
Journal of Machine Learning Research 4 (2003) 933-969 Submitted 12/01; Revised 11/02; Published 11/03

An Efficient Boosting Algorithm for Combining Preferences

Yoav Freund
Center for Computational Learning Systems
Columbia University
500 West 120th St.
New York, NY 10027 FREUND@CS.COLUMBIA.EDU

Raj Iyer
Living Wisdom School
456 College Avenue
Palo Alto, CA 94306 DHARMARAJ@LIVINGWISDOMSCHOOL.ORG

Robert E. Schapire
Department of Computer Science
Princeton University
35 Olden Street
Princeton, NJ 08544 SCHAPIRE@CS.PRINCETON.EDU

Yoram Singer
School of Computer Science & Engineering
Hebrew University
Jerusalem 91904, Israel SINGER@CS.HUJI.AC.IL

Editor: Thomas G. Dietterich

Abstract
We study the problem of learning to accurately rank a set of objects by combining a given collec-
tion of ranking or preference functions. This problem of combining preferences arises in several
applications, such as that of combining the results of different search engines, or the “collaborative-
filtering” problem of ranking movies for a user based on the movie rankings provided by other
users. In this work, we begin by presenting a formal framework for this general problem. We then
describe and analyze an efficient algorithm called RankBoost for combining preferences based on
the boosting approach to machine learning. We give theoretical results describing the algorithm’s
behavior both on the training data, and on new test data not seen during training. We also describe
an efficient implementation of the algorithm for a particular restricted but common case. We next
discuss two experiments we carried out to assess the performance of RankBoost. In the first exper-
iment, we used the algorithm to combine different web search strategies, each of which is a query
expansion for a given domain. The second experiment is a collaborative-filtering task for making
movie recommendations.

1. Introduction

Consider the following movie-recommendation task, sometimes called a “collaborative-fi ltering”
problem (Hill et al., 1995, Shardanand and Maes, 1995). In this task, a new user, Alice, seeks
recommendations of movies that she is likely to enjoy. A collaborative-fi ltering system fi rst asks
Alice to rank movies that she has already seen. The system then examines the rankings of movies

c⃝2003 Yoav Freund, Raj Iyer, Robert E. Schapire and Yoram Singer.

FREUND, IYER, SCHAPIRE AND SINGER

provided by other viewers and uses this information to return to Alice a list of recommended movies.
To do that, the recommendation system looks for viewers whose preferences are similar to Alice’s
and combines their preferences to make its recommendations.

In this paper, we introduce and study an effi cient learning algorithm called RankBoost for com-
bining multiple rankings or preferences (we use these terms interchangeably). This algorithm is
based on Freund and Schapire’s (1997) AdaBoost algorithm and its recent successor developed by
Schapire and Singer (1999). Similar to other boosting algorithms, RankBoost works by combining
many “weak” rankings of the given instances. Each of these may be only weakly correlated with the
target ranking that we are attempting to approximate. We show how to combine such weak rankings
into a single highly accurate ranking.

We study the ranking problem in a general learning framework described in detail in Section 2.
Roughly speaking, in this framework, the goal of the learning algorithm is simply to produce a single
linear ordering of the given set of objects by combining a set of given linear orderings called the
ranking features. As a form of feedback, the learning algorithm is also provided with information
about which pairs of objects should be ranked above or below one another. The learning algorithm
then attempts to fi nd a combined ranking that misorders as few pairs as possible, relative to the
given feedback.

In Section 3, we describe RankBoost in detail and we prove a theorem about its effectiveness
on the training set. We also describe an effi cient implementation for “bipartite feedback,” a special
case that occurs naturally in many domains. We analyze the complexity of all of the algorithms
studied.

In Section 4, we describe an effi cient procedure for fi nding the weak rankings that will be
combined by RankBoost using the ranking features. For instance, for the movie task, this procedure
translates into using very simple weak rankings that partition all movies into only two equivalence
sets, those that are more preferred and those that are less preferred. Specifi cally, we use another
viewer’s ranked list of movies partitioned according to whether or not he prefers them to a particular
movie that appears on his list. Such partitions of the data have the advantage that they only depend
on the relative ordering defi ned by the given rankings rather than absolute ratings. In other words,
even if the ranking of movies is expressed by assigning each movie a numeric score, we ignore
the numeric values of these scores and concentrate only on their relative order. This distinction
becomes very important when we combine the rankings of many viewers who often use completely
different ranges of scores to express identical preferences. Situations where we need to combine
the rankings of different models also arise in meta-searching problems (Etzioni et al., 1996) and in
information-retrieval problems (Salton, 1989, Salton and McGill, 1983).

In Section 5, for a particular probabilistic setting, we study the generalization performance of
RankBoost, that is, how we expect it to perform on test data not seen during training. This analysis
is based on a uniform-convergence theorem that we prove relating the performance on the training
set to the expected performance on a separate test set.

In Section 6, we report the results of experimental tests of our approach on two different prob-
lems. The fi rst is the meta-searching problem. In a meta-search application, the goal is to combine
the rankings of several web search strategies. Each search strategy is an operation that takes a query
as input, performs some simple transformation of the query (such as adding search directives like
“AND”, or search tokens like “home page”) and sends it to a particular search engine. The outcome
of using each strategy is an ordered list of URLs that are proposed as answers to the query. The goal
is to combine the strategies that work best for a given set of queries.

934

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

The second problem is the movie-recommendation problem described above. For this problem,
there exists a large publicly available dataset that contains ratings of movies by many different
people. We compared RankBoost to nearest-neighbor and regression algorithms that have been
previously studied for this application using several evaluation measures. RankBoost was the clear
winner in these experiments.

In addition to the experiments that we report, Collins (2000) and Walker, Rambow, and Rogati
(2001) describe recent experiments using the RankBoost algorithm for natural-language processing
tasks. Also, in a recent paper (Iyer et al., 2000), two versions of RankBoost were compared to
traditional information retrieval approaches.

Despite the wide range of applications that use and combine rankings, this problem has received
relatively little attention in the machine-learning community. The few methods that have been
devised for combining rankings tend to be based either on nearest-neighbor methods (Resnick et al.,
1995, Shardanand and Maes, 1995) or gradient-descent techniques (Bartell et al., 1994, Caruana
et al., 1996). In the latter case, the rankings are viewed as real-valued scores and the problem of
combining different rankings reduces to numerical search for a set of parameters that will minimize
the disparity between the combined scores and the feedback of a user.

While the above (and other) approaches might work well in practice, they still do not guarantee
that the combined system will match the user’s preference when we view the scores as a means to
express preferences. Cohen, Schapire and Singer (1999) proposed a framework for manipulating
and combining multiple rankings in order to directly minimize the number of disagreements. In
their framework, the rankings are used to construct preference graphs and the problem is reduced to
a combinatorial optimization problem which turns out to be NP-complete; hence, an approximation
is used to combine the different rankings. They also describe an effi cient on-line algorithm for a
related problem.

The algorithm we present in this paper uses a similar framework to that of Cohen, Schapire and
Singer, but avoids the intractability problems. Furthermore, as opposed to their on-line algorithm,
RankBoost is more appropriate for batch settings where there is enough time to fi nd a good com-
bination. Thus, the two approaches complement each other. Together, these algorithms constitute
a viable approach to the problem of combining multiple rankings that, as our experiments indicate,
works very well in practice.

2. A Formal Framework for the Ranking Problem

In this section, we describe our formal model for studying ranking.
Let X be a set called the domain or instance space. Elements of X are called instances. These

are the objects that we are interested in ranking. For example, in the movie-ranking task, each movie
is an instance.

Our goal is to combine a given set of preferences or rankings of the instance space. We use the
term ranking feature to denote these given rankings of the instances. A ranking feature is nothing
more than an ordering of the instances from most preferred to least preferred. To make the model
flexible, we allow ties in this ordering, and we do not require that all of the instances be ordered by
every ranking feature.

We assume that a learning algorithm in our model is given n ranking features denoted f1, . . . , fn.
Since each ranking feature fi defi nes a linear ordering of the instances, we can equivalently think of
fi as a scoring function where higher scores are assigned to more preferred instances. That is, we

935

FREUND, IYER, SCHAPIRE AND SINGER

can represent any ranking feature as a real-valued function where f i(x1) > fi(x0)means that instance
x1 is preferred to x0 by fi. The actual numerical values of fi are immaterial; only the ordering that
they defi ne is of interest. Note that this representation also permits ties (since fi can assign equal
values to two instances).

As noted above, it is often convenient to permit a ranking feature f i to “abstain” on a particular
instance. To represent such an abstention on a particular instance x, we simply assign f i(x) the
special symbol ⊥ which is incomparable to all real numbers. Thus, f i(x) = ⊥ indicates that no
ranking is given to x by fi. Formally, then, each ranking feature fi is a function of the form fi : X →
R, where the set R consists of all real numbers, plus the additional element ⊥.

Ranking features are intended to provide a base level of information about the ranking task. Said
differently, the learner’s job will be to learn a ranking expressible in terms of the primitive ranking
features, similar to ordinary features in more conventional learning settings. (However, we choose
to call them “ranking features” rather than simply “features” to stress that they have a particular
form and function.)

For example, in one formulation of the movie task, each ranking feature corresponds to a single
viewer’s past ratings of movies, so there are as many ranking features as there are past users of
the recommendation service. Movies which were rated by that viewer are assigned the viewer’s
numerical rating of the movie; movies which were not rated at all by that viewer are assigned
the special symbol ⊥ to indicate that the movie was not ranked. Thus, f i(x) is movie-viewer i’s
numerical rating of movie x, or ⊥ if no rating was provided.

The goal of learning is to combine all of the ranking functions into a single ranking of the
instances called the final or combined ranking. The fi nal ranking should have the same form as that
of the ranking features; that is, it should give a linear ordering of the instances (with ties allowed).
However, unlike ranking features, we do not permit the fi nal ranking to abstain on any instances,
since we want to be able to rank all instances, even those not seen during training. Thus, formally
the fi nal ranking can be represented by a function H : X → R with a similar interpretation to that
of the ranking features, i.e., x1 is ranked higher than x0 by H if H(x1) > H(x0). Note the explicit
omission of ⊥ from the range of H , thus prohibiting abstentions. For example, for the movie task,
this corresponds to a complete ordering of all movies (with ties allowed), where the most highly
recommended movies at the top of the ordering have the highest scores.

Finally, we need to assume that the learner has some feedback information describing the desired
form of the fi nal ranking. Note that this information is not encoded by the ranking features, which
are merely the primitive elements with which the learner constructs its fi nal ranking. In traditional
classifi cation learning, this feedback would take the form of labels on the examples which indicate
the correct classifi cation. Here our goal is instead to come up with a good ranking of the instances,
so we need some feedback describing, by example, what it means for a ranking to be “good.”

One natural way of representing such feedback would be in the same form as that of a ranking
feature, i.e., as a linear ordering of all instances (with ties and abstentions allowed). The learner’s
goal then might be to construct a fi nal ranking which is constructed from the ranking features and
which is “similar” (for some appropriate defi nition of similarity) to the given feedback ranking.
This model would be fi ne, for instance, for the movie ranking task since the target movie-viewer
Alice provides ratings of all of the movies she has seen, information that can readily be converted
into a feedback ranking in the same way that other users’ have their rating information converted
into ranking features.

936

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

However, in other domains, this form and representation of feedback information may be overly
restrictive. For instance, in some cases, two instances may be entirely unrelated and we may not
care about how they compare. For example, suppose we are trying to rate individual pieces of fruit.
We might only have information about how individual apples compare with other apples, and how
oranges compare with oranges; we might not have information comparing apples and oranges. A
more realistic example is given by the meta-search task described in Section 2.1.

Another diffi culty with restricting the feedback to be a linear ordering is that we may consider
it very important (because of the strength of available evidence) to rank instance x1 above x0, but
only slightly important that instance x2 be ranked above x3. Such variations in the importance of
how instances are ranking against one another cannot be easily represented using a simple linear
ordering of the instances.

To allow for the encoding of such general feedback information, we instead assume that the
learner is provided with information about the relative ranking of individual pairs of instances. That
is, for every pair of instances x0,x1, the learner is informed as to whether x1 should be ranked above
or below x0, and also how important or how strong is the evidence that this ranking should exist. All
of this information can be conveniently represented by a single function Φ. The domain of Φ is all
pairs of instances. For any pair of instances x0,x1, Φ(x0,x1) is a real number whose sign indicates
whether or not x1 should be ranked above x0, and whose magnitude represents the importance of
this ranking.

Formally, then, we assume the feedback function has the formΦ :X ×X →R. Here,Φ(x0,x1) >
0 means that x1 should be ranked above x0 while Φ(x0,x1) < 0 means the opposite; a value of zero
indicates no preference between x0 and x1. As noted above, the larger the magnitude |Φ(x0,x1)|, the
more important it is to rank x1 above or below x0. Consistent with this interpretation, we assume
that Φ(x,x) = 0 for all x ∈ X , and that Φ is anti-symmetric in the sense that Φ(x0,x1) = −Φ(x1,x0)
for all x0,x1 ∈ X . Note, however, that we do not assume transitivity of the feedback function.1

For example, for the movie task, we can defi ne Φ(x0,x1) to be +1 if movie x1 was preferred to
movie x0 by Alice, −1 if the opposite was the case, and 0 if either of the movies was not seen or if
they were equally rated.

As suggested above, a learning algorithm typically attempts to fi nd a fi nal ranking that is similar
to the given feedback function. There are perhaps many possible ways of measuring such simi-
larity. In this paper, we focus on minimizing the (weighted) number of pairs of instances which
are misordered by the fi nal ranking relative to the feedback function. To formalize this goal, let
D(x0,x1) = c ·max{0,Φ(x0,x1)} so that all negative entries of Φ (which carry no additional infor-
mation) are set to zero. Here, c is a positive constant chosen so that

∑
x0,x1

D(x0,x1) = 1.

(When a specifi c range is not specifi ed on a sum, we always assume summation over all of X .) Let
us defi ne a pair x0,x1 to be crucial ifΦ(x0,x1) > 0 so that the pair receives non-zero weight under D.

The learning algorithms that we study attempt to fi nd a fi nal ranking H with a small weighted
number of crucial-pair misorderings, a quantity called the ranking loss and denoted rlossD(H).
1. In fact, we do not even use the property thatΦ is anti-symmetric, so this condition also could be dropped. For instance,
we might instead formalize Φ to be a nonnegative function in which a positive value for Φ(x0,x1) indicates that x1
should be ranked higher than x0, but there is no prohibition against both Φ(x0,x1) and Φ(x1,x0) being positive. This
might be helpful when we have contradictory evidence regarding the “true”ranking of x 0 and x1, and is analogous in
classifi cation learning to the same example appearing twice in a single training set with different labels.

937

FREUND, IYER, SCHAPIRE AND SINGER

Formally, the ranking loss is defi ned to be

∑
x0,x1

D(x0,x1) [[H(x1) ≤ H(x0)]] = Pr(x0,x1)∼D [H(x1) ≤ H(x0)] . (1)

Here and throughout this paper, we use the notation [[π]]which is defi ned to be 1 if predicate π holds
and 0 otherwise.

There are many other ways of measuring the quality of a fi nal ranking. Some of these alternative
measures are described and used in Section 6.

Of course, the real purpose of learning is to produce a ranking that performs well even on
instances not observed in training. For instance, for the movie task, we would like to fi nd a ranking
of all movies that accurately predicts which ones a movie-viewer will like more or less than others;
obviously, this ranking is only of value if it includes movies that the viewer has not already seen. As
in other learning settings, how well the learning system performs on unseen data depends on many
factors, such as the number of instances covered in training and the representational complexity of
the ranking produced by the learner. Some of these issues are addressed in Section 5.

In studying the complexity of our algorithms, it will be helpful to defi ne various sets and quanti-
ties which measure the size of the input feedback function. First of all, we generally assume that the
support of Φ is fi nite. Let XΦ denote the set of feedback instances, i.e., those instances that occur in
the support of Φ:

XΦ = {x ∈ X | ∃x′ ∈ X :Φ(x,x′) ̸= 0}.

Also, let |Φ| be the size of the support of Φ:

|Φ| = |{(x0,x1) ∈ X ×X |Φ(x0,x1) ̸= 0}| .

In some settings, such as the meta-search task described next, it may be appropriate for the
learner to accept a set of feedback functions Φ1, . . . ,Φm. However, all of these can be combined
into a single function Φ simply by adding them: Φ= ∑ jΦ j. (If some have greater importance than
others, then a weighted sum can be used.)

2.1 Example: Meta-search

To illustrate this framework, we now describe the meta-search problem and how it fi ts into the
general framework. Experiments with this problem are described in Section 6.1.

For this task, we used the data of Cohen, Schapire and Singer (1999). Their goal was to simulate
the problem of building a domain-specifi c search engine. As test cases, they picked two fairly
narrow classes of queries—retrieving the homepages of machine-learning researchers (ML), and
retrieving the homepages of universities (UNIV). They chose these test cases partly because the
feedback was readily available from the web. They obtained a list of machine-learning researchers,
identifi ed by name and affi liated institution, together with their homepages,2 and a similar list for
universities, identifi ed by name and (sometimes) geographical location from Yahoo! We refer to
each entry on these lists (i.e., a name-affi liation pair or a name-location pair) as a base query. The
goal is to learn a meta-search strategy that, given a base query, will generate a ranking of URLs that
includes the correct homepage at or close to the top.

2. From http://www.aic.nrl.navy.mil/∼aha/research/machine-learning.html.

938

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

Cohen, Schapire and Singer also constructed a series of special-purpose search templates for
each domain. Each template specifi es a query expansion method for converting a base query into
a likely seeming AltaVista query which we call the expanded query. For example, one of the
templates has the form +"NAME" +machine +learning which means that AltaVista should search
for all the words in the person’s name plus the words ‘machine’ and ‘learning’. When applied to
the base query “Joe Researcher from Shannon Laboratory in Florham Park” this template expands
to the expanded query +"Joe Researcher" +machine +learning.

A total of 16 search templates were used for the ML domain and 22 for the UNIV domain.3
Each search template was used to retrieve the top thirty ranked documents. If none of these lists
contained the correct homepage, then the base query was discarded from the experiment. In the
ML domain, there were 210 base queries for which at least one search template returned the correct
homepage; for the UNIV domain, there were 290 such base queries.

We mapped the meta-search problem into our framework as follows. Formally, the instances
now are pairs of the form (q,u) where q is a base query and u is one of the URLs returned by one
of the search templates for this query. Each ranking feature f i is constructed from a corresponding
search template i by assigning the jth URL u on its list (for base query q) a rank of − j; that is,
fi((q,u)) = − j. If u is not ranked for this base query, then we set f i((q,u)) = ⊥. We also construct
a separate feedback function Φq for each base query q that ranks the correct homepage URL u∗
above all others. That is, Φq((q,u),(q,u∗)) = +1 and Φq((q,u∗),(q,u)) = −1 for all u ̸= u∗. All
other entries of Φq are set to zero. All the feedback functions Φq were then combined into one
feedback function Φ by summing as described earlier: Φ= ∑qΦq.

The output of a learning algorithm is some fi nal ranking H . In the meta-search example H is a
weighted combination of the different search templates f i. To apply H , given a test base query q, we
fi rst form all of the expanded queries from search templates and send these to the search engine to
obtain lists of URLs. We then evaluate H on each pair (q,u), where u is a returned URL, to obtain
a predicted ranking of all of the URLs.

3. A Boosting Algorithm for the Ranking Task

In this section, we describe an approach to the ranking problem based on a machine learning method
called boosting, in particular, Freund and Schapire’s (1997) AdaBoost algorithm and its successor
developed by Schapire and Singer (1999). Boosting is a method of producing highly accurate
prediction rules by combining many “weak” rules which may be only moderately accurate. In
the current setting, we use boosting to produce a function H : X → R whose induced ordering of X
will approximate the relative orderings encoded by the feedback function Φ.

3.1 The RankBoost Algorithm

We call our boosting algorithm RankBoost, and its pseudocode is shown in Figure 1. Like all boost-
ing algorithms, RankBoost operates in rounds. We assume access to a separate procedure called
the weak learner that, on each round, is called to produce a weak ranking. RankBoost maintains
a distribution Dt over X ×X that is passed on round t to the weak learner. Intuitively, RankBoost
chooses Dt to emphasize different parts of the training data. A high weight assigned to a pair of
instances indicates a great importance that the weak learner order that pair correctly.

3. See (Cohen, Schapire, and Singer, 1999) for the list of search templates.

939

FREUND, IYER, SCHAPIRE AND SINGER

Algorithm RankBoost
Given: initial distribution D over X ×X .
Initialize: D1 = D.
For t = 1, . . . ,T :

• Train weak learner using distribution Dt .
• Get weak ranking ht : X → R.
• Choose αt ∈ R.
• Update: Dt+1(x0,x1) =

Dt(x0,x1)exp(αt(ht(x0)−ht(x1)))
Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distribution).

Output the final ranking: H(x) =
T

∑
t=1

αtht(x)

Figure 1: The RankBoost algorithm.

Weak rankings have the form ht : X → R. We think of these as providing ranking information
in the same manner as ranking features and the fi nal ranking. The weak learner we used in our
experiments is based on the given ranking features; details are given in Section 4.

The boosting algorithm uses the weak rankings to update the distribution as shown in Figure 1.
Suppose that x0,x1 is a crucial pair so that we want x1 to be ranked higher than x0 (in all other cases,
Dt will be zero). Assuming for the moment that the parameter αt > 0 (as it usually will be), this
rule decreases the weight Dt(x0,x1) if ht gives a correct ranking (ht(x1) > ht(x0)) and increases the
weight otherwise. Thus, Dt will tend to concentrate on the pairs whose relative ranking is hardest
to determine. The actual setting of αt will be discussed shortly.

The fi nal ranking H is a weighted sum of the weak rankings. In the following theorem we prove
a bound on the ranking loss of H . This theorem also provides guidance in choosing αt and in de-
signing the weak learner as we discuss below. on the training data. As in standard classifi cation
problems, the loss on a separate test set can also be theoretically bounded given appropriate as-
sumptions using uniform-convergence theory (Bartlett, 1998, Haussler, 1992, Schapire et al., 1998,
Vapnik, 1982). In Section 5 we will derive one such bound on the ranking generalization error of
H and explain why the classifi cation generalization error bounds do not trivially carry over to the
ranking setting.

Theorem 1 Assuming the notation of Figure 1, the ranking loss of H is

rlossD(H) ≤
T

∏
t=1

Zt .

Proof: Unraveling the update rule, we have that

DT+1(x0,x1) =
D(x0,x1)exp (H(x0)−H(x1))

∏t Zt
.

Note that [[x≥ 0]] ≤ ex for all real x. Therefore, the ranking loss with respect to initial distribution
D is

∑
x0,x1

D(x0,x1) [[H(x0) ≥ H(x1)]] ≤ ∑
x0,x1

D(x0,x1)exp(H(x0)−H(x1))

940

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

= ∑
x0,x1

DT+1(x0,x1)∏
t
Zt =∏

t
Zt .

This proves the theorem.
Note that our methods for choosing αt , which are presented in the next section, guarantee that

Zt ≤ 1. Note also that RankBoost generally requires O(|Φ|) space and time per round.

3.2 Choosing αt and Criteria for Weak Learners

In view of the bound established in Theorem 1, we are guaranteed to produce a combined ranking
with low ranking loss if on each round t we choose αt and the weak learner constructs ht so as to
minimize

Zt = ∑
x0,x1

Dt(x0,x1)exp (αt(ht(x0)−ht(x1))) .

Formally, RankBoost uses the weak learner as a black box and has no control over how it chooses
its weak rankings. In practice, however, we are often faced with the task of implementing the weak
learner, in which case we can design it to minimize Zt .

There are various methods for achieving this end. Here we sketch three. Let us fi x t and drop
all t subscripts when clear from context. (In particular, for the time being, D will denote Dt rather
than an initial distribution.)

First method. First and most generally, for any given weak ranking h, it can be shown that Z,
viewed as a function of α, has a unique minimum which can be found numerically via a simple
binary search (except in trivial degenerate cases). For details, see Section 6.2 of Schapire and
Singer (1999).

Second method. The second method of minimizing Z is applicable in the special case that h has
range {0,1}. In this case, we can minimize Z analytically as follows: For b ∈ {−1,0,+1}, let

Wb = ∑
x0,x1

D(x0,x1) [[h(x0)−h(x1) = b]] .

Also, abbreviateW+1 byW+ andW−1 byW−. Then Z=W−e−α+W0+W+eα.Using simple calculus,
it can be verifi ed that Z is minimized by setting

α= 1
2 ln
(
W−
W+

)
(2)

which yields
Z =W0+2

√
W−W+. (3)

Thus, if we are using weak rankings with range restricted to {0,1}, we should attempt to fi nd h that
tends to minimize Equation (3) and we should then set α as in Equation (2).

Third method. For weak rankings with range [0,1], we can use a third method of setting α based
on an approximation of Z. Specifi cally, by the convexity of eαx as a function of x, it can be verifi ed
that

eαx ≤
(
1+ x
2

)
eα+

(
1− x
2

)
e−α

941

FREUND, IYER, SCHAPIRE AND SINGER

for all real α and x ∈ [−1,+1]. Thus, we can approximate Z by

Z ≤ ∑
x0,x1

D(x0,x1)
[(
1+h(x0)−h(x1)

2

)
eα+

(
1−h(x0)+h(x1)

2

)
e−α
]

=
(
1− r
2

)
eα+

(
1+ r
2

)
e−α (4)

where
r = ∑

x0,x1
D(x0,x1)(h(x1)−h(x0)). (5)

The right hand side of Equation (4) is minimized when

α= 1
2 ln
(
1+ r
1− r

)
(6)

which, plugging into Equation (4), yields Z ≤
√
1− r2. Thus, to approximately minimize Z using

weak rankings with range [0,1], we can attempt to maximize |r| as defi ned in Equation (5) and then
set α as in Equation (6). This is the method used in our experiments.

We now consider the case when any of these three methods for setting α assign a weak ranking
h a weight α < 0. For example, according to Equation (2), α is negative ifW+, the weight of mis-
ordered pairs, is greater thanW−, the weight of correctly ordered pairs. Similarly for Equation (6),
α < 0 if r < 0 (note that r =W−−W+). Intuitively, this means that h is negatively correlated with
the feedback; the reverse of its predicted order will better approximate the feedback. RankBoost
allows such weak rankings and its update rule reflects this intuition: the weights of the pairs that h
correctly orders are increased, and the weights of the incorrect pairs are decreased.

3.3 An Efficient Implementation for Bipartite Feedback

In this section, we describe a more effi cient implementation of RankBoost for feedback of a special
form. We say that the feedback function is bipartite if there exist disjoint subsets X0 and X1 of X
such that Φ ranks all instances in X1 above all instances in X0 and says nothing about any other
pairs. That is, formally, for all x0 ∈ X0 and all x1 ∈ X1 we have that Φ(x0,x1) = +1, Φ(x1,x0) = −1
and Φ is zero on all other pairs.

Such feedback arises naturally, for instance, in document rank-retrieval tasks common in the
fi eld of information retrieval. Here, a set of documents may have been judged to be relevant or
irrelevant. A feedback function that encodes these preferences will be bipartite. The goal of an
algorithm for this task is to discover the relevant documents and present them to a user. Rather than
output a classifi cation of documents as relevant or irrelevant, the goal here is to output a ranked list
of all documents that tends to place all relevant documents near the top of the list. One reason a
ranking is preferred over a hard classifi cation is that a ranking expresses the algorithm’s confi dence
in its predictions. Another reason is that typically users of ranked-retrieval systems do not have
the patience to examine every document that was predicted as relevant, especially if there is large
number of such documents. A ranking allows the system to guide the user’s decisions about which
documents to read.

The results in this section can also be extended to the case in which the feedback function is not
itself bipartite, but can nevertheless be decomposed into a sum of bipartite feedback functions. For

942

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

Algorithm RankBoost.B
Given: disjoint subsets X0 and X1 of X .
Initialize:

v1(x) =
{
1/|X1| if x ∈ X1
1/|X0| if x ∈ X0

For t = 1, . . . ,T :

• Train weak learner using distribution Dt (as defined by Equation (7)).
• Get weak ranking ht : X → R.
• Choose αt ∈ R.
• Update:

vt+1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

vt(x)exp(−αt ht(x))
Z1t

if x ∈ X1
vt(x)exp(αt ht(x))

Z0t
if x ∈ X0

where Z1t and Z0t normalize vt over X1 and X0:

Z1t = ∑
x∈X1

vt(x)exp(−αtht(x))

Z0t = ∑
x∈X0

vt(x)exp(αtht(x))

Output the final ranking: H(x) =
T

∑
t=1

αtht(x).

Figure 2: A more effi cient version of RankBoost for bipartite feedback.

instance, this is the case for the meta-search problem described in Sections 2.1 and 6.1. However,
for the sake of simplicity, we omit a full description of this straightforward extension and instead
restrict our attention to the simpler case.

If RankBoost is implemented naively as in Section 3.2, then the space and time-per-round re-
quirements will beO(|X0| |X1|). In this section, we show how this can be improved toO(|X0|+ |X1|).
Note that, in this section, XΦ = X0∪X1.

The main idea is to maintain a set of weights vt over XΦ (rather than the two-argument distribu-
tion Dt), and to maintain the condition that, on each round,

Dt(x0,x1) = vt(x0)vt(x1) (7)

for all crucial pairs x0,x1 (recall that Dt is zero for all other pairs).
The pseudocode for this implementation is shown in Figure 2. Equation (7) can be proved by

induction on t. It clearly holds initially. Using our inductive hypothesis, it is straightforward to
expand the computation of Zt = Z0t ·Z1t in Figure 2 to see that it is equivalent to the computation of
Zt in Figure 1. To show that Equation (7) holds on round t+1, we have, for crucial pair x0,x1:

Dt+1(x0,x1) =
Dt(x0,x1)exp(αt(ht(x0)−ht(x1)))

Zt

=
vt(x0)exp (αtht(x0))

Z0t
· vt(x1)exp(−αtht(x1))

Z1t
= vt+1(x0) · vt+1(x1).

943

FREUND, IYER, SCHAPIRE AND SINGER

Finally, note that all space requirements and all per-round computations are O(|X0|+ |X1|), with
the possible exception of the call to the weak learner. Fortunately, if we want the weak learner to
maximize |r| as in Equation (5), then we also only need to pass |XΦ| weights to the weak learner, all
of which can be computed in time linear in |XΦ|. Omitting t subscripts, and defi ning

s(x) =
{

+1 if x ∈ X1
−1 if x ∈ X0

,

we can rewrite r as

r = ∑
x0,x1

D(x0,x1)(h(x1)−h(x0))

= ∑
x0∈X0

∑
x1∈X1

v(x0)v(x1)(h(x1)s(x1)+h(x0)s(x0))

= ∑
x0∈X0

(

v(x0) ∑
x1∈X1

v(x1)

)

s(x0)h(x0)+ ∑
x1∈X1

(

v(x1) ∑
x0∈X0

v(x0)

)

s(x1)h(x1)

= ∑
x
d(x)s(x)h(x) (8)

where
d(x) = v(x) ∑

x′ :s(x) ̸=s(x′)
v(x′) .

All of the weights d(x) can be computed in linear time by fi rst computing the sums that appear in
this equation for the two possible cases that x is in X0 or X1. Thus, we only need to pass |X0|+ |X1|
weights to the weak learner in this case rather than the full distribution Dt of size |X0| |X1|.

4. Finding Weak Rankings

As described in Section 3, our algorithm RankBoost requires access to a weak learner to produce
weak rankings. In this section, we describe an effi cient implementation of a weak learner for rank-
ing.

Perhaps the simplest and most obvious weak learner would fi nd a weak ranking h that is equal
to one of the ranking features fi, except on unranked instances. That is,

h(x) =
{

fi(x) if fi(x) ∈ R
qdef if fi(x) = ⊥

for some qdef ∈ R.
Although perhaps appropriate in some settings, the main problem with such a weak learner is

that it depends critically on the actual values defi ned by the ranking features, rather than relying
exclusively on the relative-ordering information which they provide. We believe that learning al-
gorithms of the latter form will be much more general and applicable. Such methods can be used
even when features provide only an ordering of instances and no scores or other information are
available. Such methods also side-step the issue of combining ranking features whose associated
scores have different semantics (such as the different scores assigned to URLs by different search
engines).

944

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

For these reasons, we focus in this section and in our experiments on {0,1}-valued weak rank-
ings that use the ordering information provided by the ranking features, but ignore specifi c scoring
information. In particular, we will use weak rankings h of the form

h(x) =

⎧
⎨

⎩

1 if fi(x) > θ
0 if fi(x) ≤ θ
qdef if fi(x) = ⊥

(9)

where θ ∈ R and qdef ∈ {0,1}. That is, a weak ranking is derived from a ranking feature f i by
comparing the score of fi on a given instance to a threshold θ. To instances left unranked by f i,
the weak ranking assigns the default score qdef. For the remainder of this section, we show how to
choose the “best” feature, threshold, and default score.

Since our weak rankings are {0,1}-valued, we can use either the second or third methods de-
scribed in Section 3.2 to guide us in our search for a weak ranking. We chose the third method
because we can implement it more effi ciently than the second. According to the second method,
the weak learner should seek a weak ranking that minimizes Equation (3). For a given candidate
weak ranking, we can directly compute the quantities W0,W−, and W+, as defi ned in Section 3.2,
in O(|Φ|) time. Moreover, for each of the n ranking features, there are at most |XΦ|+1 thresholds
to consider (as defi ned by the range of fi on XΦ) and two possible default scores (0 and 1). Thus
a straightforward implementation of the second method requires O(n|Φ||XΦ|) time to generate a
weak ranking.

The third method of Section 3.2 requires maximizing |r| as given by Equation (5) and has the
disadvantage that it is based on an approximation of Z. However, although a straightforward im-
plementation also requires O(n|Φ||XΦ|) time, we will show how to implement it in O(n|XΦ|+ |Φ|)
time. (In the case of bipartite feedback, if the boosting algorithm of Section 3.3 is used, only
O(n|XΦ|) time is needed.) This is a signifi cant improvement from the point of view of our experi-
ments in which |Φ| was large.

We now describe a time and space effi cient algorithm for maximizing |r|. Let us fi x t and drop it
from all subscripts to simplify the notation. We begin by rewriting r for a given D and h as follows:

r = ∑
x0,x1

D(x0,x1)(h(x1)−h(x0))

= ∑
x0,x1

D(x0,x1)h(x1)− ∑
x0,x1

D(x0,x1)h(x0)

= ∑
x
h(x)∑

x′
D(x′,x)−∑

x
h(x)∑

x′
D(x,x′)

= ∑
x
h(x)∑

x′
(D(x′,x)−D(x,x′))

= ∑
x
h(x)π(x) , (10)

where we defi ne π(x) =∑x′(D(x′,x)−D(x,x′)) as the potential of x. Note that π(x) depends only
on the current distribution D. Hence, the weak learner can precompute all the potentials at the
beginning of each boosting round in O(|Φ|) time and O(|XΦ|) space. When the feedback is bipar-
tite, comparing Equations (8) and (10), we see that π(x) = d(x)s(x) where d and s are defi ned in
Section 3.3; thus, in this case, π can be computed even faster in only O(|XΦ|) time.

Now let us address the problem of fi nding a good threshold value θ and default value qdef. We
need to scan the candidate ranking features fi and evaluate |r| (defi ned by Equation (10)) for each

945

FREUND, IYER, SCHAPIRE AND SINGER

possible choice of fi, θ and qdef. Substituting into Equation(10) the h defi ned by Equation (9), we
have that

r = ∑
x: fi(x)>θ

h(x)π(x)+ ∑
x: fi(x)≤θ

h(x)π(x)+ ∑
x: fi(x)=⊥

h(x)π(x) (11)

= ∑
x: fi(x)>θ

π(x)+qdef ∑
x: fi(x)=⊥

π(x). (12)

For a fi xed ranking feature fi, let X fi = {x∈XΦ | fi(x) ̸= ⊥} be the set of feedback instances ranked
by fi. We only need to consider |X fi |+ 1 threshold values, namely, { fi(x) | x ∈ X fi}∪ {−∞} since
these defi ne all possible behaviors on the feedback instances. Moreover, we can straightforwardly
compute the fi rst term of Equation (12) for all thresholds in this set in time O(|Xfi |) simply by
scanning down a pre-sorted list of threshold values and maintaining the partial sum in the obvious
way.

For each threshold, we also need to evaluate |r| for the two possible assignments of qdef (0 or 1).
To do this, we simply need to evaluate ∑x: fi(x)=⊥π(x) once. Naively, this takes O(|XΦ−X fi |) time,
i.e., linear in the number of unranked instances. We would prefer all operations to depend instead
on the number of ranked instances since, in applications such as meta-searching and information
retrieval, each ranking feature may rank only a small fraction of the instances. To do this, note that
∑xπ(x) = 0 by defi nition of π(x). This implies that

∑
x: fi(x)=⊥

π(x) = − ∑
x: fi(x) ̸=⊥

π(x). (13)

The right hand side of this equation can clearly be computed in O(|X fi |) time. Combining Equa-
tions (12) and (13), we have

r = ∑
x: fi(x)>θ

π(x)−qdef ∑
x∈X fi

π(x). (14)

The pseudocode for the weak learner is given in Figure 3. Note that the input to the algorithm in-
cludes for each feature a sorted list of candidate thresholds {θ j}Jj=1 for that feature. For convenience
we assume that θ1 = ∞ and θJ = −∞. Also, the value |r| is calculated according to Equation (14):
the variable L stores the left summand and the variable R stores the right summand. Finally, if the
default rank qdef is specifi ed by the user, then step 6 is skipped.

Thus, for a given ranking feature, the total time required to evaluate |r| for all candidate weak
rankings is only linear in the number of instances that are ranked by that feature. In summary, we
have shown the following theorem:

Theorem 2 The algorithm of Figure 3 finds the weak ranking of the form given in Equation (9)
that maximizes |r| as in Equation (10). The running time is O(n|Φ||XΦ|) per round of boosting. An
efficient implementation runs in time

O

(
|Φ|+

n

∑
i=1

|X fi |
)

= O(|Φ|+n|XΦ|) .

If the feedback is bipartite, the running time can be improved to O(n|XΦ|).

946

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

AlgorithmWeakLearn
Given: distribution D over X ×X

set of features { fi}Ni=1
for each fi, the set X fi = {xk}Kk=1 such that fi(x1) ≥ . . . ≥ fi(xK)
for each fi, the set of candidate thresholds {θ j}Jj=1 such that θ1 ≥ . . . ≥ θJ

Initialize: for all x ∈ XΦ, π(x) = ∑
x′∈XΦ

D(x′,x)−D(x,x′) ; r∗ = 0

For i= 1, . . . ,N:

1. L= 0
2. R= ∑

x∈X fi

π(x) /* L−qdefR is rhs of Equation (14) */

3. θ0 = ∞
4. For j = 1, . . . ,J:
5. L= L+ ∑

x:θ j−1≥ fi(x)>θ j
π(x) /* compute L= ∑

x: fi(x)>θ
π(x) */

6. if |L| > |L−R| /* find best value for qdef */
7. then q= 0
8. else q= 1
9. if |L−qR|> |r∗| /* find best weak ranking */
10. r∗ = L−qR
11. i∗ = i
12. θ∗ = θ j
13. q∗def = q

Output weak ranking (fi∗ ,θ∗,q∗def)

Figure 3: The weak learner.

Positive cumulative weights. Since the fi nal ranking has the form H(x) =∑T
t=1αtht(x) and the

rankings output by WeakLearn are binary, if ht(x) = 1 then ht contributes its weight αt to the fi nal
score of x. During the boosting process, WeakLearn may output distinct rankings that correspond to
different thresholds of the same feature f . If we view these rankings in increasing order by threshold,
we see that f ’s contribution to the fi nal score of x is the sum of the weights of the rankings whose
thresholds are less than f (x). To simplify matters, if we assume that ht occurs exactly once among
h1, . . . ,hT , then if the weights αt are always positive, then f ’s contribution increases monotonically
with the score it assigns instances.

This behavior of a feature’s contribution being positively correlated with the score it assigns
is desirable in some applications. In the meta-search task, it is natural that the search strategy f
should contribute more weight to the fi nal score of those instances that appear higher on its ranked
list. Put another way, it would seem strange if, for example, f contributed more weight to instances
in the middle of its list and less to those at either end, as would be the case if some of the αt ’s were
negative. Also, from the perspective of generalization error, if we allow some αt ’s to be negative
then we can construct arbitrary functions of the instance space by thresholding a single feature, and
this is probably more complexity than we would like to allow in the combined ranking (in order to
avoid overfi tting). In summary, while RankBoost may set some αt ’s to be negative, we developed an
alternative version that enforces the constraint that all of the values of αt ’s are positive. Thus, each
ranking feature is forced to be positively correlated with the fi nal ranking that RankBoost outputs.

947

FREUND, IYER, SCHAPIRE AND SINGER

To address this situation, we implemented an additional version of WeakLearn that chooses
its rankings to exhibit this monotonic behavior. In practice, our earlier assumption that all ht ’s
are unique may not hold. If it does not, then the contribution of a particular ranking h will be
its cumulative weight, the sum of those αt ’s for which ht = h. Thus we need to ensure that this
cumulative weight is positive. Our implementation outputs the ranking that maximizes |r| subject to
the constraint that the cumulative weight of that ranking remains positive. We refer to this modifi ed
weak learner as WeakLearn.cum.

5. Generalization Error

In this section, we derive a bound on the generalization error of the combined ranking when the weak
rankings are binary functions and the feedback is bipartite. That is, we assume that the feedback
partitions the instance space X into two disjoint sets, X and Y , such thatΦ(x,y) > 0 for all x∈ X and
y ∈ Y , meaning the instances in Y are ranked above those in X . Many problems can be viewed as
providing bipartite feedback, including the meta-search and movie recommendation tasks described
in Section 6, as well as many of the problems in information retrieval (Salton, 1989, Salton and
McGill, 1983).

5.1 Probabilistic Model

Up to this point we have not discussed where our training and test data come from. The usual as-
sumption of machine learning is that there exists a fi xed and unknown distribution over the instance
space. The training set (and test set) is a set of independent samples according to this distribution.
This model clearly translates to the classifi cation setting where the goal is to predict the class of
an instance. The training set consists of an independent sample of instances where each instance is
labeled with its correct class. A learning algorithm formulates a classifi cation rule after running on
the training set, and the rule is evaluated on the test set, which is a separate independent sample of
unlabeled instances.

This probabilistic model does not translate as readily to the ranking setting, however, where
the goal is to predict the order of a pair of instances. A natural approach for the bipartite case
would be to assume a fi xed and unknown distribution D over X ×X , pairs from the instance space.4
The obvious next step would be to declare the training set to be a collection of instances sampled
independently at random according to D. The generalization results for classifi cation would then
trivially extend to ranking. The problem is that the pairs in the training set are not independent: if
(x1,y1) and (x2,y2) are in the training set, then so are (x1,y2) and (x2,y1).

Here we present a revised approach that permits sampling independence assumptions. Rather
than a single distribution D, we assume the existence of two distributions, D0 over X and D1 over Y .
The training instances are the union of an independent sample according to D0 and an independent
sample according to D1. (This is similar to the “two button” learning model in classifi cation, as
describe by Haussler et al. 1991.) The training set, then, consists of all pairs of training instances.

Consider the movie recommendation task as an example of this model. The model suggests that
movies viewed by a person can be partitioned into an independent sample of good movies and an
independent sample of bad movies. This assumption is not entirely true since people usually choose

4. Note that assuming a distribution over X×Y trivializes the ranking problem: the rule which always ranks the second
instance over the fi rst is perfect.

948

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

which movies to view based on movies they’ve seen. However, such independence assumptions are
common in machine learning.

5.2 Sampling Error Definitions

Given this probabilistic model of the ranking problem, we can now defi ne generalization error. The
fi nal ranking output by RankBoost has the form

H(x) =
T

∑
t=1

αtht(x)

and orders instances according to the scores it assigns them. We are concerned here with the pre-
dictions of such rankings on pairs of instances, so we consider rankings of the form H : X ×X →
{−1,0,+1}, where

H(x,y) = sign

(
T

∑
t=1

αtht(y)−
T

∑
t=1

αtht(x)

)
(15)

where the ht come from some class of binary functions H . Let C be the set of all such functions H .
A function H misorders (x,y) ∈ X×Y if H(x,y) ̸= 1, which leads us to defi ne the generalization

error of H as

ε(H) = Prx∼D0,y∼D1 [H(x,y) ̸= 1]
= ED0,D1 [[[H(x,y) ̸= 1]]] .

We fi rst verify that this defi nition is consistent with our notion of test error. For a given test sample
T0×T1 where T0 = ⟨x1, . . . ,xp⟩ and T1 =

〈
y1, . . . ,yq

〉
, the expected test error of H is

ET0,T1

[
1
pq∑i, j

[[H(xi,y j) ̸= 1]]

]

=
1
pq∑i, j

ET0,T1 [[[H(xi,y j) ̸= 1]]]

=
1
pq∑i, j

Prxi,y j [H(xi,y j) ̸= 1]

=
1
pq∑i, j

ε(H) = ε(H) .

Similarly, if we have a training sample S0×S1 where S0 = ⟨x1, . . . ,xm⟩ and S1 = ⟨y1, . . . ,yn⟩, the
training (or empirical) error of H is

ε̂(H) =
1
mn∑i, j

[[H(xi,y j) ̸= 1]] .

Our goal is to show that, with high probability, the difference between ε̂(H) and ε(H) is small,
meaning that the performance of the combined ranking H on the training sample is representative
of its performance on any random sample.

949

FREUND, IYER, SCHAPIRE AND SINGER

5.3 VC Analysis

We now bound the difference between the training error and test error of the combined ranking out-
put by RankBoost using standard VC-dimension analysis techniques (Devroye et al., 1996, Vapnik,
1982). We will show that, with high probability taken over the choice of training set, this difference
is small for every H ∈ C . If this happens then no matter which combined ranking is chosen by
our algorithm, the training error of the combined ranking will accurately estimate its generalization
error. Another way of saying this is as follows. Let Z denote the event that there exists an H ∈ C
such that ε̂(H) and ε(H) differ by more than a small specifi ed amount. Then, the probability (over
the choice of training set) of the event Z is very small. Formally, we will show that for every δ> 0,
there exists a small ε such that

PrS0∼Dm0 ,S1∼Dn1

[

∃H ∈ C :

∣∣∣∣∣
1
mn∑i, j

[[H(xi,y j) ̸= 1]]−Ex,y [[[H(x,y) ̸= 1]]]

∣∣∣∣∣> ε

]

≤ δ (16)

where the choice of ε will be determined during the course of the proof.
Our approach will be to separate (16) into two probabilities, one over the choice of S0 and the

other over the choice of S1, and then to bound each of these using classifi cation generalization error
theorems. In order to use these theorems, we will need to convert H into a binary function. Defi ne
F :X×Y → {0,1} as a function which indicates whether or not H misorders the pair (x,y), meaning
F(x,y) = [[H(x,y) ̸= 1]]. Although H is a function on X ×X , we only care about its performance on
pairs (x,y) ∈ X ×Y , which is to say that it incurs no penalty for its ordering of two instances from
either X or Y . The quantity inside the absolute value of (16) can then be rewritten as

1
mn∑i, j

F(xi,y j)−Ex,y [F(x,y)]

=
1
mn∑i, j

F(xi,y j)−
1
m∑i

Ey [F(xi,y)]+

1
m∑i

Ey [F(xi,y)]−Ex,y [F(x,y)]

=
1
m∑i

(
1
n∑j

F(xi,y j)−Ey [F(xi,y)]

)
+ (17)

Ey

[
1
m∑i

F(xi,y)−Ex [F(x,y)]

]
. (18)

So if we prove that there exist ε0 and ε1 such that ε0+ ε1 = ε and

PrS1∼Dn1

[
∃F ∈ F ,∃x ∈ X :

∣∣∣∣∣
1
n∑j

F(x,y j)−Ey [F(x,y)]

∣∣∣∣∣> ε1

]
≤ δ/2 , (19)

PrS0∼Dm0

[
∃F ∈ F ,∃y ∈Y :

∣∣∣∣∣
1
m∑i

F(xi,y)−Ex [F(x,y)]

∣∣∣∣∣> ε0

]
≤ δ/2 , (20)

we will have shown (16), because with high probability, the summand of (18) will be less than ε1
for every xi, which implies that the average will be less than ε1. Likewise, the quantity inside the
expectation of (18) will be less than ε0 for every y and so the expectation will be less than ε0.

950

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

We now prove (20) using standard classifi cation results, and (19) follows by a symmetric ar-
gument. Consider (20) for a fi xed y, which means that F(x,y) is a single argument binary-valued
function. Let Fy be the set of all such functions F for a fi xed y. Then the choice of F in (20) comes
from

⋃
yFy. A theorem of Vapnik (1982) applies to (20) and gives a choice of ε0 that depends on

the size m of the training set S0, the error probability δ, and the complexity d ′ of
⋃
yFy, measured as

its VC-dimension (for details, see Vapnik 1982 or Devroye et al. 1996). Specifi cally, for any δ> 0,

PrS0∼Dm0

[
∃F ∈

⋃
Fy :

∣∣∣∣∣
1
m∑i

F(xi,y)−Ex [F(x,y)]

∣∣∣∣∣> ε0(m,δ,d′)

]
< δ ,

where

ε0(m,δ,d′) = 2
√
d′(ln(2m/d′)+1)+ ln(9/δ)

m
.

The parameters m and δ are given; it remains to calculate d ′, the VC-dimension of
⋃
yFy. (We note

that although we are using a classifi cation result to bound (20), the probability corresponds to a
peculiar classifi cation problem (trying to differentiate X from Y by picking an F and one y ∈Y) that
does not seem to have a natural interpretation.)

Let’s determine the form of the functions in
⋃
yFy. For a fi xed y ∈ Y ,

F(x,y) = [[H(x,y) ̸= 1]]

=

[[
sign

(
T

∑
t=1

αtht(y)−
T

∑
t=1

αtht(x)

)
̸= 1

]]

=

[[
T

∑
t=1

αtht(x)−
T

∑
t=1

αtht(y) ≥ 0
]]

=

[[
T

∑
t=1

αtht(x)−b≥ 0
]]

where b = ∑T
t=1αtht(y) is constant because y is fi xed. So the functions in

⋃
yFy are a subset of all

possible thresholds of all linear combinations of T weak rankings. Freund and Schapire’s (1997)
Theorem 8 bounds the VC-dimension of this class in terms of T and the VC-dimension of the weak
ranking class H . Applying their result, we have that if H has VC-dimension d ≥ 2, then d ′ is at
most

2(d+1)(T +1) log2(e(T +1)) ,

where e is the base of the natural logarithm.

As the fi nal step, repeating the same reasoning for (19) keeping x fi xed, and putting it all to-
gether, we have thus proved the main result of this section:

Theorem 3 Let C be the set of all functions of the form given in Eq (15) where all the ht’s belong
to a class H of VC-dimension d. Let S0 and S1 be samples of size m and n, respectively. Then with
probability at least 1−δ over the choice of training sample, all H ∈ C satisfy

|ε̂(H)− ε(H)|≤ 2
√
d′(ln(2m/d′)+1)+ ln(18/δ)

m
+2
√
d′(ln(2n/d′)+1)+ ln(18/δ)

n
,

where d′ = 2(d+1)(T +1) log2(e(T +1)).

951

FREUND, IYER, SCHAPIRE AND SINGER

6. Experimental Evaluation of RankBoost

In this section, we report experiments with RankBoost on two ranking problems. The fi rst is a sim-
plifi ed web meta-search task, the goal of which is to build a search strategy for fi nding homepages of
machine-learning researchers and universities. The second task is a collaborative-fi ltering problem
of making movie recommendations for a new user based on the preferences of other users.

In each experiment, we divided the available data into training data and test data, ran each
algorithm on the training data, and evaluated the output ranking on the test data. Details are given
below.

6.1 Meta-search

We fi rst present experiments on learning to combine the results of several web searches. This
problem exhibits many facets that require a general approach such as ours. For instance, approaches
that combine similarity scores are not applicable since the similarity scores of web search engines
often have different semantics or are unavailable.

6.1.1 DESCRIPTION OF TASK AND DATA SET

Most of the details of this dataset and how we mapped it into the general ranking framework were
described in Section 2.1.

Given this mapping of the ranking problem into our framework, we can immediately apply
RankBoost. Note that the feedback function for this problem is a sum of bipartite feedback functions
so the more effi cient implementation described in Section 3.3 can be used.

Under this mapping, each weak ranking is defi ned by a search template i (corresponding to
ranking feature fi), and a threshold value θ. Given a base query q and a URL u, this weak ranking
outputs 1 or 0 if u is ranked above or below the threshold θ on the list of URLs returned by the
expanded query associated with search template i applied to base query q. As usual, the fi nal
ranking H is a weighted sum of the weak rankings.

For evaluation, we divided the data into training and test sets using four-fold cross-validation.
We created four partitions of the data, each one using 75% of the base queries for training and 25%
for testing. Of course, the learning algorithms had no access to the test data during training.

6.1.2 EXPERIMENTAL PARAMETERS AND EVALUATION

Since all search templates had access to the same set of documents, if a URL was not returned in
the top 30 documents by a search template, we interpreted this as ranking the URL below all of the
returned documents. Thus we set the parameter qdef, the default value for weak rankings, to be 0
(see Section 4).

Our implementation of RankBoost used a defi nition of ranking loss modifi ed from the original
given in Section 2, Equation (1):

rlossD(H) = ∑
x0,x1

D(x0,x1) [[H(x1) ≤ H(x0)]] .

If the output ranking ranked as equal a pair (x0,x1) of instances that the feedback ranked as unequal,
we assigned the ranking an error of 1/2 instead of 1. This represents the fact that if we used the
ranking to produce an ordered list of documents, breaking ties randomly, then its expected error on

952

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

20 40 60 80 100 120 140 160 180 200

Tr
ai

n
Er

ro
r

Rounds of Boosting

WeakLearn.2
WeakLearn.2.cum

WeakLearn.3
WeakLearn.3.cum

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

20 40 60 80 100 120 140 160 180 200

Te
st

 E
rro

r

Rounds of Boosting

WeakLearn.2
WeakLearn.2.cum

WeakLearn.3
WeakLearn.3.cum

Figure 4: Performance of the four weak learners WeakLearn.{2,3,2.cum,3.cum} on the ML dataset.
Left: Train error Right: Test error

(x0,x1) is 1/2, since the probability that x0 is listed above x1 is equal to the probability that x1 is
listed above x0. The modifi ed defi nition is

rlossD(H) = ∑
x0,x1

D(x0,x1) [[H(x1) < H(x0)]]+ 1
2 ∑
x0,x1

D(x0,x1) [[H(x1) =H(x0)]] . (21)

RankBoost parameters. Since WeakLearn outputs binary weak rankings, we can set the parame-
ter α using either the second or third methods presented in Section 3.2. The second method sets α as
the minimum of Z, and the third method sets α to approximately minimize Z. The third method can
be implemented more easily and runs faster. We implemented both methods, called WeakLearn.2
and WeakLearn.3, to determine if the extra time required by the second method (almost ten times
that of the third method on the ML dataset) was made up for by a reduction in test error rate. We
also implemented weak learners that restricted their rankings to have positive cumulative weights
in order to test whether such rankings were helpful or harmful in reducing test error (as discussed
at the end of Section 4). We called these WeakLearn.2.cum and WeakLearn.3.cum.

To measure the accuracy of a weak learner on a given dataset, after each round of boosting
we plotted the train and test error of the combined ranking generated thus far. We ran each weak
learner for 1000 rounds of boosting on each of the four partitions of the data and averaged the
results. Figure 4 displays the plots of train error (left) and test error (right) for the fi rst 200 rounds
of boosting on the ML dataset. (The slopes of the curves did not change during the remaining 800
rounds.) The plots for the UNIV dataset were similar.

WeakLearn.2 achieved the lowest train error, followed by WeakLearn.3, and fi nally Weak-
Learn.2.cum and WeakLearn.3.cum, whose performance was nearly identical. However, Weak-
Learn.2.cum and WeakLearn.3.cum produced the lowest test error (again behaving nearly identi-
cally) and resisted overfi tting, unlike their counterparts. So we see that restricting the weak rankings
to have positive cumulative weights hampers training performance but improves test performance.
Also, when we subject the rankings to this restriction, we see no difference between the second
and third methods of setting α. Therefore, in our experiments we used WeakLearn.3.cum, the third
method of setting α that allows only positive cumulative ranking weights.

953

FREUND, IYER, SCHAPIRE AND SINGER

Top Top Top Top Top Top Avg
ML Domain 1 2 5 10 20 30 Rank

RankBoost 102 144 173 184 194 202 4.38
Best (Top 1) 117 137 154 167 177 181 6.80
Best (Top 10) 112 147 172 179 185 187 5.33
Best (Top 30) 95 129 159 178 187 191 5.68
University Domain
RankBoost 95 141 197 215 247 263 7.74
Best single query 112 144 198 221 238 247 8.17

Table 1: Comparison of the combined ranking and individual search templates. See text for further
explanation of the results.

Evaluation. In order to determine a good number of boosting rounds, we fi rst ran RankBoost on
each partition of the data and produced a graph of the average training error. For the ML data set,
the training error did not decrease signifi cantly after 50 rounds of boosting (see Figure 4, left), so
we used the fi nal ranking built after 50 rounds. For the UNIV data set, the training error did not
decrease signifi cantly after 40 rounds of boosting (graph omitted), so we used the fi nal ranking built
after 40 rounds.

To evaluate the performance of the individual search templates in comparison to the combined
ranking output by RankBoost, we measured the number of queries for which the correct document
was in the top k ranked documents, for k = 1,2,5,10,20,30. We then compared the performance
of the combined ranking to that of the best search template for each value of k. The results for the
ML and UNIV domains are shown in Table 1. All columns except the last give the number of base
queries for which the correct homepage received a rank greater than or equal to k. Bold fi gures
give the maximum value over all of the search templates on the test data. Note that the best search
template is determined based on its performance on the test data, while RankBoost only has access
to training data.

For the ML data set, the combined ranking closely tracked the performance of the best expert at
every value of k, which is especially interesting since no single template was the best for all values
of k. For the UNIV data set, a single template was the best5 for all values of k, and the combined
ranking performed almost as well as the best template for k= 1,2, . . . ,10 and then outperformed the
best template for k = 20,30. Of course, having found a single best template, there is no need to use
RankBoost.

We also computed (an approximation to) average rank, i.e., the rank of the correct homepage
URL, averaged over all base queries in the test set. For this calculation, we viewed each search
template as assigning a rank of 1 through 30 to its returned URLs, rank 1 being the best. Since the
correct URL was sometimes not ranked by a search template, we artifi cially assigned a rank of 31
to every unranked document. For each base query, RankBoost ranked every URL returned by every
search template. Thus if the total number of URLs was larger than 30, RankBoost assigned to some

5. The best search template for the UNIV domain was "NAME" PLACE.

954

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

instances ranks greater than 30. To avoid an unfair comparison to the search templates, we limited
the maximum rank of RankBoost to 31. The last column of Table 1 gives average rank.

6.2 Movie Recommendations

Our second set of experiments dealt with the movie-recommendation task described in the intro-
duction. The goal here is to produce for a given user a list of unseen movies ordered by predicted
preference. Unlike the meta-search task where the output ordering was evaluated according to the
relative rank of a single document (the correct homepage), in the movie task the output ordering
is compared to the correct ordering given by the user. Thus, the movie task tests RankBoost on a
more general ranking problem. However, performance measures for comparing two ranked lists are
not as clear cut; we defi ned four such measures for this purpose. To evaluate the performance of
RankBoost, we compared it to a nearest-neighbor algorithm and a regression algorithm.

6.2.1 DESCRIPTION OF TASK AND DATA SET

For these experiments we used publicly available data6 provided by the Digital Equipment Corpora-
tion which ran its own EachMovie recommendation service for the eighteen months between March
1996 and September 1997 and collected user preference data. Movie viewers were able to assign a
movie a score from the set R = {0.0,0.2,0.4,0.6,0.8,1.0}, 1.0 being the best. We used the data of
61,625 viewers entering a total of 2,811,983 numeric ratings for 1,628 different movies (fi lms and
videos).

Most of the mapping of this problem into our framework was described in Section 2. For our
experiments, we selected a subset C of the viewers to serve as ranking features: each viewer in C
defi ned an ordering of the set of movies that he or she viewed. The feedback function Φ was then
defi ned as in Section 2 using the movie ratings of a single target user. We used half of the movies
viewed by the target user for the feedback function in training and the other half of the viewed
movies for testing, as described below. We then averaged all results over multiple runs with many
different target users (details are given in Section 6.2.5).

6.2.2 EXPERIMENTAL PARAMETERS

In the meta-search task we assumed that all search engines had access to all documents and thus
the absence of a document on a search engine’s list indicated low preference. This assumption does
not hold in the movie task as it is not clear what a viewer’s preference will be on an unseen movie.
Thus we did not set the parameter qdef, allowing the weak learner to choose it adaptively. As in the
meta-search task, we used the modifi ed defi nition of ranking loss given in Equation (21). We also
used WeakLearn.3.cum because preliminary experiments revealed that this weak learner achieved
a lower test error rate than WeakLearn.3 and also resisted overfi tting. In these experiments, we set
the number of rounds T to be 40+N/10 where N is the number of features. This choice was based
on performance on held-out data which was not used in any of the other experiments.

6.2.3 ALGORITHMS FOR COMPARISON

We compared the performance of RankBoost on this data set to three other algorithms, a regression
algorithm, a nearest-neighbor algorithm, and a memory-based algorithm called vector similarity.

6. From http://www.research.digital.com/SRC/eachmovie/.

955

FREUND, IYER, SCHAPIRE AND SINGER

Regression. We used a regression algorithm similar to the ones used by Hill et al. (1995). The
algorithm employs the assumption that the scores assigned a movie by a target user Alice can be
described as a linear combination of the scores assigned to that movie by other movie viewers. For-
mally, let a be a row vector whose components are the scores Alice assigned to movies (discarding
unranked movies). Let C be a matrix containing the scores of the other viewers for the subset of
movies that Alice has ranked. Since some of the viewers have not ranked movies that were ranked
by Alice, we need to decide on a default rank for these movies. For each viewer represented by a
row in C, we set the score of the viewer’s unranked movies to be the viewer’s average score over
all movies. We next use linear regression to fi nd a vector w of minimum length that minimizes
||wC− a||. This can be done using standard numerical techniques (we used the package available
in Matlab). Given w we can now predict Alice’s ratings of all the movies.

Nearest neighbor. Given a target user Alice with certain movie preferences, the nearest-neighbor
algorithm (NN) fi nds a movie viewer Bob whose preferences are most similar to Alice’s and then
uses Bob’s preferences to make recommendations for Alice. More specifi cally, we fi nd the ranking
feature fi (corresponding to one of the other movie viewers) that gives an ordering most similar
to that of the target user as encoded by the feedback function Φ. The measure of similarity we
use is the ranking loss of fi with respect to the same initial distribution D that was constructed by
RankBoost. Thus, in some sense, NN can be viewed as a single weak ranking output after one round
of RankBoost (although no threshold of fi is performed).

As with regression, a problem with NN is that the neighbor it selects may not rank all the movies
ranked by the target user. To fi x this, we modifi ed the algorithm to associate with each feature fi
a default score qdef ∈ R which fi assigns to unranked movies. When searching for the best feature,
NN chooses qdef by calculating and then minimizing the ranking loss (on the training set) for each
possible value of qdef. If it is the case that this viewer ranks all of the (training) movies seen by the
target user, then NN sets qdef to the average score over all movies that it ranked (including those not
ranked by the target user).

Vector Similarity (VSIM). This algorithm was proposed by Breese, Heckerman and Kadie (1998)
and is based on the notion of similarity between vectors that is commonly used in information re-
trieval. In the fi eld of information retrieval, the similarity between two documents is often measured
by treating each document as a vector of term frequencies. The similarity between two documents
is defi ned to be the normalized inner-product formed by the two frequency vectors representing the
different documents (Salton and McGill, 1983). Breese, Heckerman and Kadie adopted this formal-
ism for the task of collaborative fi ltering by viewing the rating of each viewer as a sparse vector over
the reals. In their setting, the users take the role of documents, movies take the role of the terms
appearing in documents, and viewers’ scores take the role of term frequencies. Let C i denote the
scores of the ith viewer. Then correlation between the jth viewer and the ith viewer is

wi, j =
Ci ·C j

∥ Ci ∥2∥ C j ∥2
,

where both the inner product and the norms are computed over the subset of movies rated by each
viewer. To accommodate different scales, Breese, Heckerman and Kadie also compute for each
viewer i her average score, denoted C̄i. To predict the rating of a new viewer, indexed k, we fi rst
compute the similarity coeffi cients wk,i with each previous viewer i and then assign a real-valued

956

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

score Ĉk, j for each movie j as follows,

Ĉk, j = C̄k+α∑
i
wk,i(Ci, j− C̄i) ,

where α is a normalizing factor which ensures that ∑i |wk,i| = 1. We use the abbreviation VSIM
when referring to this algorithm. VSIM and another correlation-based algorithm were found to be
the top performers in the experiments performed by Breese, Heckerman and Kadie (1998) with the
EachMovie dataset. Furthermore, in the experiments they described, VSIM outperformed four other
algorithms when the number of movies that were rated was small (less than 5).

6.2.4 PERFORMANCE MEASURES

In order to evaluate and compare performance, we used four error measures: disagreement, predicted-
rank-of-top, coverage, and average precision. Disagreement compares the entire predicted order to
the entire correct order, whereas the other three measures are concerned only with the predicted
rank of those instances that should have received the top rank.

We assume that each of the algorithms described in the previous section produces a real-valued
function H that orders movies in the usual way: x1 ranked higher than x0 if H(x1) > H(x0). The
correct ordering of test movies, c, is also represented as a real-valued function.

For each of the following measures, we fi rst give the defi nition when H is a total order, meaning
it assigns a unique score to each movie. When H is a partial order, as is the case for some of the
algorithms, we assume that ties are broken randomly when producing a list of movies ordered by H .
In this situation we calculate the expectation of the error measure over the random choices to break
the ties.

Disagreement. Disagreement is the fraction of distinct pairs of movies (in the test set) that H
misorders with respect to c. If N is the number of distinct pairs of movies ordered by c, then the
disagreement d is

disagreement = 1
N ∑

x0,x1: c(x0)<c(x1)
[[H(x0) > H(x1)]] .

This is equivalent to the ranking loss of H (Equation (1)) where c is used to construct the feedback
function. If H is a partial order, then its expected disagreement with respect to c is

E [disagreement] =
1
N ∑

x0,x1: c(x0)<c(x1)

(
[[H(x0) > H(x1)]]+ 1

2 [[H(x0) = H(x1)]]
)

.

This is equivalent to Equation (21) where c is used to construct the feedback function.7

Precision/recall measures Disagreement is one way of comparing two orderings, and it is the
function that both RankBoost and NN attempt to minimize. We should consider evaluating the
rankings of these algorithms using other measures as well, for a number of reasons. One reason is
to test whether RankBoost’s minimization of ranking loss produces rankings that have high quality
with respect to other measures. This can be evaluated also by looking at the comparative perfor-
mance on another measure of RankBoost and regression, since the latter doesn’t directly minimize
7. This disagreement measure is proportional to another measure of two Linear orders, the Pearson r correlation coeffi -
cient, that was found by Shardanand and Maes to be the best in their collaborative fi ltering experiments (Shardanand
and Maes, 1995)

957

FREUND, IYER, SCHAPIRE AND SINGER

disagreement. Another reason is motivated by the application: people looking for movie recom-
mendations will likely be more interested in the top of the predicted ranking than the bottom. That
is, they will want to know what movies to go and see, not what movies to avoid at all costs.

For these reasons we considered three other error measures, which view the movie recommen-
dation task as having bipartite feedback. According to these measures, the goal of the movie task is
to fi nd movies that Alice will love. Thus any set of movies that she has seen is partitioned in two:
those which she assigned her highest score and those which she assigned a lesser score. This is an
example of a ranked-retrieval task in the fi eld of information retrieval, where only the movies to
which Alice assigns her highest score are considered relevant. As discussed in Section 3.3, the goal
here is not to classify but to rank.

We refer to the movies to which Alice assigns her highest score as good movies. We based our
error measures on the precision measures used for that task. The precision of the kth good movie
appearing in a ranked list is defi ned as k divided by the number of movies on the list up to and
including this movie. For example, if all the good movies appear one after another at the top of a
list, then the precision of every good movie is 1.

More formally, defi ne rank(m), the rank of movie m appearing in the list ordered by H , as the
position of m in the list, e.g. fi rst=1, second=2, etc. Suppose there are K good movies (according
to Alice), and denote their sequence on H’s list as {tk}Kk=1. In other words, H(t1) ≥ · · · ≥ H(tK).
Then the precision of the fi rst good movie is 1/rank(t1), and, more generally, the precision of the
kth good movie is k/rank(tk). Again, if all K good movies appear one after another at the top of H’s
list, meaning rank(tk) = k for every k, then the precision of every good movie is 1.

Average Precision (AP). Average precision, commonly used in the information retrieval commu-
nity, measures how good H is at putting good movies high on its list. It is defi ned as

AP=
1
K

K

∑
k=1

k
rank(tk)

.

If H is a partial order, then tk is a random variable, and therefore so is rank(tk), and we calculate
expected average precision. Let N be the total number of movies ranked by H . Then,

E [AP] =
1
K

K

∑
k=1

k
N−K+k

∑
i=k

Pr [rank(tk) = i]
1
i

.

The formula for Pr [rank(tk) = i] is a ratio with binomial coeffi cients in the numerator and denomi-
nator, and we defer its statement and derivation to Appendix A.

Predicted-rank-of-top (PROT). PROT is the precision of the fi rst good movie on H’s list and
measures how good H is at ranking one good movie high on its list. It is

PROT=
1

rank(t1)
.

If H is a partial order, its expected PROT is

E [PROT] =
N−K+1

∑
i=1

Pr [rank(t1) = i]
1
i

.

958

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

Coverage. Coverage is the precision of the last good movie on H’s list (also known as precision
at recall 1), and it measures how good H is at ranking its lowest good movie. Formally, it is

coverage =
1

rank(tK)
.

If H is a partial order, its expected coverage is

E [coverage] =
N

∑
i=K
Pr [rank(tK) = i]

K
i

.

6.2.5 EXPERIMENTAL RESULTS

We now describe our experimental results. We ran a series of three tests, examining the performance
of the algorithms as we varied the number of features, the density of the features, meaning the
number of movies ranked by each movie viewer, and the density of the feedback, meaning the
number of movies ranked by each target user.

We fi rst experimented with the number of features used for ranking. We selected two disjoint
random sets T and T ′ of 2000 viewers each. Subsets of the viewers in T were used as feature sets,
and each of the users in T ′ was used as feedback. Specifi cally, we divided T into six subsets
T1,T2, . . . ,T6 of respective sizes 100, 200, 500, 750, 1000, 2000, such that T1 ⊂ T2 ⊂ · · ·⊂ T6. Each
Tj served as a feature set for training on half of a target user’s movies and testing on the other half,
for each user in T ′. For each algorithm, we calculated the four measures described above, averaged
over the 2000 target users. We ran the algorithms on fi ve disjoint random splits of the data into
feature and feedback sets, and we averaged the results, which are shown in Figure 5.

RankBoost clearly outperformed regression and NN for all four performance measures. Rank-
Boost also outperformed VSIM when the feature set size was greater than 200. For medium and
large feature sizes, RankBoost achieved the lowest disagreement and the highest AP, PROT, and
coverage. Also, the slopes of the curves indicated that RankBoost was best able to improve its
performance as the number of features increased.

NN did well on disagreement, AP, and coverage, but on PROT it performed worse than random
guessing (whose PROT was 0.45). This suggests that, although NN places good movies relatively
high in its list (because of its good AP), it does not place a single good movie near the top of its
list (because of its poor PROT). An investigation of the data revealed that almost always the nearest
neighbor did not view all of the movies in the test feedback and therefore NN assigned some movies
a default score (as described in Section 6.2.3). Sometimes the default score was high and placed the
unseen movies at the top of NN’s list, which can drive down the PROT if most of the unseen movies
are not good movies (according to the feedback).

RankBoost and NN directly tried to minimize disagreement whereas regression did not, and its
disagreement was little better than that of random guessing (whose disagreement was 0.5). Regres-
sion did perform better than random guessing on PROT and coverage, but on AP it was worse than
random guessing (whose AP was 0.41). This suggests that most of the good movies appear low on
regression’s list even though the fi rst good movie appears near the top. Also, judging by the slopes
of its performance curves, regression did not make much use of the additional information provided
by a larger number of features. We discuss possible reasons for this poor performance at the end of
this section.

959

FREUND, IYER, SCHAPIRE AND SINGER

102 103
0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4
Coverage

102 103
0.36

0.38

0.4

0.42

0.44

0.46

0.48

Disagreements

RankBoost
NN
Regression
VSim

102 103

0.4

0.42

0.44

0.46

0.48

0.5

 AP

102 103

0.35

0.4

0.45

0.5

0.55

0.6

PROT

Figure 5: Performance of algorithms as a function of the size of the features’ sets.

The performance of VSIM was very close to RankBoost for feature sets of size 100 and 200.
This performance is especially impressive considering the fact that RankBoost attempts to mini-
mize the number of disagreements while VSIM is a rather simple approach based on correlations.
A similar behavior for VSIM was observed by Breese, Heckerman and Kadie (1998) in the experi-
ments they performd with the EachMovie dataset. However, VSIM does not seem to scale as well
as RankBoost when the size of the feature set increases. Like regression, it seems that VSIM did not
make much use of the additional information provided by a large number of features and, in fact,
its performance degraded when moving from feature sets of size 750 to size 1000. We defer further
discussion of possible reasons for this behavior of VSIM compared to RankBoost to the end of this
section.

In our next experiment, we explored the effect of the density of the features, the number of
movies ranked by each viewer. We partitioned the set of features into bins according to their density.
The bins were 10-20, 21-40, 41-60, 61-100, 101-1455, where 1455 was the maximum number of
movies ranked by a single viewer in the data set. We selected a random set of 1000 features (viewers)
from each bin to be evaluated on a disjoint random set of 1000 feedback target users (of varying
densities). We ran the algorithms on six such random splits, calculated the averages of the four error

960

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

50 100 150

0.34

0.36

0.38

0.4

Coverage

50 100 150
0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

Disagreements

RankBoost
NN
Regression
VSim

50 100 150

0.4

0.42

0.44

0.46

0.48

0.5

0.52

 AP

50 100 150

0.35

0.4

0.45

0.5

0.55

0.6

0.65
PROT

Figure 6: Performance of the algorithms on different feature densities.

measures on each split, and then averaged them together. The results are shown in Figure 6. The
x-coordinate of each point is the average density of the features in a single bin; for example, 80 is
the average density of features whose density is in the range 61-100.

The relative performance of the algorithms was similar to that in Figure 5. RankBoost was
the winner again, and it was best able to improve its performance when presented with the addi-
tional information provided by the denser features. As feature density increased, NN’s performance
on AP, disagreement, and coverage improved more signifi cantly than when simply the number of
features increased (Figure 5). However, on PROT NN continued to perform worse than random
guessing (whose PROT was 0.45). Furthermore, the performance of NN degraded as feature den-
sity increased. Regression maintained the same relative performance to random guessing as in the
previous experiment, and its performance was largely unaffected as feature density increased.

Here again VSIM comes up the second best and its performance is close to the performance
of RankBoost with respect to all four performance measures. Furthermore, like RankBoost, VSIM
seems to scale well as the feature density increases. The rate of increase seems comparable to
that of RankBoost for Coverage, AP, and PROT, and with a slightly slower increase in the case of
disagreements. Although the differences in the performance between RankBoost and VSIM are

961

FREUND, IYER, SCHAPIRE AND SINGER

50 100 150
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Coverage

RankBoost
NN
Regression
VSim

50 100 150

0.35

0.4

0.45

0.5
Disagreements

50 100 150
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

 AP

50 100 150

0.2

0.3

0.4

0.5

0.6

PROT

Figure 7: Performance of algorithms on different feedback densities.

statistically signifi cant, the advantage of RankBoost over VSIM is far less pronounced than the
overwhelmingly better performance of RankBoost compared to NN and regression.

The previous two experiments varied the amount of information provided by the features; in
the next experiment, we varied the amount of information provided by the feedback. We varied the
feedback density, the number of movies ranked by the target user. We partitioned the users into bins
according to density in the same way as in the previous experiment. We ran the algorithms on 1000
target users of each density, using half of the movies ranked by each user for training and the other
half for testing. We used a fi xed randomly chosen set of 1000 features. We repeated this experiment
on six random splits of the data and averaged the results, which appear in Figure 7.

The most noticeable effect of increasing the feedback density is that it degrades the performance
of all four algorithms on coverage and AP and the performance of VSIM, NN, and regression on
PROT (RankBoost is able to improve PROT). Other than that, the comparative performance of the
algorithms to one another was similar to the results in the previous experiments, with the exception
that the differences between RankBoost and VSIM, as a function of the feedback densities, are more
pronounced.

962

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

0

0.2

0.4

0.6

0.8

1

0.2 0.25 0.3 0.35 0.4 0.45 0.5
Fraction of Good Movies

AP
PROT

coverage

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0 20 40 60 80 100 120 140
Number of Movies Ranked

AP
PROT

coverage

Figure 8: Left: The performance of random guessing when the fraction of good movies is varied
(the number of movies is 60). Right: The performance of random guessing when the
number of movies ranked is varied (the fraction of good movies is 0.25).

Especially interesting is the good performance of VSIM when the feedback density is at most
40. In this case, VSIM is the best performing algorithm with respect to disagreements, AP, and
PROT, and achieves practically the same coverage as RankBoost. However, as the density of the
feedback grows, the performance of VSIM deteriorates and for feedback densities of over 100 the
performance of VSIM becomes mediocre and it is comparable to NN with respect to all of the
performance measures, with the exception of PROT. In contrast, RankBoost consistently improves
as the size of the feedback set grows. This behavior of RankBoost is common in supervised learning
algorithms which typically improve proportionally to the amount of supervision they get.

At fi rst, it appears counterintuitive that the algorithms should perform worse as the number
of movies ranked by the target user increases. One would expect that the algorithms would do
better with more training feedback. Indeed this is the case for the disagreement measure (with the
exception of regression and VSIM, as in the fi rst set of experiments). This might suggest a weakness
of the precision-based measures: that they are sensitive to the number of movies in the feedback. On
the other hand, we observed that the performance of random guessing also degrades as the feedback
density increases, which suggests that the ranking problem is intrinsically more diffi cult. This would
certainly be the case if the fraction of good movies in the feedback decreases as feedback density
increases. We discovered that both effects occur.

We fi rst calculated the fraction of good movies in the feedback for each feedback density. For
densities of 10-20, 21-40, 41-60, 61-100, and over 100, the fractions were, respectively, 0.33, 0.26,
0.22, 0.20, 0.18. As this fraction decreases, the ranking problem becomes more diffi cult. For
example, the left plot of Figure 8 shows the performance of random guessing, with respect to the
three measures, as the fraction of good movies varies as 12 ,

1
3 ,
1
4 ,
1
5 (the number of movies ranked was

60).
However, consider the right plot of Figure 8, which shows the performance of random guessing

when the fraction of good movies is constant (0.25) and the number of movies ranked is varied.
Here the measured performance degrades, which is an effect of the measures, not the diffi culty of
the problem. That is, this is the effect of taking a training set of data and making a (fi xed) number

963

FREUND, IYER, SCHAPIRE AND SINGER

of copies of each (movie, score) pair, which provides no additional information or challenge to the
algorithms described in Section 6.2.3. This sensitivity to the number of movies ranked is a weakness
of these three precision-based measures, since ideally we would like them to remain constant for
problems of the same diffi culty.

6.2.6 DISCUSSION

Our experiments show that RankBoost clearly performed better than regression and nearest neighbor
on the movie recommendation task. It also performs better than VSIM when the feature size or the
feedback density is relatively large.

RankBoost’s approach of ordering based on relative comparisons performed much better than
regression which treats the movie scores as absolute numerical values. One reason for regression’s
poor performance may be overfi tting: its solution is subject only to a mild restriction (shortest
length, as described in Section 6.2.3). Even so, it is not clear whether this improvement of Rank-
Boost over regression is due to using relative preferences or to boosting or both. To try to separate
these effects, we could test regression on relative preferences by normalizing the scores of each
movie viewer so that the distribution of scores used by that viewer has the same mean and variance
as the distribution of scores of every other viewer.

RankBoost also performed better than the nearest-neighbor algorithm presented here. Based on
these experiments we could design a better nearest-neighbor algorithm, choosing default ranks in a
better way and, when choosing a nearest neighbor, perhaps taking into account the number of movies
ranked by the neighbor. It would also be worthwhile to compare RankBoost to an algorithm which
fi nds k nearest neighbors to a target user and averages their predictions. Such an experiment would
differentiate between a straightforward search for and combination of similar users and boosting’s
method of search and combination. Averaging the prediction of the k nearest neighbors introduces
a dependence on absolute scores, so this proposed experiment would further test our hypothesis that
relative preferences are more informative.

In our experiments, VSIM was the algorithm that achieved the closest performance to Rank-
Boost, and for small-scale problems, it often achieved better performance than RankBoost. How-
ever, as the complexity of the training data (i.e., feature size) or the amount of supervision (feed-
back) increases, RankBoost’s performance gets a boost while the performance of VSIM seems to
asymptote or even degrade. A possible explanation is that RankBoost, being a learning algorithm
that attempts to minimize an objective function designed for ranking, is able to build more complex
hypotheses as the amount and variety of training examples increase. VSIM, on the other hand, em-
ploys a fi xed memory-based correlation paradigm and thus exhibits less flexibility and adaptability
as the number of training examples grows. Put another way, since RankBoost builds a different
ranking function separately for each user, it has a higher potential to exploit information conveyed
by individual users who rated a large number of movies. We would also like to note that it seems
possible to take the best from each approach: RankBoost can use VSIM as one of the possible weak
ranking functions it can choose on each round. The end result would be an algorithm that resorts
to a simple memory-based correlation when the amount of data is small and gradually shifts to
discriminative approaches as the amount of training data grows.

964

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

7. Conclusion

The problem of combining preferences arises in several applications, including combining the re-
sults of different search engines and collaborative-fi ltering tasks such as making movie recommen-
dations. One important property of these tasks is that the most relevant information to be combined
represents relative preferences rather than absolute ratings. We have given both a formal frame-
work and an effi cient algorithm for the problem of combining preferences, which our experiments
indicate works well in practice.

Efficiency of algorithms. Our learning system consists of two algorithms: the boosting algorithm
RankBoost and the weak learner. The input to the system includes an instance space X , n ranking
features, and a feedback function of size |Φ| that ranks a subset of the instances XΦ ⊆ X . Given this
input, RankBoost generally runs in O(|Φ|) time, and a naive implementation of the weak learner
we present runs in O(n|Φ|XΦ) time. We have shown two improvements in effi ciency, as summa-
rized in Theorem 2 of Section 4. If we use binary weak rankings and we search for the best weak
ranking using the third method in Section 3.2, then we can implement the weak learner in time
O(n|XΦ|+ |Φ|). If we use a binary feedback function, then we can implement RankBoost in time
linear in the number of instances in the feedback. If in addition we use binary weak rankings, we
can implement the weak learner in O(n|XΦ|) time.

These two restriction are both natural and useful. Binary rankings are quite simple and this
makes them easy to design, analyze, and compute effi ciently. Although a single such ranking may
have only weak predictive power, many of them can be combined via boosting into a highly accurate
prediction rule, as is indicated by our experiments. As for restricting the feedback function to be
binary, this often does not reduce the applicability of the algorithm, since many applications come
with binary feedback, such as those in information retrieval.

Experimental results. In our experiments, we used the weak learner that outputs a thresholded
ranking feature as the weak ranking. Although these prediction rules have limited power, RankBoost
was nevertheless able to combine them into a highly accurate prediction rule. In the meta-search
task, RankBoost performed just as well as the best search strategy for each error measure. In the
movie-recommendation task, RankBoost consistently outperformed a standard regression algorithm
and a nearest-neighbor algorithm and was consistently better than the vector similarity method in
medium to large problem settings.

Our experiments also indicate that RankBoost is able to do well on data sets of varying sizes.
The meta-search task had a small number of ranking features (16 to 22), a large instance space
(10,000 URLs) and large feedback (10,000 URLs). The movie task had a large number of ranking
features (100 to 2000), a smaller instance space (1,628 movies), and a range of feedback sizes
(10-1455).

One important inherent feature of RankBoost, being a boosting algorithm, is its ability to com-
bine different approaches for ranking. While the task of combining general ranking features given
non-bipartite feedback can be rather involved, the boosting-for-ranking framework that we intro-
duced in this paper offers a principled and effi cient algorithmic infrastructure. Therefore, Rank-
Boost can also be used as a tool for building a hybrid ranking system that combines different ranking
algorithms, yielding a high precision and recall ranking meta-algorithm.

Current directions. There are numerous directions for future work. We contend that relative
preferences can be more important than absolute scores. The results of our experiments on the

965

FREUND, IYER, SCHAPIRE AND SINGER

movie recommendation task support this: RankBoost signifi cantly outperformed nearest neighbor
and regression. To further differentiate between scores and ranks, we proposed two experiments
(Section 6.2.6): testing regression on relative preferences by normalizing the scores of each movie
viewer, and testing the averaged combination of k nearest neighbors.

As we have pointed out before, many ranking problems have bipartite feedback and therefore
can also be viewed as binary classifi cation problems. For such problems it would be interesting
to compare RankBoost to AdaBoost combined with a weak leaner for minimizing classifi cation
error. AdaBoost outputs a real-valued score for each instance which is then thresholded to produce
a classifi cation. We could compare RankBoost’s ordering to AdaBoost’s ordering of the instances
by classifi cation weight to see if minimizing ranking loss is superior to minimizing classifi cation
error.

As for the RankBoost algorithm itself, the fi rst method for setting αt is the most general and
requires numerical search. Schapire and Singer (1999) suggest using general iterative methods
such as Newton-Raphson. Because such methods often have no proof of convergence or can be
numerically unstable, we would like to fi nd a special purpose iterative method with a proof of
convergence. Of course, to be practical, the method would also need to converge quickly.

Perhaps the most important practical research direction is to apply RankBoost to information
retrieval (IR) problems, including text, speech, and image retrieval. These IR problems are im-
portant today due to the vast amount of data available to people via the WWW and large scale
databases, and they are receiving attention from a variety of scientifi c communities. In a recent
paper (Iyer et al., 2000), two versions of RankBoost were compared to traditional information re-
trieval approaches. The experiments in the paper indicate that RankBoost can provide an alternative
approach of combining term weights, however, RankBoost’s performance greatly depends on the
quality of the feedback that is provided.

Various versions of RankBoost might turn out to be useful in learning problems that at fi rst sight
do not seem to be related to ranking. For instance, Walker, Rambow and Rogati (2001) recently
used RankBoost successfully to train a sentence-generation system. In other work, Collins (2000),
describes experiments using the RankBoost for a natural-language processing task, specifi cally, to
re-rank the candidate parses produced by a probabilistic parser. The paradigm suggested by Collins
can be applied to other settings in which the results of an approximate or exact search yield an
ordered list of candidates with the “correct” element appearing somewhere down the ordered list.
This list can then be re-ranked by applying RankBoost to a fresh set of features.

Finally, we would like to note that this work is part of a general research effort on learning al-
gorithms for ordinal data. We hope that this work will spark further interest in such problems which
are challenging and relatively unexplored. Indeed, recent work (Crammer and Singer, 2001, 2002,
Lebanon and Lafferty, 2002) on ranking problems indicate that some of the techniques explored in
this paper can be carried over to online learning of ranking functions and exponential models for
ranking, which makes a connection to work in statistics.

Acknowledgements

Special thanks to David Karger for substantial contributions to this work. Thanks also to William
Cohen, Matt Levine, and David Lewis for helpful discussions, and to the anonymous referees of an
earlier draft of this paper for their careful reading and useful comments. Part of this research was
conducted while all authors were employed by AT&T Labs. In addition, R. Iyer was supported by

966

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

an NSF Graduate Fellowship. The research of Y. Freund, R. Schapire, and Y. Singer was supported
by the US-Israel Bi-national Science Foundation under grant number 1999-038.

Appendix A. Performance Measures for the Movie Task

For the movie recommendation task, we provided various measures of the performance of a pre-
dicted ordering H of movies output by a ranking algorithm (Section 6.2.4). We assumed that if
there were ties between movies, meaning that H is a partial order, the ties would be broken ran-
domly when listing one item over an other. To analyze this performance, we calculated the ex-
pectation over all ways to break ties, that is, over all total orders that are consistent with H . This
expectation involved the quantity Pr [rank(tk) = i], the probability, over all total orders consistent
with H , that the kth good movie on H’s list occurs at position i on the list. Here we calculate this
probability.

Let M be the set of all movies. Let R be the number of movies that defi nitely appear before tk
on H’s list,

R= |{m ∈M : H(m) > H(tk)}| .

Let r be the number of good movies that defi nitely appear before tk,

r = |{t ∈ {t1, . . . , tk−1} : H(t) > H(tk)}| .

Let Q be the number of movies tied with tk,

Q= |{m ∈M : H(m) = H(tk)}| .

Let q be the number of good movies tied with tk,

q= |{t ∈ {t1, . . . , tK} : H(t) =H(tk)}| .

Then,

Pr [rank(tk) = i] =

(i−R−1
k−r−1

)(Q−i+R
q−k+r

)

(Q
q
) . (22)

We prove (22) as follows. Let j = k− r. Then when tk is listed at position i, tk is the jth good
movie appearing within the list of Q tied movies. Defi ne the random variable Yj to be the rank of tk
within the list of tied movies. For example, if tk is the second movie listed then Y j = 2. Then

Pr [rank(tk) = i] = Pr [R+Y j = i] = Pr [Y j = ℓ] , (23)

where ℓ = i−R. So now we need to calculate the probability that, in a group of equally scored
movies, the jth good movie appears at position ℓ.

This process can be modeled as sampling without replacement Q times from an urn withQ balls,
q colored green and Q− q colored red. (Balls of the same color are indistinguishable.) The event
Yj = ℓ means that the jth green ball was drawn on the ℓth draw. Looking at the entire sequence of
draws, this means that j− 1 green balls came up during draws 1, . . . ,ℓ− 1, the jth green ball was
drawn on draw ℓ, and q− j green balls came up during draws ℓ+ 1, . . . ,Q. There are

(ℓ−1
j−1
)
ways

967

FREUND, IYER, SCHAPIRE AND SINGER

to arrange the drawings of the fi rst j−1 green balls and
(Q−ℓ
q− j
)
ways to arrange the drawings of the

remaining q− j green balls. The total number of all possible sequences of draws is
(Q
q
)
. Thus

Pr [Y j = ℓ] =

(ℓ−1
j−1
)(Q−ℓ

q− j
)

(Q
q
) . (24)

Substituting ℓ = i−R from (23) into this equation gives (22), the desired result.

References

Brian T. Bartell, Garrison W. Cottrell, and Richard K. Belew. Automatic combination of multiple
ranked retrieval systems. In Proceedings of the 17th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, 1994.

Peter L. Bartlett. The sample complexity of pattern classifi cation with neural networks: the size of
the weights is more important than the size of the network. IEEE Transactions on Information
Theory, 44(2):525–536, March 1998.

John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of predictive algorithms for
collaborative fi ltering. In Proceedings of the Fourteenth Conference on Uncertainty in Artificial
Intelligence, pages 43–52, 1998.

Rich Caruana, Shumeet Baluja, and Tom Mitchell. Using the future to “sort out” the present:
Rankprop and multitask learning for medical risk evaluation. In Advances in Neural Information
Processing Systems 8, pages 959–965, 1996.

William W. Cohen, Robert E. Schapire, and Yoram Singer. Learning to order things. Journal of
Artificial Intelligence Research, 10:243–270, 1999.

Michael Collins. Discriminative reranking for natural language parsing. In Proceedings of the
Seventeenth International Conference on Machine Learning, 2000.

K. Crammer and Y. Singer. A new family of online algorithms for category ranking. In Proceed-
ings of the 25th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2002.

Koby Crammer and Yoram Singer. Pranking with ranking. In Advances in Neural Information
Processing Systems 14, 2001.

Luc Devroye, Lázló Györfi , and Gábor Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, 1996.

O. Etzioni, S. Hanks, T. Jiang, R. M. Karp, O. Madani, and O. Waarts. Effi cient information
gathering on the internet. In 37th Annual Symposium on Foundations of Computer Science, 1996.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, August 1997.

968

AN EFFICIENT BOOSTING ALGORITHM FOR COMBINING PREFERENCES

David Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applications. Information and Computation, 100(1):78–150, 1992.

David Haussler, Michael Kearns, Nick Littlestone, and Manfred K. Warmuth. Equivalence of mod-
els for polynomial learnability. Information and Computation, 95(2):129–161, December 1991.

Will Hill, Larry Stead, Mark Rosenstein, and George Furnas. Recommending and evaluating
choices in a virtual community of use. In Human Factors in Computing Systems CHI’95 Confer-
ence Proceedings, pages 194–201, 1995.

Raj D. Iyer, David D. Lewis, Robert E. Schapire, Yoram Singer, and Amit Singhal. Boosting for
document routing. In Proceedings of the Ninth International Conference on Information and
Knowledge Management, 2000.

Guy Lebanon and John Lafferty. Cranking: Combining rankings using conditional probability
models on permutations. In Proceedings of the Nineteenth International Conference on Machine
Learning, 2002.

Paul Resnick, Neophytos Iacovou, Mitesh Sushak, Peter Bergstrom, and John Riedl. Grouplens: An
open architecture for collaborative fi ltering of netnews. In Proceedings of Computer Supported
Cooperative Work, 1995.

Gerard Salton. Automatic text processing: the transformation, analysis and retrieval of information
by computer. Addison-Wesley, 1989.

Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval. McGraw-Hill,
1983.

Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–1686,
October 1998.

Robert E. Schapire and Yoram Singer. Improved boosting algorithms using confi dence-rated pre-
dictions. Machine Learning, 37(3):297–336, December 1999.

Upendra Shardanand and Pattie Maes. Social information fi ltering: Algorithms for automating
“word of mouth”. In Human Factors in Computing Systems CHI’95 Conference Proceedings,
1995.

V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-Verlag, 1982.

Marilyn A. Walker, Owen Rambow, and Monica Rogati. SPoT: A trainable sentence planner. In
Proceedings of the 2nd Annual Meeting of the North American Chapter of the Associataion for
Computational Linguistics, 2001.

969

