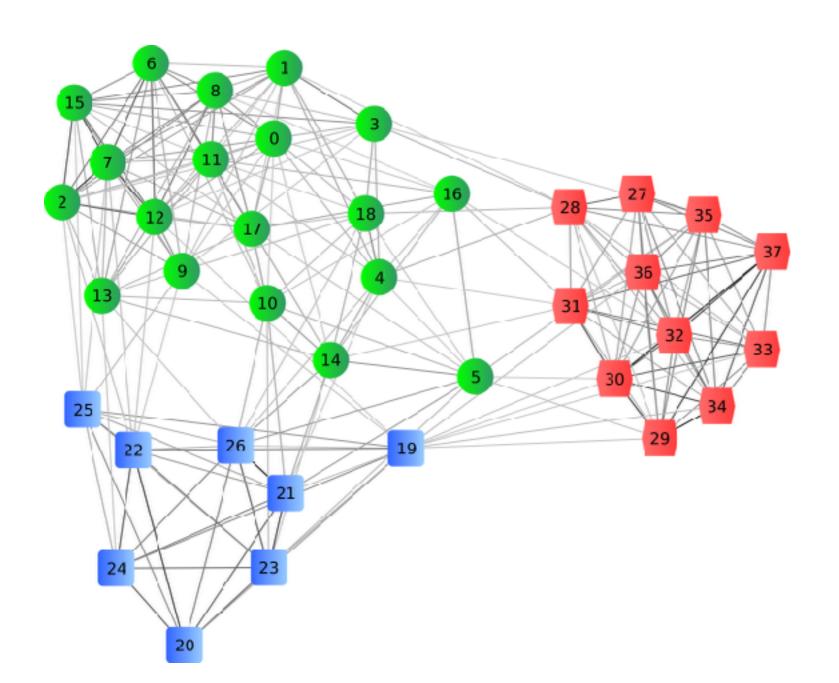
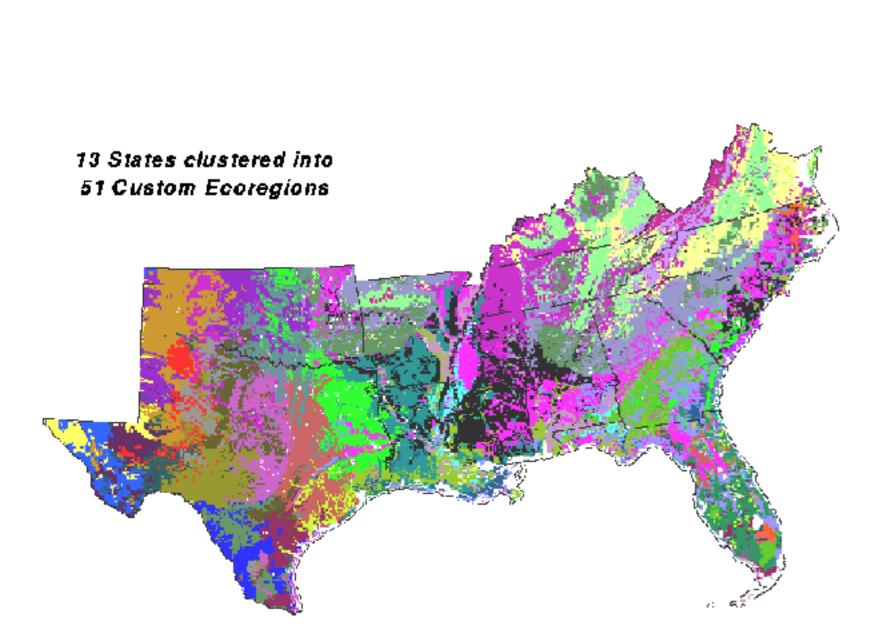

Intro to Machine Learning


Module 1 Objectives / Intro, Evaluation

- Intro to Machine Learning what is learning ?
- Data Matrix type
 - algebraic notations
- Heuristics and Quantitative rules
- Error measurement
 - training VS testing error, Cross Validation
 - overfitting

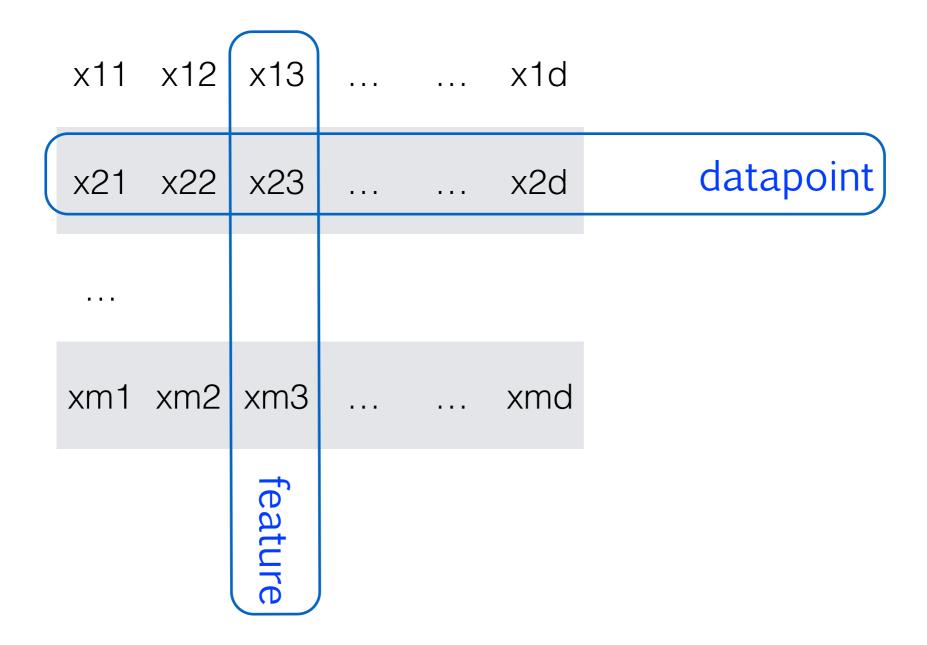
What is machine learning? Supervised learning



What is machine learning? Graph learning

- data defined by links or analogies or connections
- for example social networks, or web links
- task: identify object properties from links
- taks: detect graph patterns

What is machine learning? Clustering


- data given without labels
- task: group similar data points

What is machine learning? Time series analysis

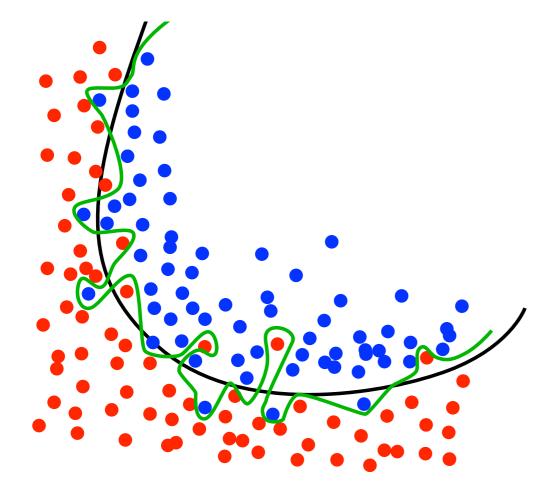
- data that evolves with time
- like stocks or patient records
- task: predict future behavior
- task: detect anomalies

Matrix data

- m datapoints/objects X=(x1,x2,...,xd)
- d features/columns f1, f2, ..., fd

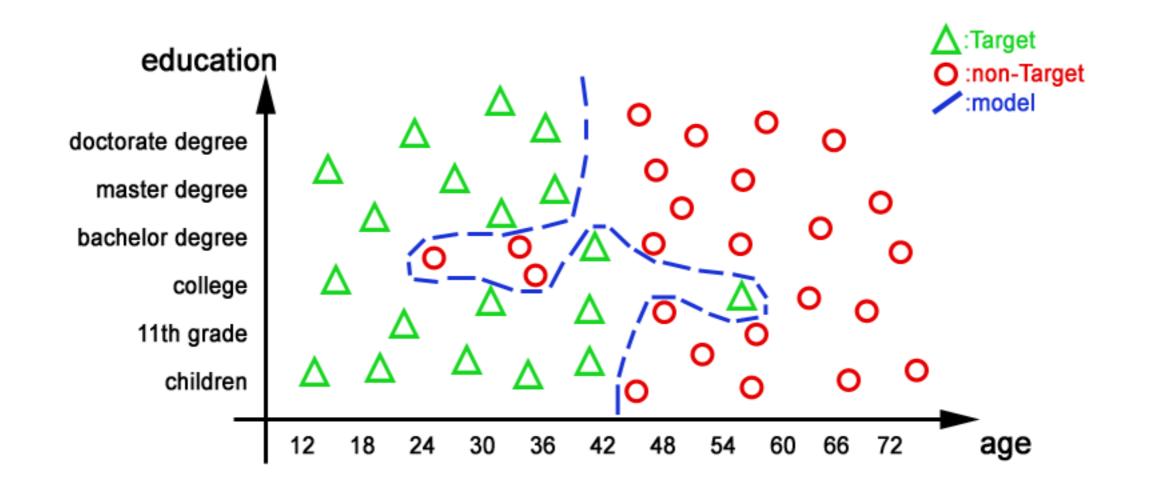
- If fever>100, patient has flu
- If email contains words "free" or "porn", it is spam
- If a web page contains ngram "Michael Jackson", it is relevant to the user
- If age<22 and sex=F and highschool_diploma=Yes, then eligible for application
- If income_per_capita<\$1000, region prone to civil war
- If romantic=Yes and comedy=Yes and Orlando_Bloom=Yes, then movie success among females aged 20-40
- If Nasdaq_Computer_Index=Gain and Apple announces new Ipad, then AAPL_Stock=Buy

- if 3*exam_grade+2*HW_grade>55, then student can pass
- if blood_pressure/log(age)>3, recommend medicine
- if rent+food+bills<1/2 salary, loan for 1/2 salary possible

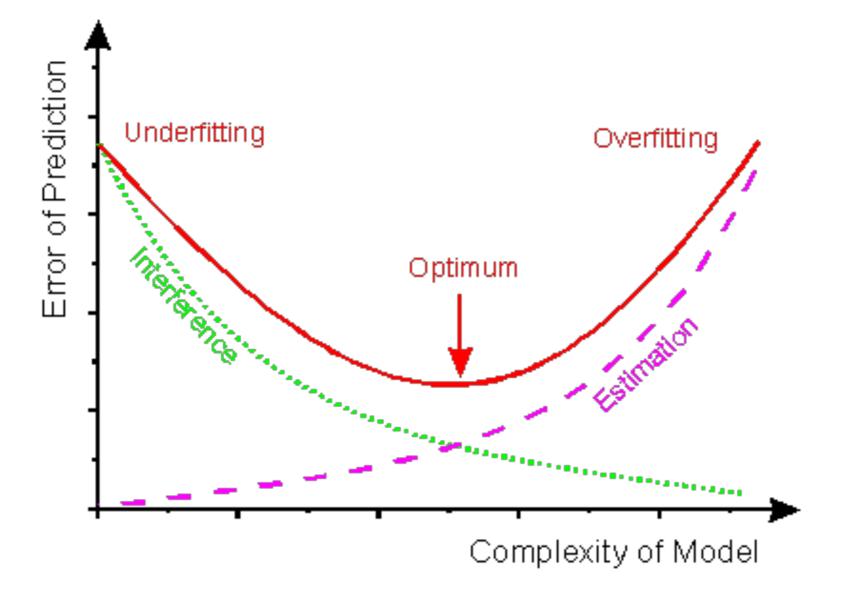

Matrix data / training VS testing

AUT BEL BUL CYP CZE DEN EST FIN FRA GER GRE HUN IRL ITA LAT LTU LUX MLT NED POL POR ROM SVK SLO ESP SWE GBR

T-01	64.4	125.0	44.7	7.0	124.1	51.3	149	566	363.5	837.4	92.2	56.8	42.8	446.6	65	11.6	84	21	1748	8.0%	64.8	90.7	369	15.1	334.9	48.8	658.2	
T-02	7.1	7.8	10.3	0.7	11.0	5.6	1.9	4.5	56.9	47.6	93	7.8	131	39.5	1.8	33	0.3	0.3	10.7	383	114	25.7	4.2	2.1	37.3	56	49.5	
T-03	5.3	11.0	44	0.7	8.0	7.0	0.8	6.9	723	66.5	9.1	97	8.6	40.5	15	5.0	0.4	0.3	17.6	31.1	81	16.8	3.7	13	29.6	7.7	33.6	
T04	118	141	90	10	10	14	16	10	1,801	718	128	209	174	361	3	41	6	5	265	26L	129	570	20	124	244	296	351	
T-05	912	1.456	337	91	594	805	8	854	10,958	9,353	1,162	516	431	5,267	19	19	83	-12	1.354	2,750	391	4	175	95	5,011	777	9.221	
T-06	287	43	4	16	85	22	6	20	1,354	4,740	210	201	96	430	8	1	4	8	337	24	10	0	17	15	272	142	1.143	
T-07	644	1,250	447	70	1,241	513	149	566	3,635	8,374	922	568	428	4,406	65	116	84	<u>ŝt</u>	1,748	3,068	648	907	363	151	3.049	488	6,682	
T-08	782	1,125	430	82	778	963	120	508	9,733	6,354	1,045	846	1,845	3,7X1	192	405	35	38	1.817	3,488	834	2,028	322	202	4,475	857	4,489	
T-09	228	133	848	26	291	137	53	244	1,410	1,369	328	294	178	1,963	76	154	3	12	964	1,221	647	74)	211	絕	1,296	215	2,208	
T40	832	1,046	764	96	1,033	546	134	530	6,410	8,231	1,115	1,005	430	5,921	23	307	47	4L	1,639	3,813	1,062	2,144	529	202	4,51.8	915	6,059	
T-11	305	11	112	8	125	109	89	297	018	1,166	43	83	16	338	87	59	4	1	\$5	732	47	58	110	15	496	319	255	60
T-12	501	487	314	448	373	354	390	448	£91	546	348	280	385	581	297	384	659	525	429	314	572	149	222	456	454	456	463	
T-13	292	641	131	53	203	171	60	220	1,970	2,650	436	132	182	1,881	47	56	62	19	947	46	332	212	74	53	1,573	362	1,827	
T-14	65.2	82.4	37.4	4.5	58.8	364	6.8	80.8	482.4	5346	53.5	37.1	23.2	303.8	63	94	61	21	102.4	124.1	461	49.6	28.6	137	241.8	137.8	345.2	
T-15	9.00	17.06	347	0.01	9,60	4.82	1.44	426	45.AL	102.00	2.34	14,48	430	80.61	1.91	2.92	1.38	0.00	51.30	15.87	4.30	18.00	6.00	1.10	27.01	0.98	98.47	
T46	3.00	3.10	7. A 0	0.00	19.40	5.50	0.00	5.20	13.10	82.40	8.90	2.90	0.00	17.40	0.00	0.20	310	0.00	7.50	58.40	3.70	7.60	3.90	0.00	18,30	2,20	43,80	
T-17	389	989	98	68	369	365	B	77	10,979	3,453	689	770	233	16,830	53	60	55	30	1/52	95)	1,266	270	250	95)	3,402	179	1,313	
T-18	227	289	157	23	395	317	42	297	4,178	2,612	420	323	573	1,681	64	162	0	1	409	1,557	228	327	120	72	2,183	287	1,909	
T-19	3.5	5.8	23	32	3.9	3.6	3.3	6.4	4.4	41	26	24	3.9	3.0	15	20	84	21	4.8	23	25	16	3.2	3.3	3.1	54	4.0	ŋ
T-20	6.9	7.7	3.3	5.3	5.4	62	4.5	155	6.8	6.3	4.5	32	5.9	23	1.7	1.3	13.5	13	64	1.5	1.8	1.1	2.0	24	2.3	37	25	
T-21	0.46	3.43	0.19	0.00	0.43	1.01	0.09	0.19	0.99	1.82	0.47	0.23	0.45	1.00	0.04	0.21	0.00	0.00	1.51	0.28	0.22	0.27	0.27	0.17	0.44	0.27	2.76	
T-22	29	38	48	100	76	83	100	29	8	62	96	60	96	79	29	17	67	100	90	98	65	63	30	35	50	4	74	
T-23	133	178	7	13	44	111	B	139	780	782	103	32	164	325	11	10	38	15	227	72	96	20	2	13	518	234	965	
T-24	806	334	65	192	471	1,034	56	708	5,248	9,079	945	274	4,287	3,612	103	51	85	137	2,613	355	1,014	171	71	76	4,988	902	9,360	
T-25	13)	103	7	000	53	78	7	97	860	1,070	80	46	197	396	7	10	74	22	(29	68	128	26	5	13	473	129	977	
1-25	013	0.19	0.10	0.13	0.37	012	0.05	0.10	0.32	0.31	0.10	0.22	0.17	0.35	0.13	0.14	0.08	0.10	0.28	0.35	0.12	0.10	0.27	0.24	0.15	0.17	0.27	6.
T-27	(3)	64	453	739	289	757	496	48	543	601	438	铋	740	542	310	378	735	611 A	624	245	锁	382	289	423	507	482	网络	
T-28	-46 	17	÷.	5	4	8	0	47	69	17	6	+	87	47	0		0	0	19	31	15	7	26	16	85	81	62	
T-29 T-20	521. 0.07	828	1,004	3,711	1,329	843	1,254	1997 906	162	1,140	2,247	976 175	2,423	1,473	362	139	1,007	2,8%	1,575	1,501	1,377	744	798	851	1,248	41 999	1,170	
T-30 T-31	347 0.0	290 A A	$\frac{107}{20.2}$	230 4 8	$\frac{220}{0.6}$	871 7.0	$\frac{208}{0.6}$	$\frac{335}{0.2}$	$\frac{312}{20.5}$	319 01	240 18.3	$\frac{175}{1.3}$	445	902 76.4	160	153	714	213	321 0.2	144	198	91 14	188	$\frac{234}{0.7}$	274 09.4	322 1 0	318 0.2	
T-31 T-32		$\frac{0.0}{20.1}$	2018 34.1	48 133	0.0 34.3	7.0 21.6	24.1	28.8	10.5 15.4	$\frac{0.1}{25.3}$	0.0	1.5 29/5	$\frac{0.5}{257}$	r0.4 225	$\frac{1.0}{18.3}$	$\frac{0.1}{30.1}$	$\frac{01}{97}$	0.1 20.2	21.8	(95 295	111.8 20.9	16 361	0.1 325	29.7	92.4 21.1	13 254		
	24.7 194																5							387 195			18.4	S
T-33 T-34	134	$\frac{117}{37.0}$	34 6.2	8	27	72	13	51	951 86.3	$\frac{231}{122.7}$	107 61 4	70	96 91	43) 100.0	28 00	69 64		2	$\frac{106}{84.7}$	240 195	59) 126	98 17.0	57	6N 0.0	657 60.3	167	372 85 A	
1-34 T-35	9,8 1.0	37 R 3.Z	$\frac{6.3}{0.5}$	0.0	81	$75 \\ 03$	0.0	128	60.8 7.6	20.0	21.2 0.2	84	$\frac{31}{0.7}$	100.6	00 00	93	0.0	0.0	69.7 1.9	185 1.5	136	149 22	6.2	0.0	3.1	19.8 1.2	85.0 80	
1453	110	5.2	0.0	0.1	14	0.5	7.3	25	1.0	100	03	1.4	101	6.1	0.0	0.1	01	00	1.5	1.9	23	24	6.4	61	.1.1	17	aw	


- testing set has to be independent of training set
 - or else testing result is inconclusive
 - and not reliable
- usually the data is partitioned before running any ML algorithm

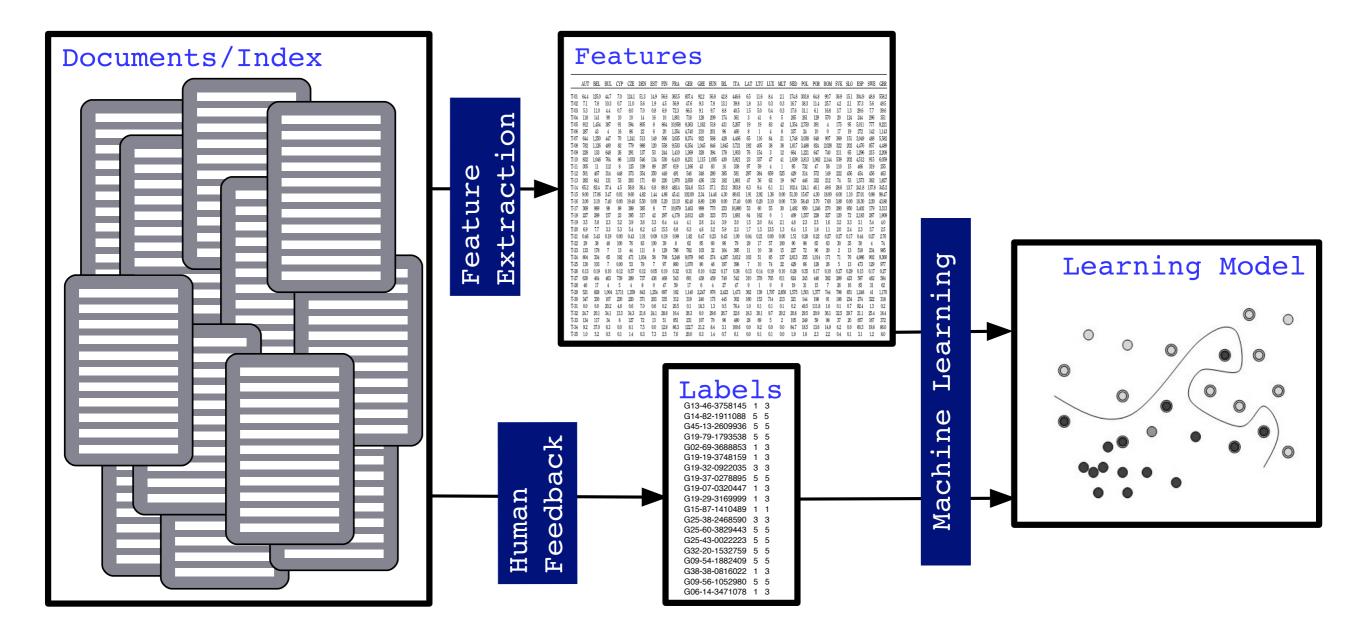
Overfitting


- might be capable to create a model that essentially memorizes all training dataset
 - for example a decision tree deep enough
- that is not useful : the purpose of the learning model is to applicable to new data (testing)

Overfitting

- might be capable to create a model that essentially memorizes all training dataset
 - for example a decision tree deep enough
- that is not useful : the purpose of the learning model is to applicable to new data (testing)

Overfitting

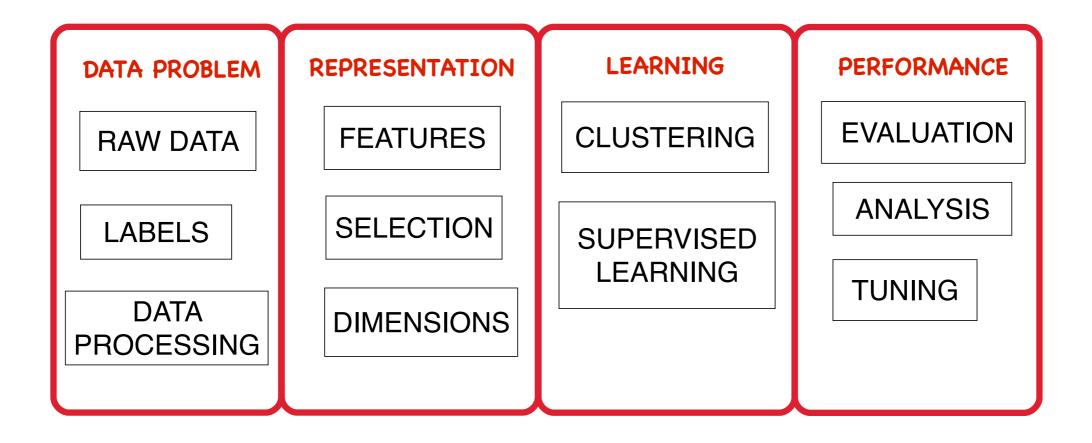

- as we keep training (insisting on ability to classify training set), the performance on the training set (green) becomes unrealistically small
 - model becomes more complex
- but at the same time ability to predict/classify new data (pink) worsens

Cross Validation Setup

_		AUT	BEL	BUL	CYP	CZE	DEN	EST	FIN	FRA	GER	GRE	HUN	IRL.	Πλ	LAT	UTU	UX	MUT	NED	PCL	POR	ROM	5VK	51.0	ESP	SWE	GBR		
T T	42 43	644 7.1 5.3	125.0 7.8 11.0	44.7 10:3 4.4	7.0 0.7 0.7	124.1 11.9 8.0	513 5.6 7.0	14.9 1.9 0.8	58.6 4.5 6.9	3835 56.9 72.3	837.4 47.6 68.5 744	922 93 91	58.8 7.8 9.7	42,8 13,1 8,6 171	4486 39.6 40.5	65 1.8 1.5	11.8 3.3 5.0	84 83 84	21 03 03	1748 167 17.6	303,6 38,3 31,1	84.8 11.4 6.1	90.7 25.7 16.8	36.9 42 37	15.1 2.1 1.3	304.9 37.3 29.6	4 58 5.6 7.7	558.2 48.5 38.6	ſ	Fold 1
Ĩ	74 76 76	119 912 287	141 1,464 43	90 387 4	10 91 16	10 194 85	14 805 22	16 8 6	864 20	1,801 10,958 1,354	718 9,383 4,743	128 1,162 210	209 518 201	431 96	361 5,287 460	19 8	41 19 1	0 88 4	a 42 8	265 1,354 237	261 2,760 24	129 324 10	570 4 0	20 175 17	124 95 19	244 5,011 272	295 777 142	351 9,221 1,143		ס
T T	47 48	644 782	1,280 1,126	447 490	70 82	1,241 779	613 988	149 120	568 528	8,635 9,533	8,374 6,354	922 1,045	568 846	428 1,845	4,466 3,721	85 192	$\frac{116}{405}$	84 38	21 38	1,748 1,817	3,008 3,488	648 824	907 2,028	369 322	151 202	3,049 4,476	488 167	5,582 4,499		Fol 2
T T	-11	228 852 305	133 1,046 11	648 764 112	35 85 8	291 1,033 125	137 546 109	53 134 89	244 530 297	1,410 6,410 619	1,399 8,231 1,166	328 1,115 43	294 1,005 83	178 436 16	1,903 5,921 338	76 23 97	154 287 安	3 47 4	12 41 1	664 1,639 95	1,221 3,813 732	647 1,002 47	740 2,144 58	211 539 110	65 202 15	1,236 4,512 4,66	215 915 319	2,208 6,009 265		Fold 3
T	-12 -13 -14	501 282 65.2	467 641 82.4	314 131 37 <i>4</i>	448 53 4.5	373 908 58.8	354 171 364	320 60 68	448 220 80.8	491 1,970 482,4	546 2,69) 524,6	348 436 535	280 132 37.1	385 182 23.2	581 1,881 303,8	297 47 63	384 66 94	609 68 61	125 19 2.1	429 947 102.4	314 446 124,1	372 332 45.1	149 812 49/5	222 74 28/5	456 53 13.7	454 1,573 201,8	455 362 137.8	463 1,827 345.2	ſ	1d 4
T		9,00 3,00 949	17.06 3.10 989	347 7.40	0.01	960 1940	4.82 5.50	1.44 0.00	4.86 5.20	45.41 13.10	10200 8240	234 880	14.46 2.90 770	4.9) (LD)	80.61 17.40	1.91 0.00	298 020	1.36 3.10	000 000	51,30 7,50	1567 5840	430 370	18/0 7.90	60) 390	1.10 0.00	27.01 18.30	098 220	9847 4380 9 212		F0] 4
T	18 19	363 227 3.5	260 260 5.8	98 157 2.3	89 23 32	389 395 3,9	385 317 3.6	8 42 33	$\frac{1}{207}$ 64	10,979 4,178 4,4	3,463 2,512 4,1	999 420 2.6	770 323 2.4	238 573 3.9	16,980 1,681 3.0	53 64 1.5	60 162 2.0	55 0 8.4	30 1 21	1,492 402 4.8	950 1,557 2,3	1,246 228 2.5	270 327 1,6	280 120 3.2	959 72 33	3,402 2,163 3,1	179 287 5.1	3,313 1,909 4,0		
Ţ		69 0.46	7.7 3.43	3.3 0.19 49	53 0.00	54 0.43	6.2 101 20	45 0.09 144	15.5 0.19	5.8 0,99	63 182	4/5 0.47 05	32 0.23	5,9 0,45 0%	23 1.00 70	1.7	13 021	13.5	1.3 0.00 102	64 1.51 120	15 0.28 75	1.8	1.1 0.37 67	20 027	24 0.17	23 0.44	37 027	25 3.76		
Τ	-22 -23 -24	29 133 804	38 178 334	化 7 65	100 13 192	10 41 671	83 111 1,034	10) 8 58	39 129 706	8 786 5,248	62 782 9,079	95 103 945	6) 32 274	96 164 4287	79 386 3,612	29 11 103	17 10 51	57 38 85	100 15 137	90 227 2,613	98 72 335	65 96 1,014	63 20 171	30 2 71	35 13 78	50 518 4,566	2 234 902	74 985 9,360		
T T	75	130 0.13 630	108 (119 (64	7 0.10 463	0.90 0.12 738	53 0.57 239	78 0.12 737	7 0.05 406	87 0.10 468	860 0.32 543	1,070 0.31 001	80 0.10 436	05 0.22 458	197 0.17 740	398 0.38 542	7 0.13 310	10 014 379	74 0.19 715	22 010 611	429 0.28 624	68 1.35 245	128 0.17 445	25 (1)) 322	5 0.27 239	13 0.29 423	(73 0.15 597	129 017 482	977 0.27 584		Fold K-1
Ţ	28 29	46 521	17 828	4	5 3,711 290	4 1,359	8 843 974	0 1,254 202	47 897 995	58 162	17 1,140 210	8 2,247	4 876	27 2,423	47 1,423 990	0 362	1 129 159	0 1,707 101	0 2,856 212	19 1,575 591	31 1,501	15 1,377 102	1 744 01	28 798	16 851 201	85 1,248	31 41 222	62 1,170 510		q
Т	30 31 32	347 00 347	$\frac{330}{0.0}$ 20.1	107 202 34.1	230 4.8 13.3	220 0.6 34.3	871 7.0 21.6	208 0.6 24.1	335 02 38.8	812 20,5 18,4	319 0.1 26.3	240 183 0.0	$175 \\ 1.3 \\ 29.6$	445 0.5 26.7	302 76,4 22,6	160 1.0 18.3	153 9.1 30.1	01 97	213 0.1 202	321 03 208	144 69.5 29.5	198 111,8 20,9	91 1,5 36,1	188 0.1 32,5	234 0.7 29.7	274 92.4 21.1	$\frac{322}{1.3}$ $\frac{25.4}{25.4}$	318 02 184		Fol K
T T	33 34 35	124 92 1.0	117 37.0 52	34 63 05	8 0.0 0.1	127 81 14	72 7.5 6.3	13 00 73	51 128 25	851 88.3 7.6	231 122.7 20.0	107 21.2 0.3	70 8.4 1.4	96 3.1 0.7	$490 \\ 100.6 \\ 6.1$	28 00 00	98 92 01	0 0 0 0 1	8 (1) (1)	145 847 1.9	249 185 16	39 13,6 2,3	98 14.9 22	27 62 04	20 0.0 0.1	607 60.3 3.1	107 19/8 1.2	272 810 80		

- split data in K folds
- execute K independent learning trials:
 - train on K-1 folds
 - test on remaining fold
 - measure testing performance
- average results across K trials

Learning / Training with text objects


- for objects like text documents or images:
 - extract features (to obtain matrix form)
 - annotate (to obtain labels)

- about 4000 emails
- 54 features numerical
- two classes: spam / no_spam

- 1300 houses
- 13 features (numerical)
- label : purchase prices (quantitative)

- 60000 images of scanned digits
- 26x26 pixel per image, black or white
- features not extracted
- 10 classes : 0,1,2, ..., 9

- 20,000 news articles (text)
- features not extracted
- 20 categories: religion, music, computers, sports, etc.

- main focus: learning algorithms
- main focus: hands-on practice on datasets
- secondary focus: analysis, error measurement
- secondary focus: features, representation

typical module subtaks / objectives

- THEORY
 - explain/understand fundamental mechanism
 - proof (math, intuition)
 - pseudocode
- CODE
 - run existing code
 - implement and demo your code
 - data handling: features, dimensionality, scale, missing values, normalization
 - computational issues : memory, cache, CPU, disk
- EVALUATION
 - setup
 - performance measurement, comparison
 - analysis/failure of procedure behavior
- HOWTO
 - practical advise, hacks, heuristics
 - communicate on topic well : email, forums
 - where to look online