
and here is how the data looks like,


Figure 1: Plot of the average number of rooms (x-axis) and the price of the house (y-axis). Note that the input and the output are not normalized.

[^0]Assume that the function that we are searching for is a straight line. In which case we can represent the function as:

$$
\begin{equation*}
y=f(x)=w_{0}+w_{1} x \quad \sum D \quad x-u \text { uidin } \tag{1}
\end{equation*}
$$

where $w_{0}$ is the y-intercept of the line, and $w_{1}$ is the slope. Based on this formulation searching for the "best" line then translates into finding the optimal values of the parameters $w_{0}$ and $w_{1}$. It should be noted here that for a given training dataset having $N$ observations, the $x_{i}$ and $y_{i}$ are fixed and we need to find the values of the parameters that satisfy the $N$ equations:

$$
\begin{aligned}
y_{1}= & w_{0}+w_{1} x_{1} \\
y_{2}= & w_{0}+w_{1} x_{2} \\
& \cdots \\
y_{N}= & w_{0}+w_{1} x_{N}
\end{aligned}
$$

If $N>2$, then this system of equations is overdetermined and has no solution. Instead of looking for an exact solution that satisfies the $N$ equations, we will search for an approximate solution, that satisfies these equations with some error. In order to find the approximate solution we need a way to decide the "goodness" of a given line (specific values for $w_{0}$ and $w_{1}$ ). For example, consider Figure-2, we have two candidate lines $l_{1}$ and $l_{2}$, which one should we choose? In other words how can we say that a given line is the optimal line with respect to the criterion we have defined for the approximate satisfiability of the set of equations given above?


Figure 2: Two candidate lines, that can be used to predict the price of the house based on the average number of rooms. Which line is better?

## 1 Setup and Notation

So far in the example we have dealt with a single input feature and in most real-world cases we would have multiple features that define each instance. We are going to assume that our data is arranged in a matrix with each row representing an instance, and the columns representing individual features. We can visualize the data matrix as:

$$
X=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 m} \\
x_{21} & x_{22} & \ldots & x_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
x_{N 1} & x_{N 2} & \ldots & x_{N m}
\end{array}\right]
$$

where, $X$ is also known as the "design matrix". There are $N$ labels corresponding to each instance $\mathrm{x}_{\mathrm{i}} \in \mathbb{R}^{m}$, arranged as a vector $\mathbf{y} \in \mathbb{R}^{N}$ as:
$w f=0 \Leftrightarrow$ h dies not use $x J$

$\mathbf{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{N}\end{array}\right]$

the training data $\mathcal{D}$ can be described as consisting of $\left(\mathbf{x}_{\mathbf{t}}, y_{t}\right) ; \forall t \in\{1,2, \ldots, N\}$.
The regression function that we want to learn from the data can then be described analogously

where, $f(\mathbf{x}): \mathbb{R}^{m} \rightarrow \mathbb{R}$ and $\mathbf{w}=\left[w_{0}, w_{1}, w_{2}, \uparrow \ldots, w_{m}\right]$ are the parameters of the regression function. The learning task is then to find the "optimal" weight vector $\mathbf{w} \in \mathbb{R}^{m+1}$, based on the given training data $\mathcal{D}$. When there is no risk of confusion, we will drop $w$ from the $f$ notation, and we will assume a dummy feature $x^{0}=1$ for all instances such that we can re-write the regression function as:

Note: In the above equation $x_{i}$ is the $i^{t h}$ feature, and to incorporate the augmented constant feature (which is always equal to one) we can augment the design matrix $X$ with a column of 1 s (as the first column) if $\mathbf{w}=\left[w_{0}, w_{1}, w_{2}, \ldots, w_{m}\right]$.

## $\cos (O B)$

## 2 Cost Function:

What do we mean by the best regression fit? For a given training dataset $\mathcal{D}$ and a parameter vector $\mathbf{w}$, we can measure the error (or cost) of the regressigntaction as the sum of squared errors (SSE) for each $\mathbf{x}_{\mathbf{i}} \in \mathcal{D}$ :

the error function measures the squared difference between the predicted label and the actual label. The goal of the learning algorithm would then be to find the parameter vector $\mathbf{w}$ that minimizes the error on the training data. The optimal parameter vector $\mathbf{w}^{*}$ can be found as:

$$
\begin{equation*}
\mathbf{w}^{*}=\underset{w}{\arg \min } J(\mathbf{w})=\underset{w}{\arg \min } \sum_{i=1}^{N}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)^{2} \tag{4}
\end{equation*}
$$

## 3 Minimizing a Function - keep updating them to unkimize

Consider the function:

$$
f(x)=3 x^{2}+4 x+1
$$

and we want to find the minimizer $x^{*}$ such that $\forall x f\left(x^{*}\right) \leq f(x)$.
Since, this is a simple function we can find the minimizer analytically by taking the derivative of the function and equating it equal to zero:

$$
\begin{gathered}
f^{\prime}(x)=6 x+4=0 \\
\Rightarrow x^{*}=-\frac{2}{3}
\end{gathered}
$$

As the second derivative of the function $0<f^{\prime \prime}(x)=6$ we know that $x^{*}$ is a minimizer of $f(x)$. Figure-3a shows a plot of the function.

Assume that we have $x_{0}$ as out starting point (Figure-3b), and we want to reach the minimum of the function. The derivative gives the slope of the tangent line to the function at $x_{0}$, which is positive in this case. So moving in the direction of the negative slope we will move to a point $x_{1}$ such that $f\left(x_{1}\right) \leq f\left(x_{0}\right)$ (Figure-3b).


Figure 3: (a) A plot of the function $f(x)=3 x^{2}+4 x+1$ and the tangent to the function at $x_{0}=3$, if we move in the direction as shown we will be getting closer to the function minimum. (b) shows the next point $x_{1}$ that we reach by moving in the shown direction, which is closer to the minimum.

### 3.1 Gradient Vector

Most of the problems that we are working with involve more than one parameter, that need to be estimated by minimizing the cost function. For example the cost function defined in Equation-4 defines a mapping: $J(\mathrm{w}): \mathbb{R}^{m} \rightarrow \mathbb{R}$. To minimize such function we need to define the gradient vector which is given as:

$$
\nabla_{w} f=\left[\begin{array}{llll}
\frac{\delta f}{\delta w_{1}} & \frac{\delta f}{\delta w_{2}} & \ldots & \frac{\delta f}{\delta w_{m}}
\end{array}\right]^{T}
$$

where, the $i^{\text {th }}$ element corresponds to the partial derivative of $f$ w.r.t. $w_{i}$. The gradient vector specifies the direction of maximum increase in $f$ at a given point.

### 3.2 Gradient Descent for Function Minimization

To minimize a function w.r.t. multiple variables, we can use the gradient vector to find the direction of maximum increase, and then move in the opposite direction. Algorithm-1 outlines the steps of the gradient descent algorithm.

### 3.3 Learning Rate

The gradient specifies the direction that we should take to minimize the function, but it is not clear how much we should move in that direction. The learning rate ( $\eta$ ) (also known as step size) specifies the distance we should move to calculate the next point. The algorithm in general is sensitive to the learning rate, if the value is too small it would take a long time to converge, on the other hand if the value is too large we can overshoot the minimum value and oscillate between intermediate values. Figure-4, shows the case when the learning rate is too large.

### 3.4 When to stop?

We need a termination condition for the gradient descent. For this purpose a number of different heuristics can be employed:

- Maximum Number of Iterations: Run the gradient descent for as long as we can afford to run.
- Threshold on function change: We can check for the decrease in function values between iterations, and if the change in values is lower than a suitable threshold $\tau$ then we can stop the algorithm i.e., $f\left(x_{i+1}\right)-f\left(x_{i}\right)<\tau$.

Data: Starting point: $x_{0}$, Learning Rate: $\eta$
Result: Minimizer: $x^{*}$
while convergence criterion not satisfied do
estimate the gradient at $x_{i}: \nabla f\left(x_{i}\right)$;
calculate the next point: $x_{i+1}=x_{i}-\eta \nabla f\left(x_{i}\right)$
end
Algorithm 1: The gradient descent algorithm for minimizing a function.


Figure 4: Behavior of gradient descent when the learning rate is too large. It can be seen that the algorithm keeps oscillating about the minimum value.

- Thresholding the gradient: At the optimal point (the minimizer), the gradient should theoretically be equal to zero. In most practical implementation it will not be possible to achieve achieve this, in such a case we can define a tolerance parameter $\epsilon$ and stop when $\|\nabla f\|<\epsilon$.


## 4 Gradient Descent for Linear Regression

Recall, that for linear regression we are trying to minimize the coott function:
where, we have multiplied the function by 0.5 which only scates the function and does notaffect where the minimum occurs. We need to calculate the gradient $\nabla_{w} J$. To this end we are going to

$$
\begin{aligned}
& \text { calculate the partial derivatives of } J(w) \text { w.r.t. the individual parameters } w_{k} \text { : } \\
& \text { gradients } \frac{\partial J}{\partial w} \text { are bared } \\
& =\sum_{i=1}^{N}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right) \frac{\delta}{\delta w_{k}} \sum_{i=1}^{N}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right) \quad\left(\sum_{i=1}^{N}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)\left(x_{i k}\right) \quad(x)=\text { linear }\right)
\end{aligned}
$$

based on these calculation we can define the gradient descent update rule for $w_{k}$ as:
G. Ni, widabs, $w_{k}^{i+1}=w_{k}^{i}-\eta \sum_{i=1}^{N}\left(\left(\mathbf{w}^{i}\right)^{T} \mathbf{x}_{i}-y_{i}\right)\left(x_{i k}\right) \quad \forall k \in\{1,2, \ldots, m\}$

Data: Design Matrix: $X \in \mathbb{R}^{N x m}$, Label Vector: $\mathbf{y} \in \mathbb{R}^{N}$
Initial weights: $\mathbf{w}_{\mathbf{0}} \in \mathbb{R}^{m}$, Learning Rate: $\eta$
Result: Least squares minimizer: $\mathbf{w}^{*}$
while convergence criterion not satisfied do
estimate the gradient at $\mathbf{w}_{i}: \nabla J\left(\mathbf{w}_{i}\right) ;$
updatet: $\mathbf{w}_{\mathbf{i}+\mathbf{1}}=\mathbf{w}_{\mathbf{i}}-\eta \nabla J\left(\mathbf{w}_{i}\right)$
end
Algorithm 2: The gradient descent algorithm for finding the least squares estimator (LSE) for the regression function.

Instead of updating each weight individually we can formulate the gradient vector and define a vector update rule that updates all the weights simultaneously,

$$
\nabla_{w} J=\sum_{i=1}^{N}\left(\mathbf{w}^{T} \mathbf{x}_{i}-y_{i}\right)\left(\mathbf{x}_{i}\right)
$$

the update rule is:

$$
\begin{equation*}
\mathbf{w}^{i+1}=\mathbf{w}^{i}-\eta \sum_{i=1}^{N}\left(\left(\mathbf{w}^{i}\right)^{T} \mathbf{x}_{i}-y_{i}\right)\left(\mathbf{x}_{i}\right) \tag{5}
\end{equation*}
$$

Algorithm-2 outlines the algorithm for learning the optimal weight vector for linear regression. It should be noted here that the optimality of the weight vector is based on the SSE criterion, and therefore the optimal weight vector is known as Least Squares Estimator (LSE).

Example: For our initial example we need to calculate the least squares solution for $\mathbf{w}=\left[w_{0} w_{1}\right]^{T}$. For the housing dataset, using only the average number of rooms in the dwelling to predict the house price, the sum of squares error (SSE) is shown in Figure-5.

An example run of the gradient descent algorithm on the housing data is shown in Figure-6.


Figure 5: (a) A plot of the sum of squares cost function for the housing dataset, where we are trying to predict the price of the house based only on the average number of rooms in the house. (a) shows a three-dimensional plot of the cost function, while (b) shows the contours of this plot, where red indicates higher values of SSE while blue indicates lower SSE.



Figure 6: A run of the gradient descent algorithm on the housing dataset from our example. (unafrit) (b) shows the convergence trajectory taken by the gradient descent algorithm, and (a) shows the ops optimal regression line corresponding to $\mathbf{w}^{*}$ estimated from the gradient descent algorithm.


Given training data $\left(\mathbf{x}_{i}, y_{i}\right)$ for $i=1,2, \ldots, N$, with $m$ input features, arr angled) in the design matrix $X$ and the label vector $\mathbf{y}$.

$$
X=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 m} \\
x_{21} & x_{22} & \ldots & x_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
x_{N 1} & x_{N 2} & \ldots & x_{N m}
\end{array}\right] \quad \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{N}
\end{array}\right]
$$

Then the error array associated with our regressor $f_{\mathbf{w}}(\mathbf{x})=\sum_{k=1}^{m} w_{k} x_{k}$ is:

$$
E=\left[\begin{array}{c}
f_{\mathbf{w}}\left(\mathbf{x}_{1}\right)-y_{1} \\
\ldots \\
f_{\mathbf{w}}\left(\mathbf{x}_{N}\right)-y_{N}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{x}_{1}^{T} \mathbf{w} \\
\ldots \\
\mathbf{x}_{N}^{T} \mathbf{w}
\end{array}\right]-\left[\begin{array}{c}
y_{1} \\
\ldots \\
y_{N}
\end{array}\right]=X \mathbf{w}-\mathbf{y}
$$

(we used $w=\left(w_{0}, w_{1}, \ldots w_{m}\right)^{T}$ as a column vector). We can now write the sum of squares error as

$$
J(w)=\frac{1}{2} \sum_{i=1}^{N}\left(f_{w}\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}=\frac{1}{2} E^{T} E=\frac{1}{2}(X \mathbf{w}-\mathbf{y})^{T}(X \mathbf{w}-\mathbf{y})
$$

Then,
where, in the third step wo have $(A B)^{T}=B^{T} A^{T}$.
Since we are trying to minimize $J$, a convex function, a sure way to find $w$ that minimizes $J$ is to set its derivative to zero. In doing so we obtain
${ }_{X^{T}}$

$$
X^{T} X \mathbf{w}=X^{T} \mathbf{y} \text { or } \mathbf{w}=\left(X^{T} X\right)^{-1} X^{T} \mathbf{y} \text { solution }
$$

This is the exact $\mathbf{w}$ that minimizes the sum of squares error.
$\square$
$0,1=$ quantities not optimal

penalty pout wart to reduce it!


[^0]:    ${ }^{1}$ Based on lecture notes by Andrew Ng. These lecture notes are intended for in-class use only.

