimental preparation

• Enable fair comparison among algorithms

• Reuters and RCV-1 for text classification

• UCI for general machine learning
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The LETOR Collection

• A benchmark dataset for learning to rank

– Document Corpora

– Document Sampling

– Feature Extraction

– Meta Information

– Dataset Finalization
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Document Corpora

• The “.gov” corpus

– TD2003, TD2004

– HP 2003, HP 2004

– NP 2003, NP 2004

• The OHSUMED corpus
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Document Sampling

• The “.gov” corpus

– Top 1000 documents per query returned by BM25

• The OHSUMED corpus

– All judged documents
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Feature Extraction

• The “.gov” corpus

– 64 features

– TF, IDF, BM25, LMIR, PageRank, HITS, Relevance 
Propagation, URL length, etc.

• The OHSUMED corpus

– 40 features

– TF, IDF, BM25, LMIR, etc.
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Meta Information

• Statistical information about the corpus, such as the 
number of documents, the number of streams, and 
the number of (unique) terms in each stream.

• Raw information of the documents associated with 
each query, such as the term frequency, and the 
document length.

• Relational information, such as the hyperlink graph, 
the sitemap information, and the similarity 
relationship matrix of the corpora.
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Finalizing Datasets

• Five-fold cross validation
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http://research.microsoft.com/~LETOR/



2009/4/12

55

Algorithms under Investigation

• The pointwise approach
– Linear regression

• The pairwise approach
– Ranking SVM, RankBoost, Frank

• The listwise approach
– ListNet

– SVM-MAP, AdaRank

Linear ranking model (except RankBoost)
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Experimental Results
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Experimental Results

4/20/2009 Tie-Yan Liu @ WWW 2009 Tutorial on Learning to Rank 111

Experimental Results
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Experimental Results
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Experimental Results
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Experimental Results
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Experimental Results
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Winner Numbers
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Discussions

• NDCG@1

– {ListNet, AdaRank} > {SVM-MAP, RankSVM} 
> {RankBoost, FRank} > {Regression}

• NDCG@3, @10

– {ListNet} > {AdaRank, SVM-MAP, RankSVM, RankBoost} 
> {FRank} > {Regression}

• MAP

– {ListNet} > {AdaRank, SVM-MAP, RankSVM} 
>  {RankBoost, FRank} > {Regression}
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Summary
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Other Works

• Ground truth mining
– targets automatically mining ground truth labels for learning to rank, 

mainly from click-through logs of search engines.

• Feature engineering 
– includes feature selection, dimensionality reduction, and effective 

feature learning.

• Query-dependent ranking
– adopts different ranking models for different types of queries, based 

on either hard query type classification or soft nearest neighbor 
approach.
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Other Works

• Supervised rank aggregation
– learns the ranking model not to combine features, but to aggregate 

candidate ranked lists.

• Semi-supervised / active ranking
– leverages the large number of unlabeled queries and documents to 

improve the performance of ranking model learning.

• Relational / global ranking
– does not only make use of the scoring function for ranking, but 

considers the inter-relationship between documents to define more 
complex ranking models.
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Answers to the Question 1

• To what respect are these learning to rank algorithms 
similar and in which aspects do they differ? What are 
the strengths and weaknesses of each algorithm?
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Approach Modeling Pro Con

Pointwise Regression/
classification/
ordinal regression

Easy to leverage 
existing theories and 
algorithms

• Accurate ranking ≠ 
Accurate score or 
category
• Position info is 
invisible to the lossPairwise Pairwise

classification

Listwise Ranking query-level and 
position based

• More complex
• New theory needed

Answers to the Question 2

• What are the unique theoretical issues for ranking 
that should be investigated?

– Unique properties of ranking for IR: evaluation is 
performed at query level and is position based. 

– The risks should also be defined at the query level, and a 
query-level theoretical framework is needed for 
conducting analyses on the learning to rank methods. 

– The “true loss” for ranking should consider the position 
information in the ranking result, but not as simple as the 
0−1 loss in classification.
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Answers to the Question 3

• Empirically speaking, which of those many learning 
to rank algorithms perform the best?

– LETOR makes it possible to perform fair comparisons 
among different learning to rank methods. 

– Empirical studies on LETOR have shown that the listwise
ranking algorithms seem to have certain advantages over 
other algorithms, especially for top positions of the 
ranking result, and the pairwise ranking algorithms seem 
to outperform the pointwise algorithms. 
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Answers to the Question 4

• Are there many remaining issues regarding learning 
to rank to study in the future?

– Learning from logs

– Feature engineering

– Advanced ranking model

– Ranking theory
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Learning from Logs

• Data scale matters a lot!
– Ground truth mining from logs is one of the possible 

ways to construct large-scale training data. 

• Ground truth mining may lose information .
– User sessions, frequency of clicking a certain 

document, frequency of a certain click pattern, and 
diversity in the intentions of different users. 

• Directly learn from logs.
– E.g., Regard click-through logs as the “ground truth”, 

and define its likelihood as the loss function.
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Feature Engineering

• Ranking is deeply rooted in IR

– Not just new algorithms and theories.

• Feature engineering is very importance

– How to encode the knowledge on IR accumulated 
in the past half a century in the features? 

– Currently, these kinds of works have not been 
given enough attention to. 
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Advanced Ranking Model

• Listwise ranking function

– Natural but challenging

– Complexity is a big issue

• Generative ranking model

– Why not generative?

• Semi-supervised ranking

– The difference from semi-supervised classification
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Ranking Theory

• A more unified view on loss functions

• True loss for ranking

• Statistical consistency for ranking

• Complexity of ranking function class

• ……
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Opportunities and Challenges

• Learning to rank is HOT, but…
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Information 
Retrieval

Machine 
Learning

Learning to rank 


Hey, too much math!
Too theoretical!
We want intuition and insights!

Application is too narrow!
Ranking is not our central problem!

Opportunities and Challenges

• Learning to rank is HOT, but…
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Information 
Retrieval

Machine 
Learning

Learning to rank 


Hey, machine learning can 
help us build the best ranking 
model!

Good example of applying machine 
learning to solve real problems!
Ranking should be our next big thing!
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