
LambdaMART Demystified

Tomáš Tunys

Czech Technical University

tunystom@fel.cvut.cz

January 23, 2015

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 1 / 43



Overview

1 Learning to Rank Problem
Problem statement (informal)
Risk minimization formulation

Learning to Rank approaches

Optimizing IR Quality Measures

2 Building a Ranker: ”RankMART”
Model definition
Model training

Stochatic Gradient Descent
Mini-Batch Stochatic Gradient Descent

Gradient Tree Boosting
Summary

3 LambdaMART Demystified

4 Appendix

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 2 / 43



Learning to Rank: Problem Statement (Informal)

The goal of learning to rank models (so-called rankers) in Information
Retrieval is to sort a collection of documents according to the degree of
their relevance to a given query.

This statement begs the following questions:

How is a document represented?

How is a query represented?

How is the relationship between the two represented?

What does degree of relevance mean?

What is the measure of quality of ranking?

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 3 / 43



Learning to Rank: Problem Statement (Informal) Cont’d

The goal of learning to rank models (so-called rankers) in Information
Retrieval is to sort a collection of documents according to the degree of
their relevance to a given query.

From the set of all possible answers we will use:

Queries and documents are jointly represented as vectors in Rn

Relationship between query and document – bunch of additional
(important) features.

Relevance – binary (relevant/non-relevant), multi-labeled (0, 1, 2, . . .)

Ranking quality measures: NDCG, MAP, ERR, ... just name it, but?!

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 4 / 43



Learning to Rank as Risk Minimization Problem

Given an annotated dataset set S = {(Dq, yq)}Qq=1, where

Q is the total number of queries in your set.

Dq = {dq
1 , . . . , d

q
n(q)} is set of documents for query q.

yq = {yq1 , . . . , y
q
n(q)} is a corresponding set of relevance judgements.

The goal is to find a ranking function f : Rn → R, which minimizes

Remp[f ] =
1

Q

Q∑
q=1

∆(π(f ,Dq), yq)

where π(f ,Dq) is the ranking of documents for query q and ∆ measures
the discrepancy between π(f ,Dq) and yq.

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 5 / 43



Learning to Rank as Risk Minimization Problem Cont’d

The ranking function f produces π(f ,Dq) such that

f (dq
i ) > f (dq

j )⇐⇒ π(f , dq
i ) < π(f , dq

j )

Ultimate goal (overfitting rings a bell?!):

ranking scores produced by f mimics the order imparted by relevance
judgements yq.

yqi > yqj ⇐⇒ f (dq
i ) > f (dq

j )

Reminder: Learning to Rank models are categorized according to the loss
functions (∆) they are trained to minimize.

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 6 / 43



Learning to Rank Approaches

Pointwise approach

∆ is defined on the basis of single documents

reduces the problem to simple classification/regression

Example: ∆(π(f ,Dq), yq) = 1
n(q)

∑n(q)
i=1 (f (dq

i )− yqi )2

Pairwise approach

∆ is defined on the basis of pairs of documents with different
relevance judgements.

reduces the problem to classification

Example: ∆(π(f ,Dq), yq) =
∑

(i ,j):yq
i <yq

j
log(1 + exp(f (dq

i )− f (dq
j )))

Ranking SVM, RankNET, RankBoost, ...

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 7 / 43



Learning to Rank Approaches Cont’d

Listwise approach

∆ is defined on the basis of the whole document lists

Example: see [Xia, F. et al, 2008]

ListMLE, SVMmap, LambdaRank, LambdaMART, ...

Moral from the previous lecture:
pointwise < pairwise < listwise

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 8 / 43



Optimizing Information Retrieval Quality Measures

Most learning to rank models are not trained to optimize the IR measures
(directly), not even the listwise methods. But that is what we care about!
Why is that?

IR measures are wild and not well-behaved beasts (non-smooth,
non-differentiable, ...)

Indirect optimization is also hard: designing a good surrogate
measure is hard due to sorting.

Regardless of their accuracy, pointwise and pairwise approaches still can
work pretty well. The loss functions they optimize has been shown to
upper-bound (1 - NDCG) loss, see [Chen, W. et al. 2009].

The inferior performance of these models is actually due to spending
too much capacity on doing more than is required.

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 9 / 43



RankMART Model Definition

In order to understand how LambdaMART (current state of the art
learning to rank model) works let’s make our own.

RankMART will be pairwise learning to rank model of Pf (dq
i > dq

j ), i.e.
probability that document i should be ranked higher than document j
(both of which are associated with same query q).

Note: random variables are usually denoted with capital letters, but
keep in mind dq

i , dq
j in Pf on the left-hand side are such.

Ignore for the moment what the model actually is (linear function,
decision tree, ...).

How are we going to model the probability, Pf (dq
i > dq

j ) given a ranker f ?

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 10 / 43



RankMART Model Definition Cont’d

We will model the probability of an event dq
i > dq

j via logistic function:

Pf (dq
i > dq

j ) =
1

1 + exp(−α(f (xqi )− f (xqj )))
(α > 0)

Bigger the f (xqi )− f (xqj ), sometimes referred to as margin, bigger
the probability.

What kind of (statistical) method can we use to learn the ”parameters” f ?

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 11 / 43



RankMART Model Training

We will train the model using maximum likelihood estimation. For that
we need to preprocess our data into preference judgements:

I q = {(i , j) : yqi > yqj }

Ignore documents of the same relevance because their relative order
does not matter, or does it?

A maximum likelihod estimator would be than

f ∗ = argmax
f

L(f ) =?

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 12 / 43



RankMART Model Training Cont’d

f ∗ = argmax
f

L(f ) = argmax
f

∏
q

∏
(i,j)∈I q

Pf (dq
i > dq

j )

= argmax
f

∑
q

∑
(i,j)∈I q

log(Pf (dq
i > dq

j ))

= argmin
f

∑
q

∑
(i,j)∈I q

log(1 + exp(α(f (xqj )− f (xqi ))))

= argmin
f

∑
q

∑
(i,j)∈I q

C (f (xqj )− f (xqi ))

This is lot more general learning method than you might think. You can have
more than one judgement for the same pair of documents and they do not need
to agree.

The loss C above is so-called cross-entropy – by minimizing it we make the
probability distribution learnt by f match as closely as possible to the
empirical probability distribution induced by pairwise judgements.

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 13 / 43



Stochatic Gradient Descent

The plan is to use ensemble of regression trees for our model f , but how
about using a linear function f (x) = wT x , just for now.

”Ranking Logistic Regression”?

Update rule for a randomly selected pair of documents (dq
i , d

q
j ):

w ←− w − η ∂C
∂w

= w − η

(
∂C

∂f (xq
i )

∂f (xq
i )

∂w
+

∂C

∂f (xq
j )

∂f (xq
j )

∂w

)

= w − η ∂C

∂f (xq
i )

(
∂f (xq

i )

∂w
−
∂f (xq

j )

∂w

)
= w + η

∂C

∂f (xq
i )

(xq
i − xq

j )

= w + η(1− Pf (dq
i > dq

j ))(xq
i − xq

j )

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 14 / 43



Mini-Batch Stochatic Gradient Descent

Single update step may be very costly (for example, one pass of
backpropagation in RankNET).

Mini-batch update rule for a randomly selected query q:

w ← w − η
∑

(i,j)∈Iq

∂C

∂w
= w − η

∑
(i,j)∈Iq

(
∂C

∂f (xq
i )

∂f (xq
i )

∂w
+

∂C

∂f (xq
j )

∂f (xq
j )

∂w

)

= w − η
∑

(i,j)∈Iq

(
λq
ij

∂f (xq
i )

∂w
− λq

ij

∂f (xq
j )

∂w

)

= w − η
∑

d
q
i ∈Dq

 ∑
j :(i,j)∈Iq

λq
ij −

∑
j :(j,i)∈Iq

λq
ji

 ∂f (xq
i )

∂w

= w − η
∑

d
q
i ∈Dq

λq
i x

q
i

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 15 / 43



Mini-Batch Stochatic Gradient Descent Cont’d

Some identities that pop out from the previous slides.

For (i, j) ∈ Iq (see appendix for generalization):

λq
ij =

∂C(f (xq
j )− f (xq

i ))

∂f (xq
i )

= −
∂C(f (xq

j )− f (xq
i ))

∂f (xq
j )

= −λq
ij

For any document dq
i in dataset S :

λq
i =

∑
j :(i,j)∈Iq

λq
ij −

∑
j :(j,i)∈Iq

λq
ji =

∑
j :(i,j)∈Iq

Pf (dq
i < dq

j )−
∑

j :(j,i)∈Iq
Pf (dq

i > dq
j )

Using the mini-batch update rule we are not messing things up within the
chosen query or at least not as much as in case of the previous rule.

[Burges, C. 2010] shows that the training time of RankNET dropped from close to
quadratic in the number of documents per query, to close to linear.

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 16 / 43



Lambdas as Forces

The expression for λqi

λqi =
∑

j :(i ,j)∈I q
λqij −

∑
j :(j ,i)∈I q

λqji

has also a very nice physical interpretation. You may think of the
documents as point masses. λqi is then the (resultant) force on the point
mass dq

i .

First sum accounts for all the forces coming from less relevant
documents – pushes dq

i up in the ranking.

Second sum accounts for all the forces coming from more relevant
documents – pushes dq

i down in the ranking.

Try to figure out how the magnitude of the forces change during
training.

You can find out more about this in [Burges, C. et al. 2007].

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 17 / 43



Gradient Tree Boosting

We are willing to use an ensemble of regression trees as our ranker f :

fM(x) =
M∑
i=1

Ψ(x ; Θi )

where M is the number of trees and Θi are the parameters of the i-th tree.

This model is also called MART, which stads for Multiple Additive
Regression Trees.

How can we possibly use a bunch of regression trees and optimize our
cross-entropy loss when there are no differentiable parameters?

Sure we can via (general) optimization method – gradient tree
boosting.

We will just cover the algorithm, all the gory details can be found, for
example in [Hastie, T. et al. 2001]

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 18 / 43



Gradient Tree Boosting Algorithm

RankMART Gradient Tree Boosting Algorithm
Input: preference judgements I , loss function C , and number of trees M

1 Initialize: f0(·)← 0
2 For m = 1 to M:

1 Compute lambdas for each document (the gradients):

λqim =
∑

j :(i,j)∈Iq

∂C

∂f (xqi )
−

∑
j :(j,i)∈Iq

∂C

∂f (xqj )

∣∣∣∣∣∣
f =fm−1

2 Fit a next regression tree to the lambdas:

Θ∗m ← argmin
Θm

Q∑
q

n(q)∑
i=1

(−λqmi −Ψ(xqi ; Θm))2

3 Find the appropriate gradient step for each leaf node {Ψmt}Jt=1 of the
new tree Ψ(x ; Θ∗m) and apply ”shrinkage” η:

{γ∗mt}Jt=1 = η · argmin
{γmt}Jt=1

Q∑
q=1

∑
(i,j)∈Iq

x
q
i ∈Ψmr ,x

q
j ∈Ψms

Ψmr 6=Ψms

C(fm−1(xq
j )− fm−1(xq

i ))− γmr + γms)

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 19 / 43



Gradient Tree Boosting Algorithm Cont’d

4 Update the tree:

Ψ(x ; Θ∗m) =

Jm∑
t=1

γ∗mt [[x ∈ Ψmt ]]

5 Update the model:

fm(·)← fm−1(·) + Ψ(·; Θ∗m)

3 Return fM(·).

One way to optimize the gradient step in a leaf is using Newton’s
method (just one step, starting with γmt = 0):

γ∗mt = −η
∑

xq
i ∈Ψmt

λq
i∑

xq
i ∈Ψmt

ωq
i

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 20 / 43



Gradient Tree Boosting Algorithm Cont’d

Where ωq
i is (not correctly!) defined as

ωq
i =

dλq
i

dfm−1(xq
i )

Lot of things are hidden behind the formulas above, what you can actually
read from scientific papers can be pretty ”hazy”, see [Burges, C. 2010], for
example.

See the appendix for the exact derivation of the γ∗mt and for what I mean
by (not correctly!).

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 21 / 43



RankMART Summary

This is the summary what we did so far:

1 We created a pairwise learning to rank model of P(di > dj).

2 We derived a SGD learning algorithm for a logistic regression model,
and prepared data for it.

3 We saw a gradient tree boosting method and applied it to train an
ensemble model under the (fictitious) name RankMART.

All of this just to find out that LambdaMART is just RankMART with an
additional twist that will make it work better.

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 22 / 43



LambdaMART Demystified

To get the notorious LambdaMART, just take our model RankMART and
do the following:

1 Before training a new regression tree, sort the documents according
to the current model fm−1.

2 Compute lambdas in following way (see appendix):

λqij =
−α|∆Zq

ij |
1 + exp(α(f (xqi )− f (xqj )))

3 Do a single step of Newton’s method to optimize gradient (lambda)
predictions in terminal nodes:

γ∗mt = −η
∑

xqi ∈Ψmt
λqi∑

xqi ∈Ψmt
ωq
i

4 Voilà! RankMART’s LambdaMART :).

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 23 / 43



LambdaMART Demystified Cont’d

The only difference (regardless for the maximization) is the |∆Zq
ij | term in

the definition of lambdas.

1 This term can be computed from any IR performance measure, such
as NDCG, MAP, ERR, ...

2 It is an absolute value of the change in the performance metric given
by swapping the rank positions of dq

i and dq
j , while leaving the other

documents untouched.

3 It has been empirically demonstrated that pluging in NDCG,
LambdaRank (uses NN instead of MART) can directly optimize it.

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 24 / 43



LambdaMART Demystified Cont’d

To understand how LambdaMART works, consider the following figure
demonstrating the problems with target/training performance measure
mismatch (think of WTA vs pair-wise errors):

Figure was adopted from [Burges, C. 2010].

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 25 / 43



LambdaMART Demystified Cont’d

LambdaMART basically treats the pairwise errors differently. It weighs
them according to

1 how badly the model orders the corresponding pairs in terms of the
margin.

2 how important the correct order is from the performance measure’s
perspective.

Still, the model has its own flaws, see [Svore, K. et al. 2011], for example.
Trying to fix them might as well become your future project.

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 26 / 43



Appendix

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 27 / 43



LambdaMART Training: Shrinkage 1.0

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 28 / 43



LambdaMART Training: Shrinkage 0.5

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 29 / 43



LambdaMART Training: Shrinkage 0.1

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 30 / 43



LambdaMART Training: Shrinkage 0.01

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 31 / 43



LambdaMART Training: Lambda Contributions (0.1)

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 32 / 43



LambdaMART Training: Lambda Contributions (0.01)

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 33 / 43



LambdaMART Training: Rel. Label Distribution (0.1)

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 34 / 43



LambdaMART Training: Rel. Label Distribution (0.01)

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 35 / 43



Generalization of Lambda formula

The order, in which you plug xqi and xqj into the formula for computation

of λqij is not arbitrary! The formula (silently) assumes that (i , j) ∈ I q holds!

To generalize the formula a bit, consider Sq
ij defined as follows

Sq
ij =

{
+1 (i , j) ∈ I q

−1 (j , i) ∈ I q

then λqij (for dq
i and dq

j of arbitrary relevance) is

λq
ij =

−αSq
ij |∆Z q

ij |
1 + exp(αSq

ij (f (xq
i )− f (xq

j )))

and conveniently for every dq
i

λq
i =

∑
j :S

q
ij

λq
ij

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 36 / 43



Deriving Optimal Gradient Step for γ∗mt

Optimization of

{γ∗mt}Jt=1 = η · argmin
{γmt}Jt=1

Q∑
q=1

∑
(i,j)∈Iq

x
q
i ∈Ψmr ,x

q
j ∈Ψms

Ψmr 6=Ψms

C(fm−1(xq
j )− fm−1(xq

i )) + γms − γmr)

will be demonstrated for a single xqi , where f will be substituted for fm−1

(for convenience), also whenever Ψms appears it is never equal Ψmr :

C
x
q
i

=
∑

x
q
i
∈Ψmr

∑
j :(i,j)∈I q

x
q
j
∈Ψms

C(f (x
q
j )− f (x

q
i )− γmr + γms ) +

∑
j :(j,i)∈I q

x
q
j
∈Ψms

C(f (x
q
i )− f (x

q
j ) + γmr − γms )

This is one-dimensional problem, taking a derivative with respect to γmr
gives us:

dC
x
q
i

dγmr
=

∑
x
q
i
∈Ψmr

∑
j :(i,j)∈I q

x
q
j
∈Ψms

dC(f (x
q
j )− f (x

q
i )− γmr + γms )

dγmr
+

∑
j :(j,i)∈I q

x
q
j
∈Ψms

dC(f (x
q
i )− f (x

q
j ) + γmr − γms )

dγmr

=
∑

x
q
i
∈Ψmr

∑
j :(i,j)∈I q

x
q
j
∈Ψms

dC(f (x
q
j )− f (x

q
i )− γmr + γms )

df (x
q
i )

−
∑

j :(j,i)∈I q

x
q
j
∈Ψms

dC(f (x
q
i )− f (x

q
j ) + γmr − γms )

df (x
q
j )

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 37 / 43



Deriving Optimal Gradient Step for γ∗mt Cont’d

Continuing from previous slide:

dC
x
q
i

dγmr
=

∑
x
q
i
∈Ψmr

∑
j :(i,j)∈I q

x
q
j
∈Ψms

dC(f (x
q
j )− f (x

q
i )− γmr + γms )

df (x
q
i )

−
∑

j :(j,i)∈I q

x
q
j
∈Ψms

dC(f (x
q
i )− f (x

q
j ) + γmr − γms )

df (x
q
j )

=
∑

x
q
i
∈Ψmr

∑
j :(i,j)∈I q

x
q
j
∈Ψms

λ
q
ij −

∑
j :(j,i)∈I q

x
q
j
∈Ψms

λ
q
ji

=
∑

x
q
i
∈Ψmr

∑
j :(i,j)∈I q

λ
q
ij −

∑
j :(j,i)∈I q

λ
q
ji

=
∑

x
q
i
∈Ψmr

∑
j :(i,j)∈I q

λ
q
i

The derivatives of λqij above are correct only when we plugin 0 for the γ
values in the gradients. But still, the correct nominator in Newton’s
method popped out.

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 38 / 43



Deriving Optimal Gradient Step for γ∗mt Cont’d

To finally get the Newton’s step, we need to compute
dC

x
q
i

dγ2
mr

. For that it is

good to realize that λqij is defined for our cross-entropy loss C as follows:

λ
q
ij =

∂C(f (x
q
j )− f (x

q
i )− γmr + γms )

df (x
q
i )

=
−α

1 + exp(α(f (x
q
i )− f (x

q
j ) + γmr − γms )

= −α·σ(f (x
q
j )− f (x

q
i )−γmr +γms )

where γ values need to be evaluated at 0 to match our earlier definition of
λqij (and here yqi > yqj !), but nothing is preventing us from taking the 2nd
derivative with respect to γmt :

dC
x
q
i

dγ2
mr

= −α
∑

x
q
i
∈Ψmr

∑
j :(i,j)∈I q

x
q
j
∈Ψms

dσ(f (x
q
j )− f (x

q
i )− γmr + γms )

dγmr
−

∑
j :(j,i)∈I q

x
q
j
∈Ψms

dσ(f (x
q
i )− f (x

q
j ) + γmr − γms )

dγmr

= −α
∑

x
q
i
∈Ψmr

∑
j :(i,j)∈I q

x
q
j
∈Ψms

dσ(f (x
q
j )− f (x

q
i )− γmr + γms )

df (x
q
i )

+
∑

j :(j,i)∈I q

x
q
j
∈Ψms

dσ(f (x
q
i )− f (x

q
j ) + γmr − γms )

df (x
q
j )

= −
∑

x
q
i
∈Ψmr

∑
j :(i,j)∈I q

x
q
j
∈Ψms

λ
q
ij (1 +

λ
q
ij

α
) +

∑
j :(j,i)∈I q

x
q
j
∈Ψms

λ
q
ji (1 +

λ
q
ji

α
)

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 39 / 43



Deriving Optimal Gradient Step for γ∗mt Cont’d

Continuing from previous slide:

dCx
q
i

dγ2
mr

= −
∑

x
q
i ∈Ψmr

∑
j :(i,j)∈Iq
x
q
j ∈Ψms

λq
ij(1 +

λq
ij

α
) +

∑
j :(j,i)∈Iq
x
q
j ∈Ψms

λq
ji (1 +

λq
ji

α
)

=
∑

x
q
i ∈Ψmr

∑
j :(i,j)∈Iq
x
q
j ∈Ψms

dλq
ij

df (xq
i )
−

∑
j :(j,i)∈Iq
x
q
j ∈Ψms

dλq
ji

df (xq
i )

=
∑

x
q
i ∈Ψmr

d

∑
j :(i,j)∈Iq
x
q
j ∈Ψms

λq
ij −

∑
j :(j,i)∈Iq
x
q
j ∈Ψms

λq
ji


df (xq

i )

6=
∑

xq
i ∈Ψmr

dλq
i

df(xq
i )

=
∑

xq
i ∈Ψms

ωq
i

Equality holds if no two documents from the same query end up in the
same leaf of the regression tree!

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 40 / 43



Deriving Optimal Gradient Step for γ∗mt Cont’d

The significance of using an incorrect terms in the denominator of
Newton’s step is unknown to me.

Given the fact that the trees in LambdaMART have usually very few
leaves (< 10) and queries usually have more documents (>> 10), the
deviation from correct terms can be substantial (hypothesis).

On the other hand, given all the approximations... and since ωi ’s are
always positive, they only reduce the magnitude of the predicted
gradients, which on the one hand slows down convergence in the
”correct” directions, but on the other makes smaller steps in ”wrong”
direction.

From my experience, LambdaMART is pretty robust to different
modification of lambdas (in some case even to wrong computation of
them :)).

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 41 / 43



References I

Xia, F., Liu, T.Y., Wang, J., Zhang, W., Li, H. (2008)

Listwise Approach to Learning to Rank: Theory and Algorithm

Proceedings of the 25th International Conference on Machine Learning, ICML ’08,
1192 – 1199.

W. Chen, T.-Y. Liu, Y. Lan, Z. Ma, and H. Li. (2009)

Ranking measures and loss functions in learning to rank.

In Advances in Neural Information Processing Systems 22, NIPS ’09, 315 – 323.

Christopher J. C. Burges (2010)

From RankNet to LambdaRank to LambdaMART: An Overview

Microsoft Research Technical Report

C.J.C. Burges and R. Ragno and Q.V. Le (2007)

Learning to Rank with Non-Smooth Cost Functions

Advances in Neural Information Processing Systems 19

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 42 / 43



References II

Hastie, Trevor and Tibshirani, Robert and Friedman, Jerome (2001)

The Elements of Statistical Learning

Springer Series in Statistics, Springer New York Inc.

Svore, Krysta M. and Volkovs, Maksims N. and Burges, Christopher J.C.

Learning to Rank with Multiple Objective Functions

Proceedings of the 20th International Conference on World Wide Web, WWW ’11,
367–376.

Tomáš Tunys (CTU) LambdaMART Demystified January 23, 2015 43 / 43


	Learning to Rank Problem
	Problem statement (informal)
	Risk minimization formulation
	Optimizing IR Quality Measures

	Building a Ranker: "RankMART"
	Model definition
	Model training
	Gradient Tree Boosting
	Summary

	LambdaMART Demystified
	Appendix

