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Abstract

Learning to rank for information retrieval has gained a lot of interest in the recent years
but there is a lack for large real-world datasets to benchmark algorithms. That led us to
publicly release two datasets used internally at Yahoo! for learning the web search ranking
function. To promote these datasets and foster the development of state-of-the-art learning
to rank algorithms, we organized the Yahoo! Learning to Rank Challenge in spring 2010.
This paper provides an overview and an analysis of this challenge, along with a detailed
description of the released datasets.

1. Introduction

Ranking is at the core of information retrieval: given a query, candidates documents have
to be ranked according to their relevance to the query. Learning to rank is a relatively new
field in which machine learning algorithms are used to learn this ranking function. It is of
particular importance for web search engines to accurately tune their ranking functions as
it directly a↵ects the search experience of millions of users.

A typical setting in learning to rank is that feature vectors describing a query-document
pair are constructed and relevance judgments of the documents to the query are available.
A ranking function is learned based on this training data, and then applied to the test data.

Several benchmark datasets, such as letor, have been released to evaluate the newly
proposed learning to rank algorithms. Unfortunately, their sizes – in terms of number of
queries, documents and features – are still often too small to draw reliable conclusions,
especially in comparison with datasets used in commercial search engines. This prompted
us to released two internal datasets used by Yahoo! search, comprising of 36k queries, 883k
documents and 700 di↵erent features.

To promote these datasets and encourage the research community to develop new learn-
ing to rank algorithms, we organized the Yahoo! Learning to Rank Challenge which took
place from March to May 2010. There were two tracks in the challenge: a standard learning
to rank track and a transfer learning track where the goal was to learn a ranking function
for a small country by leveraging the larger training set of another country.

The challenge drew a huge number of participants with more than thousand teams reg-
istered. Winners were awarded cash prizes and the opportunity to present their algorithms

⇤ The challenge was organized by O. Chapelle and Y. Chang. T.-Y. Liu joined us for organizing the
workshop and editing these proceedings.
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in a workshop at the 27th International Conference on Machine Learning (ICML 2010) in
Haifa, Israel. Some major findings include:

1. Decision trees were the most popular class of function among the top competitors;

2. Ensemble methods, including boosting, bagging and random forests, were dominant
techniques;

3. The di↵erences in accuracy between the winners were very small.

The paper is organized as follows. An overview of learning to rank is presented in section
2. Then section 3 reviews the di↵erent benchmark datasets for learning to rank while the
details of our datasets are given in section 4. The challenge is described in section 5 which
also includes some statistics on the participation. Finally section 6 presents the outcome of
the challenge and an overview of the winning methods.

2. Learning to rank

This section gives an overview of the main types of learning to rank methods; a compre-
hensive survey of the literature can be found in (Liu, 2009).

Web page ranking has traditionally been based on a manually designed ranking function
such as BM25 (Robertson and Walker, 1994). However ranking is currently considered as
a supervised learning problem and several machine learning algorithms have been applied
to it (Freund et al., 2003; Burges et al., 2005; Cao et al., 2006; Xu and Li, 2007; Cao et al.,
2007; Cossock and Zhang, 2008; Liu, 2009; Burges, 2010).

In these methods, the training data is composed of a set of queries, a set of triples of
(query, document, grade), and the grade indicates the degree of relevance of this document
to its corresponding query. For example, each grade can be one element in the ordinal set,

{perfect, excellent,good, fair, bad} (1)

and is labeled by human editors. The label can also simply be binary: relevant or irrelevant.
Each query and each of its documents are paired together, and each query-document pair
is represented by a feature vector. Thus the training data can be formally represented as:
{(xq

j

, l

q

j

)}, where q goes from 1 to n, the number of queries, j goes from 1 to m

q

, the number

of documents for query q, xq

j

2 Rd is the d-dimensional feature vector for the pair of query
q and the j-th document for this query while l

q

j

is the relevance label for xq

j

.
In order to measure the quality of a search engine, some evaluation metrics are needed.

The Discounted Cumulative Gain (DCG) has been widely used to assess relevance in the
context of search engines (Jarvelin and Kekalainen, 2002) because it can handle multiple
relevance grades such as (1). Therefore, when constructing a learning to rank approach, it is
often beneficial to consider how to optimize model parameters with respect to these metrics
during the training procedure. Many machine learning algorithms apply the gradient based
techniques for parameter optimization. Unfortunately IR measures are not continuous and
it is not possible to directly optimize them with gradient based approaches. Consequently
many current ranking algorithms turn to optimize other objectives that can be divided into
three categories:
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Pointwise The objective function is of the form
P
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be a regression loss (Cossock and Zhang, 2008) or a classification loss (Li et al., 2008).

Pairwise Methods in this category try to order correctly pairs of documents by minimiz-
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RankSVM (Herbrich et al., 2000; Joachims, 2002) uses `(t) = max(0, 1� t), while RankNet
(Burges et al., 2005) uses `(t) = log(1 + exp(�t)). GBRank (Zheng et al., 2008) is similar
to RankSVM, but uses a quadratic penalization, `(t) = max(0, 1� t)2 and is combined with
functional gradient boosting. Finally in LambdaRank (Burges et al., 2007), the weight of
each preference pair is the NDCG di↵erence resulting from swapping that pair.

Listwise The loss function is defined over all the documents associated with the query,
`({f(xq

j

)}, {lq
j

}) for j = 1 . . .m
q

. This type of algorithms can further be divided into two
di↵erent sub-categories. The first one ignores the IR measure during training: for instance
ListNet (Cao et al., 2007) and ListMLE (Xia et al., 2008) belong to this category. The
second sub-category tries to optimize the IR measure during training: examples include
AdaRank (Xu and Li, 2007), several algorithms based on structured estimation (Chapelle
et al., 2007; Yue et al., 2007; Chakrabarti et al., 2008) and SoftRank (Taylor et al., 2008)
which minimizes a smooth version of the NDCG measure.

For each query-document pair, a set of features is extracted to form a feature vector
which typically consists of three parts: query-feature vector (depending only on the query),
document-feature vector (depending only on the document), and query-document feature
vector (depending on both). We will give in section 4.2 a high-level description of the
features used in the datasets released for the challenge.

3. Motivation

A lot of papers have been published in the last 5 years in the field of learning to rank. In
fact about 100 of such papers have been listed on the letor website.1

Before 2007 there was no publicly available dataset to compare learning to rank algo-
rithms. The results reported in papers were often on proprietary datasets (Burges et al.,
2005; Zheng et al., 2008) and were thus not reproducible. This hampered the research on
learning to rank since algorithms could not be easily compared. The release of the letor
benchmark (Qin et al., 2010)2 in 2007 was a formidable boost for the development of learn-
ing to rank algorithms because researchers were able for the first time to compare their
algorithms on the same benchmark datasets.

Unfortunately, the sizes of the datasets in letor are several orders of magnitude smaller
than the ones used by search engine companies, as indicated in table 1. In particular, the
limited number of queries – ranging from 50 to 106 – precludes any statistically significant
di↵erence between the algorithms to be reached. Also the number of features and relevance
levels is lower than those found in commercial search engines. This became problematic

1. http://research.microsoft.com/en-us/um/beijing/projects/letor/paper.aspx
2. This paper refers to the third version of letor.
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Table 1: Characteristics of publicly available datasets for learning to rank: number of
queries, documents, relevance levels, features and year of release. The size of
the 6 datasets for the ’.gov’ collection in letor have been added together. Even
though this collection has a fairly large number of documents, only 2000 of them
are relevant.

Queries Doc. Rel. Feat. Year
letor 3.0 – Gov 575 568 k 2 64 2008
letor 3.0 – Ohsumed 106 16 k 3 45 2008
letor 4.0 2,476 85 k 3 46 2009
Yandex 20,267 213 k 5 245 2009
Yahoo! 36,251 883 k 5 700 2010
Microsoft 31,531 3,771 k 5 136 2010

because several researchers started to notice that the conclusions drawn from experimen-
tation on letor datasets can be quite di↵erent than the ones from large real datasets.
For instance, Taylor et al. (2008) reports in the table 1 of their paper that, on TREC
data, SoftRank yields a massive 15.8% NDCG@10 improvement over mean squared error
optimization; but on their internal web search data, both methods give similar results.

This observation prompted us to publicly release some of the datasets used internally at
Yahoo!. We will detail in section 4 how these datasets were constructed and assembled. It is
noteworthy that around the same time, the Russian search engine Yandex also released one
of their internal dataset for a competition.3 More recently, Microsoft announced the release
of editorial judgments used to train the Bing ranking function along with 136 features widely
used in the research community.4

4. Datasets

Two datasets were released for the challenge, corresponding to two di↵erent countries. The
first one, named set 1, originates from the US, while the second one, set 2, is from an
Asian country. The reason for releasing two datasets will become clear in the next section;
one of the track of the challenge was indeed a transfer learning track. Both datasets are in
fact a subset of the entire training set used internally to train the ranking functions of the
Yahoo! search engine. Table 2 shows some statistics of these datasets.

The queries, urls and features descriptions were not disclosed, only the feature values
were. There were two reasons of competitive nature for doing so:

1. Feature engineering is a critical component of any learning to rank system. For this
reason, search engine companies rarely disclose the features they use. Releasing the
queries and urls would lead to a risk of reverse engineering of our features.

3. Yandex, Internet Mathematics, 2009. Available at http://imat2009.yandex.ru/en/datasets.
4. Microsoft Learning to Rank Datasets, 2010. Available at http://research.microsoft.com/mslr.
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Table 2: Statistics of the two datasets released for the challenge.
set 1 set 2

Train Valid. Test Train Valid. Test
Queries 19,944 2,994 6,983 1,266 1,266 3,798
Dococuments 473,134 71,083 165,660 34,815 34,881 103,174
Features 519 596

2. Our editorial judgments are a valuable asset, and along with queries and urls, it could
be used to train a ranking model. We would thus give a competitive advantage to
potential competitors by allowing them to use our editorial judgments to train their
model.

4.1. Dataset construction

This section details how queries, documents and judgments were collected.

Queries The queries were randomly sampled from the query logs of the Yahoo! search
engine. Each query was given a unique identifier. A frequent query is likely to be sampled
several times from the query logs, and each of these replicates has a di↵erent identifier.
This was done to ensure that the query distribution in these datasets follows the same
distribution as in the query logs: frequent queries have e↵ectively more weight.

Documents The documents are selected using the so-called pooling strategy as adopted
by TREC (Harman, 1995). The top 5 documents from di↵erent systems (di↵erent internal
ranking functions as well as external search engines) are retrieved and merged. This process
is typically repeated at each update of the dataset. A description of this incremental process
is given in algorithm 1.

An histogram of the number of documents associated with each query can be found in
figure 1. The average number of document per query is 24, but some queries have more than
100 documents. These queries are typically the most di�cult ones: for di�cult queries, the
overlap in documents retrieved by the di↵erent engines is small and the documents change
over time; these two factors explain that algorithm 1 produces a large number of documents
for this type of queries.

Judgments The relevance of each document to the query has been judged by a profes-
sional editor who could give one of the 5 relevance labels of set (1). Each of these relevance
labels is then converted to an integer ranging from 0 (for bad) to 4 (for perfect). There are
some specific guidelines given to the editors instructing them how to perform these relevance
judgments. The main purpose of these guidelines is to reduce the amount of disagreement
across editors.

Table 3 shows the distribution of the relevance labels. It can be seen that there are very
few perfect. This is because, according to the guidelines, a perfect is only given to the
destination page of a navigational query.
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Algorithm 1 High-level description of the dataset construction process.

Q = ; Set of queries
J = ; Dictionary of (query,document), judgment
for T = 1, . . . , T do Create J incrementally over T time steps

Q = Q [ {new random queries}
for all q 2 Q do
for all e 2 E do E is a set of search engines

for k = 1, . . . , k
max

do Typically k

max

= 5
u = k

th document for query q according to engine e.
if (q, u) 62 J then
Get judgment j for (q, u)
J(q, u) = j

end if
end for

end for
end for

end for
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Figure 1: Distribution, over both sets, of the number of documents per query.

Table 3: Distribution of relevance labels.

Grade Label set 1 set 2

Perfect 4 1.67% 1.89%
Excellent 3 3.88% 7.67%
Good 2 22.30% 28.55%
Fair 1 50.22% 35.80%
Bad 0 21.92% 26.09%
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4.2. Features

We now give an overview of the features released in these datasets. We cannot give specifics
of how these features are computed, but instead give a high-level description, organized
by feature type. Before going further, several general remarks need to be made. First, the
features are described at the document level, but a lot of them have counterparts at the host
level. This is to enable generalization for documents for which we have little information.
Second, count features are often normalized in a sensible way. For instance, in addition to
counting the number of clicks on a document, we would also compute the click-through rate

(CTR), that is the ratio of the number of clicks to the number of impressions. Finally, some
base features are often aggregated or combined into a new composite feature.

The features can be divided in the main following categories.

Web graph This type of features tries to determine the quality or the popularity of a
document based on its connectivity in the web graph. Simple features are functions
of the number of inlinks and outlinks while more complex ones involve some kind of
propagation on the graph. A famous example is PageRank (Page et al., 1999). Other
features include distance or propagation of a score from known good or bad documents
(Gyöngyi et al., 2004; Joshi et al., 2007).

Document statistics These features compute some basic statistics of the document such
as the number of words in various fields. This category also includes characteristics
of the url, for instance the number of slashes.

Document classifier Various classifiers are applied to the document, such as spam, adult,
language, main topic, quality, type of page (e.g. navigational destination vs informa-
tional). In case of a binary classifier, the feature value is the real-valued output of the
classifier. In case of multiples classes, there is one feature per class.

Query Features which help in characterizing the query type: number of terms, frequency
of the query and of its terms, click-through rate of the query. There are also result set

features, that are computed as an average of other features over the top documents
retrieved by a previous ranking function. For example, the average adult score of the
top documents retrieved for a query is a good indicator of whether the query is an
adult one or not.

Text match The most important type of features is of course the textual similarity be-
tween the query and the document; this is the largest category of features. The basic
features are computed from di↵erent sections of the document (title, body, abstract,
keywords) as well as from the anchor text and the url. These features are then aggre-
gated to form new composite features. The match score can be as simple as a count or
can be more complex such as BM25 (Robertson and Zaragoza, 2009). Counts can be
the number of occurrences in the document, the number of missing query terms or the
number of extra terms (i.e. not in the query). Some basic features are defined over
the query terms, while some others are arithmetic functions (min, max, or average)
of them. Finally, there are also proximity features which try to quantify how far in
the document are the query terms (the closer the better) (Metzler and Croft, 2005).
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Topical matching This type of feature tries to go beyond similarity at the word level and
compute similarity at the topic level. This can for instance been done by classifying
both the query and the document in a large topical taxonomy. In the context of
contextual advertising, details can be found in (Broder et al., 2007).

Click These features try to incorporate the user feedback, most importantly the clicked
results (Agichtein et al., 2006). They are derived either from the search or the toolbar
logs. For a given query and document, di↵erent click probabilities can be computed:
probability of click, first click, last click, long dwell time click or only click. Also of
interest is the probability of skip (not clicked, but a document below is). If the given
query is rare, these clicks features can be computed using similar, but more frequent
queries. The average dwell time can be used as an indication of the landing page
quality. The geographic similarity of the users clicking on a page is a useful feature to
determine its localness. Finally, for a given host, the entropy of the click distribution
over queries is an indication of its specificity.

External references For certain documents, some meta-information, such as Delicious
tags, is available and can be use to refine the text matching features. Also documents
from specific domains have additional information which can be used to evaluate
the quality of the page: for instance, the rating of an answer in Yahoo! Answers
documents.

Time For time sensitive queries, the freshness of a page is important. There are several
features which measure the age of a document as well as the one of its inlinks and
outlinks. More information on such features can be found in (Dong et al., 2010,
Section 5.1).

The datasets contain thus di↵erent types of features: binary, count, and continuous
ones. The categorical features have been converted to binary ones. Figure 2 hints at how
many such features there are: it shows an histogram of the number of di↵erent values a
features takes. There are for instance 48 binary features (taking only two values).

The features that we released are the result of a feature selection step in which the most
predictive features for ranking are kept. They are typically part of the ranking system used
in production. As a consequence, the datasets we are releasing are very realistic because
they are used in production. The downside is that we cannot reveal the features semantics.
The dataset recently released by Microsoft is di↵erent in that respect because the features
description is given; they are some commonly used features in the research community and
none of them is proprietary.

4.3. Final processing

Each set has been randomly split into training, validation and test subsets. As explained in
the next section, the validation set is used to give immediate feedback to the participants
after a submission. In order to prevent participants from optimizing on the validation set,
we purposely kept it relatively small. The training part of set 2 is also quite small in order
to be able to see the benefits from transfer learning. Sizes of the di↵erent subsets can be
found in table 2.
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Figure 2: Number of di↵erent values for a feature. The x-axis is the number of di↵erent
values and the y-axis is the number of features falling into the corresponding bin.

Table 4: Data format

<line> .=. <relevance> qid:<qid> <feature>:<value> ... <feature>:<value>

<relevance> .=. 0 | 1 | 2 | 3 | 4

<qid> .=. <positive integer>

<feature> .=. <positive integer>

<value> .=. <float>

The features are not the same on both sets: some of them are defined on set 1 or set
2 only, while 415 features are defined on both sets. The total number of features is 700.
When a feature is undefined for a set, its value is 0. All the features have been normalized
to be in the [0,1] range through the inverse cumulative distribution:

x̃

i

:=
1

n� 1
|{j, x

j

< x

i

}|,

where x1, . . . , xn are the original values for a given feature and x̃

i

is the new value for the
i-th example. This transformation is done simultaneously on the training, validation and
test subsets of set 1 and set 2.

The format of the data is the same as in the SVM-light software5 and is described in
table 4. The full datasets (including validation and test labels) are available under the
Webscope program at http://webscope.sandbox.yahoo.com. Note that unlike other
Webscope datasets, this one is not restricted to academic researchers.

5. http://svmlight.joachims.org
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Table 5: Performance of the 3 baselines methods on the validation and test sets of set 1:
BM25F-SD is a text match feature, RankSVM is linear pairwise learning to rank
method and GBDT is a non-linear regression technique.

Validation Test
ERR NDCG ERR NDCG

BM25F-SD 0.42598 0.73231 0.42853 0.73214
RankSVM 0.43109 0.75156 0.43680 0.75924
GBDT 0.45625 0.78608 0.46201 0.79013

4.4. Baselines

We report in table 5 the performance on set 1 of 3 baseline methods:

BM25F-SD A high level description of this powerful text match feature is given in (Broder
et al., 2010). It is a combination of BM25F (Robertson et al., 2004) and Metzler’s
sequential dependence (SD) model (Metzler and Croft, 2005), which provides an ef-
fective framework for term proximity matching. This feature has index 637 in the
datasets and is one of the most predictive features for relevance.

RankSVM We considered the linear version of this pairwise ranking algorithm first in-
troduced in (Herbrich et al., 2000). There are several e�cient implementation of this
algorithm that are publicly available (Joachims, 2006; Chapelle and Keerthi, 2010).
We used the former code available at http://www.cs.cornell.edu/People/tj/svm_
light/svm_rank.html.

GBDT Gradient Boosted Decision Tree (Friedman, 2002) is a simple yet very e↵ective
method for learning non-linear functions. It performs standard regression on the
targets and is thus not specific to ranking. The targets were obtained by mapping the
labels through the equation R used in the definition of the ERR metric (2). Publicly
available packages exist (Ridgeway, 2007), but we used our internal implementation
(Ye et al., 2009).

The parameters of RankSVM and GBDT were selected by a crude search on the val-
idation set: for RankSVM, C was set to 200; and for GBDT, the parameters were set as
follows: shrinkage rate = 0.05; sampling rate = 0.5; number of nodes = 20; number of trees
= 2400.

5. Challenge

We first review the rules and organization of the challenge and then give some statistics
about the participation and submissions.
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5.1. Rules

The challenge ran from March 1st 2010 until May 31 2010. The o�cial website was http:
//learningtorankchallenge.yahoo.com. The challenge was divided into two tracks, and
competitors could compete in one or both of them.

1. A standard learning to rank track, using only set 1.

2. A transfer learning track, where the goal is to leverage the training set from set 1 to
build a better ranking function on set 2.

The reason for having a transfer learning track is that it has recently attracted a lot of
interest (Chen et al., 2009; Gao et al., 2009; Long et al., 2009; Chapelle et al., 2011b),
especially for learning web search ranking function across di↵erent countries. It is indeed
expensive to collect large training sets for each individual country. We refer here to this
task as transfer learning, but we could also have named it with the closely related concepts
of multi-task learning or domain adaption.

5.1.1. Metrics

Submissions were evaluated using two criteria: the Normalized Discounted Cumulative
Gain (NDCG) (Jarvelin and Kekalainen, 2002) and the Expected Reciprocal Rank (ERR)
(Chapelle et al., 2009). NDCG is a popular metric for relevance judgments. Following
(Burges et al., 2005), it became usual to assign exponentially high weight to highly relevant
documents. We used the same formula in the challenge:

NDCG =
DCG

Ideal DCG
and DCG =

min(10,n)X

i=1

2yi � 1

log2(1 + i)

ERR is a novel metric based on the cascade user model (Craswell et al., 2008) described
in algorithm 2. It is defined as the expected reciprocal rank at which the user will stop his
search under this model. The resulting formula is:

ERR =
nX

i=1

1

i

P (user stops at i)

=
nX

i=1

1

i

R(y
i

)
i�1Y

j=1

(1�R(y
j

)) with R(y) :=
2y � 1

16
(2)

The ERR metric is very similar to the pFound metric used by Yandex (Segalovich, 2010).
In fact pFound is identical to the ERR variant described in (Chapelle et al., 2009, Section
7.2).

Both metrics – NCDG and ERR – are defined at the query level. The score of a
submission according to a metric is the arithmetic mean of this metric over the queries in
the corresponding set. The NDCG scores were only provided for informational purposes: in
order to determine the winners, the submissions were ranked according to their ERR score.
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Algorithm 2 The cascade user model
Require: R1, . . . , R10 the relevance of the 10 documents on the result page.
1: i = 1
2: User examines position i.
3: if random(0,1)  R

i

then
4: User is satisfied with the i-th document and stops.
5: else
6: i i+ 1; go to 2
7: end if

Figure 3: Leaderboard at the end of the challenge

5.1.2. Submissions

Competitors were required to submit the predicted ranks of the documents on the validation
and test sets. They were getting immediate feedback – ERR and NDCG scores – on the
validation set. A leaderboard was showing up to the top 100 teams. Figure 3 is a picture of
the leaderboard on track 1 at the end of the challenge. Getting feedback on a validation set
has now become standard in machine learning challenges: it enables competitors to gauge
how well they are doing and it makes the challenge more fun and interactive. The results
on the test set were not disclosed until the end of the challenge and were used to rank the
winners.
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Table 6: Participation: number of teams as a function of their number of submissions.

All 1055
Submissions � 1 383
Submissions � 2 307
Submissions � 10 104

Participants were allowed to upload multiple submissions over the course of the chal-
lenge, but not more than one submission every 8 hours. This was to prevent server overload
as well as guessing of the validation set labels. However, only one submission – the so-
called primary submission – counted for determining the winners of the challenge. At any
time during the challenge, the competitors had the opportunity to select, among all their
submissions, the one they wished to have judged as their primary submission.

5.1.3. Prizes

At the end of the challenge, the primary entries from all participants were ranked in decreas-
ing order of their respective ERR scores. The top four competitors of each track received
the following cash prizes, summing up to $30,000.

Place Prize
1st $8,000
2nd $4,000
3rd $2,000
4th $1,000

5.2. Participation

Competitors could enter the challenge as an individual or as part of a team, but they were
not allowed to be part of multiples teams. This was to ensure fairness in the challenge
and prevent a competitor from increasing his chance of winning by creating multiple teams.
However some people tried to bypass this rule by creating di↵erent accounts – up to 200 –
and registered a team under each account. We thus manually clean the challenge database
and did our best to delete these fraudulent competitors. The statistics presented below are
after this initial cleaning step.

There were 1294 participants and 1055 teams registered. This implies that most teams
were single participants, but the largest team was fairly large with 7 individuals. The degree
of involvement in the challenge di↵ered greatly between teams. Table 6 lists the number of
teams as a function their number of submissions. The numbers indicate that 64% of the
teams registered in the challenge did not submit any entry. These people were probably
merely interested in obtaining the datasets. The datasets were indeed only available to
registered competitors. But as indicated at the end of section 4, the datasets are now
publicly available.

Track 1 turned out to be more popular than track 2: there were 3711 submissions in
track 1 coming from 363 teams, while there were only 1025 submissions from 121 teams
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Figure 4: Breakdown of the number of page views by country of origin.

in track 2. This is probably because track 2 required more specialized algorithms and in
contrast track 1 was more accessible.

We were also interested in quantifying the diversity in the geographic origin of the par-
ticipants. We did not have directly this information for the competitors, but we estimated
it by analyzing the tra�c of the website. During the 3 months that the challenge lasted,
there were 113,000 page views from 97 countries, and the distribution across countries is
plotted in figure 4. We were pleased to see that the challenge drew interest all around the
world.

When registering, there was an optional a�liation field. Based on this field and the
email address of the competitors, we tried to estimate the proportion of academic and
industrial competitors. For 55% of the competitors, we were not able to determine their
a�liation – because the a�liation field is empty and the domain of the email address is
uninformative – but among other competitors, 78% had an academic a�liation while 22%
worked in industry. It is not too surprising to have a large majority of participants from
academia because industrial researchers have typically less time to devote to challenges.
However 22% is a substantial proportion and it shows that ranking is a relevant problem in
the industrial world.

Finally, figure 5 shows the number of submissions received each day of the challenge.
This number was stable around 50 submissions during most of the challenge, but not un-
expectedly, the number of submissions soared in the last couple of days.

5.3. Analysis of the submissions

Metrics Since we reported two metrics in this challenge, a natural question is to know to
what extent these two metrics correlate. As can be seen in figure 6, there is a relatively high
correlation between them: the Kendall ⌧ correlation coe�cient, computed across the track
1 submissions, is 0.89. However, when zooming on the best submissions (right hand side of
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Figure 5: Number of submissions per day (both tracks).
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Figure 6: Scatter plot of the the NDCG and ERR scores on the validation set of track 1.

the figure), it appears that there are some substantial di↵erences between both metrics; in
particular the best submissions according to NDCG and ERR are not the same.

Distribution of scores The distribution of ERR scores on both tracks is shown in figure
7. Since the data was given in the SVM-Light format, it is not too surprising that most
competitors tried the ranking version of that software at first. This correspond to the the
“Linear RankSVM” bump in the figure. Note that these distributions have in fact quite a
heavy tail on the left (not shown), corresponding to random or erroneous submissions.

Evolution of the scores The evolution of the test score of the best competitors is shown
in figure 8. The winner team on track 1 (Ca3Si2O7) entered the challenge rather late, but
had a strong finish and was able to secure the first place couple of days before the end of
the challenge. Most teams did not overfit during the challenge, meaning that a better score
on the validation set often meant a better score on the test set. The only exception seems
to be the team WashU in track 2 which had a drop on the test set at around the 83rd day.
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Table 7: Winners of the challenge along with the ERR score of their primary submission.

Track 1
1 C. Burges, K. Svore, O. Dekel, Q. Wu, P. Bennett,

A. Pastusiak and J. Platt (Microsoft Research)
0.46861

2 E. Gottschalk (Activision Blizzard) and D. Vogel
(Data Mining Solutions)

0.46786

3 M. Parakhin (Microsoft) – Prize declined 0.46695
4 D. Pavlov and C. Brunk (Yandex Labs) 0.46678
5 D. Sorokina (Yandex Labs) 0.46616

Track 2
1 I. Kuralenok (Yandex) 0.46348
2 P. Li (Cornell University) 0.46317
3 D. Pavlov and C. Brunk (Yandex Labs) 0.46311
4 P. Geurts (University of Liège) 0.46169

6. Outcome

6.1. Winners

As explained above, we ranked each team based on the ERR score of their primary submis-
sion on the test set. The winners are listed in table 7. A condition for winning the prize
was to prepare a presentation describing the method used for the challenge. The winners
were then invited to give this presentation at an ICML workshop in Haifa on June 23rd,
2010. The 3rd competitor in track 1 declined the prize and as a result the 4th and 5th
teams were promoted of one rank.

The profile of the winners is quite diverse: several of them work for search engine com-
panies (Microsoft and Yandex); P. Li and P. Guerts are academic researchers; E. Gottschalk
and D. Vogel are actively participating in machine learning and data mining challenges such
as the KDD cups. It is worth noting that the leader of the winning team of track 1, Chris
Burges, is the author of the first web search learning to rank paper (Burges et al., 2005).

The ERR scores in table 7 of the top competitors are very close. We thus performed
a paired t-test between the primary submissions of each of the 5 top competitors. The
resulting p-values are listed in table 8. It can be seen that most of the di↵erences are not
statistically significant. This is even more pronounced on track 2 where the test set was
smaller than the one of track 1. The closeness of the scores does not necessarily imply that
the predictions are similar. In fact an oracle ensemble method, choosing for each query
the best ranking among the top 10 primary submissions results, would have an ERR score
of 0.4972 in track 1. This number is substantially higher than those listed in table 8 and
indicates that the predictions from the competitors are di↵erent enough and that there is
probably still some room for improvement.
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Table 8: p-values from a paired t-test between the top 5 primary submissions on track 1
(left) and track 2 (right)

Pos 2 Pos 3 Pos 4 Pos 5
Pos 1 0.262 0.007 0.007 0.0002
Pos 2 0.221 0.123 0.019
Pos 3 0.802 0.254
Pos 4 0.325

Pos 2 Pos 3 Pos 4 Pos 5
Pos 1 0.712 0.659 0.069 0.045
Pos 2 0.941 0.111 0.075
Pos 3 0.057 0.084
Pos 4 0.956

6.2. Methods used

The similarity between the methods used by the winners is striking: all of them used decision
trees and ensemble methods.

Burges et al. (2011) used a linear combination of 12 ranking models, 8 of which were
LambdaMART (Burges, 2010) boosted tree models, 2 of which were LambdaRank neural
nets, and 2 of which were logistic regression models. While LambdaRank was originally
instantiated using neural nets, LambdaMART implements the same ideas using the boosted-
tree style MART algorithm, which itself may be viewed as a gradient descent algorithm.
Four of the LambdaMART rankers (and one of the nets) were trained using the ERR
measure, and four (and the other net) were trained using NDCG. Extended training sets
were also generated by randomly deleting feature vectors for each query. Various approaches
were explored to linearly combine the 12 rankers, but simply adding the normalized model
scores worked as well as the other approaches.

Eric Gottschalk and David Vogel first processed the datasets to create new normalized
features. The original and derived features were then used as inputs into a random forest
procedure. Multiple random forests were then created with di↵erent parameters used in
training process. The out-of-bag estimates from the random forests were then used in a
linear regression to ensemble the forests together. For the final submission, this ensemble
was blended with a gradient boosting machine trained on a transformed version of the
dependent variable.

Dmitry Pavlov and Cli↵ Brunk tested a machine learning approach for regression based
on the idea of combining bagging and boosting called BagBoo (Gorodilov et al., 2010). The
model borrows its high accuracy potential from Friedman’s gradient boosting, and high
e�ciency and scalability through parallelism from Breiman’s bagging. It often achieves
better accuracies than bagging or boosting alone. For the transfer learning track, they
combined the datasets in a way that puts 7 times higher weight on set 2.

Daria Sorokina also used the idea of combining bagging and boosting in an algorithm
called Additive Groves (Sorokina et al., 2007).

Igor Kuralenok proposed a novel pairwise method called YetiRank (Gulin et al., 2011)
that modifies Friedman’s gradient boosting method in the gradient computation part. It
also takes uncertainty in human judgements into account.

Ping Li recently proposed Robust LogitBoost (Li, 2010) to provide a numerically stable
implementation of the highly influential LogitBoost algorithm (Friedman et al., 2000), for
classifications. Unlike the widely-used MART algorithm, (robust) LogitBoost use both the
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first and second-order derivatives of the loss function in the tree-splitting criterion. The
five-level ranking problem was viewed as a set of four binary classification problems. The
predicted class probabilities were then mapped to a relevance score as in (Li et al., 2008).
For transfer learning, classifiers were learned on each set and a linear combination of the
class probabilities from both sets was used.

Geurts and Louppe (2011) experimented with several tree-based ensemble methods,
including bagging, random forests, and extremely randomized trees (Geurts et al., 2006),
several (pointwise) classification and regression-based coding of the relevance label, and
several ranking aggregation schemes. The best result on the first track was obtained with the
extremely randomized trees in a standard regression setting. On the second transfer learning
track, the best entry was obtained using extremely randomized regression trees built only on
the set 2 data. While several attempts at combining both sets were somewhat successful
when cross-validated on the training set, the improvements were slight and actually not
confirmed on the validation set.

Finally the proceedings of the challenge include contributions from two teams that were
not among the winning teams, but still performed very well. Busa-Fekete et al. (2011)
used decision trees within a multi-class version of AdaBoost while Mohan et al. (2011) tried
various combinations of boosted decision trees and random forests for the transfer learning
track.

6.3. Lessons

The Yahoo! Learning to Rank Challenge was overall very successful, with much higher
participation than anticipated. We designed the rules and organized the challenge by tak-
ing into account the experience gained from previous machine learning challenges. As for
learning to rank, there are two main lessons we learned from this challenge.

First, we used to believe that more advanced ranking algorithms could largely improve
the relevance. However, the results clearly demonstrate that the solutions to ranking prob-
lem are quite mature. Comparing the best solution of ensemble learning with the baseline
of regression model (GBDT), the relevance gap is rather small. The good performance of
simple regression based techniques appears to be at odds with most publications on learn-
ing to rank. There are two possible explanations for this. One of them is that some of
the “improvements” reported in papers are due to chance. A recent paper (Blanco and
Zaragoza, 2011) analyzes this kind of random discoveries on small datasets. The other ex-
planation has to do with the class of functions. In general, the choice of the loss function
is all the more critical as the class of function is small, resulting in underfitting; figure 9
illustrates that point in classification. But when the class of functions is su�ciently large
and underfitting is not an issue anymore, the choice of the loss function is of secondary
importance. Most learning to rank papers consider a linear function space for the sake of
simplicity. This space of functions is probably too limited and the above reasoning explains
that substantial gains can be obtained by designing a loss function specifically tuned for
ranking. But with ensemble of decision trees, the modeling complexity is large enough and
squared loss optimization is su�cient. A theoretical analysis of the link between squared
loss and DCG can be found in (Cossock and Zhang, 2008)
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Figure 9: One dimensional example illustrating the e↵ect of the loss function. The goal is
to classify the red crosses against the blue dots. The solution of linear regression
(with targets ±1) is bad, but changing the squared to loss to any classification
loss yields the desired solution. Alternatively, non-linear regression also solves
the problem; here is a decision stump su�ces.

A second lesson from this challenge is that the benefits from transfer learning seem
limited. None of the competitors were able to clearly outperform the baseline consisting in
learning from the local data only. In order to provide a good benchmark data for transfer
learning research, we should either release another dataset which has more similarities with
the US data, or reduce the total amount of local training data.

7. Conclusion

Research on learning to rank is heavily dependent on a reliable benchmark dataset. We
believe that the datasets released for the Yahoo! Learning to Rank Challenge help the
research community to develop and evaluate state-of-the-art ranking algorithms in a reliable
and realistic way.

The results of the challenge clearly showed that nonlinear models such as trees and
ensemble learning methods are powerful techniques. It was also surprising to notice that
the relevance di↵erence among the top winners is very small, suggesting that the existing
solutions to ranking problem are quite mature and that the research on learning to rank
should now go beyond the traditional setting that this challenge considered. This is the
reason why we suggest, in the afterword of these proceedings, some future research directions
for learning to rank (Chapelle et al., 2011a).
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