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1 Intro to Supervised Learning

* intro, purpose to ML
* ML pipeline, setup, feature matrix
* example of data
* heuristic rules
* from heuristics to decision trees
* from heuristics to linear regression
* popular packages

2 ML algorithms for supervised learning

2.1 Decision Trees
2.2 Linear and Logistic Regression

2.3 Other Supervised Algorithms
3 ML or IR, evaluation, cross validation

3.1 running LibLinear

Liblinear

LibLinear is a public Machine Learning package for linear classifier for data with millions of instances and
features. You could download the package from http://www.csie.ntu.edu.tw/~cjlin/liblinear/.

Once you have the unzipped folder of LibLinear, you need first compile the files. To do this, just run
”make” in your terminal.



http://www.csie.ntu.edu.tw/~cjlin/liblinear/

bingyu@fijill ~]$
[bingyu@fijill liblinear]$ 1s
heart_scale linear.def Makefile train.c  tron.h

COPYRIGHT linear.cop  linear.h Makefile.win predict.c README tron.cpp
[bingyu@fijill liblinear]$ make
g+ -WaLl -wconversion -U3 -tPIC -c -0 tron.o tron.cpp
g++ -Wall -Wconversion -03 -fPIC -c -o linear.o linear.cpp
make -C blas OPTFLAGS='-Wall -Wconversion -03 -fPIC' CC='cc';
make[1]: Entering directory ~/home/bingyu/liblinear/blas'’
cc -Wall -Wconversion -03 -fPIC -c dnrm2.c
cc -Wall -Wconversion -03 -fPIC -c daxpy.c
cc -Wall -Wconversion -03 -fPIC -c ddot.c
cc -Wall -Wconversion -03 -fPIC -c dscal.c
ar rcv blas.a dnrm2.0 daxpy.o ddot.o dscal.o
a - dnrm2.o
a - daxpy.o
a - ddot.o
a - dscal.o
ranlib blas.a
make[1]: Leaving directory °/home/bingyu/liblinear/blas’'
g++ -Wall -Wconversion -03 -fPIC -o train train.c tron.o linear.o blas/blas.a
g++ -Wall -Wconversion -03 -fPIC -o predict predict.c tron.o linear.o blas/blas.a
[bingyuéfijill liblinear]$ ||

Figure 1: Compile the LibLinear Package

After compiling, you could do training and prediction process. Suppose your input feature matrix named
“train.txt” and “test.txt”. To do the simple training and prediction:
training
Run “/train train.txt linear.model” in your terminal.
“train.txt” is your input training feature matrix file. “linear.model” is the output model name, you could
name it.
prediction
Run “./predict test.txt linear.model linear.predict”.
“test.txt” is your input testing file. “linear.model”, this is the model you got from training process as an
input here. “linear.predict” is the output prediction results for testing data. You could name it.
bingyu@fijill liblinear]$ ./train train.txt linear.model
optimization finished, #iter = 1000

WARNING: reaching max number of iterations
Using -s 2 may be faster (also see FAQ)

Objective value = -1.056825
nSV = 1171

[bingyu@fijill liblinear]$ ./predict test.txt linear.model linear.predict
Accuracy = 99.8674% (15004/15084)
[bingyu@fijill liblinear]$ ||

Figure 2: Training and Prediction by LibLinear Example



3.2 ML evaluation

To evaluate your Machine Learning algorithms, first you need select a training set and testing set. There is
no overlapping between these two groups, which means you could not include any testing samples in your
training, or any training samples in your testing. Random selecting from data into training and testing could
be a simple way.

After getting training and testing, the Machine Learning algorithms will be trained on training set and
will be evaluated on the testing set. Remember that the model training process is not allowed to access any
testing set.

Once you have the trained model, you could do prediction on testing set using the trained model. To
evaluate the predictions on the testing set, based on different Machine Learning tasks, there are different
performance measures. For classification, we could choose accuracy (total number of correct predictions on
testing divided by the total number of testing samples.) Furthermore, to dig more information from accuracy,
you could refer confusion matrix(https://en.wikipedia.org/wiki/Confusion_matrix|) information. For
example, in spam classification, people may care more about the false positives. For regression problem,
you may consider the Root Mean Squared Error as the measure(https://en.wikipedia.org/wiki/Mean_
squared_error]).

3.3 Cross Validation

A more sophisticated way than evaluate ML only using one training and testing set is trying to randomly
split the entire dataset into a few folders evenly, let’s say 5 folders. Then you could do following evaluations:

e Train on folder 1,2,3,4; Test on 5
e Train on folder 2,3,4,5; Test on 1
e Train on folder 3,4,5,1; Test on 2
e Train on folder 4,5,1,2; Test on 3

e Train on folder 5,1,2,3; Test on 4

Finally you could take an average of your five times performance measures on testing set as your final
evaluation. We call this method as Cross Validation.
The number of folders is chosen based on the size of your dataset. We usually choose 5 or 10.

4 ML for text, IR data

4.1 Document Features

We could regard documents or text as sequences of words so far, but documents have much richer structure
and information. Let us see some other extra features we can use as clues of relevance.

Structural Features

Some of these features are structural: the document’s organization gives clues about the topic:
e The title, headings, and menu give fine-grained topic and subtopic information.

e Links and their anchor text provide clues about the relevance of other pages related to this one.


https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Mean_squared_error
https://en.wikipedia.org/wiki/Mean_squared_error
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Figure 3: Structural Features Example

Topical Features

Other features are topical: the document’s text may contain special words and phrases that pertain to a
certain topic.

e Named entities(people, companies, places, events ...) are strong topical clues.

e Topic modeling discovers the vocabulary that tends to be used when speaking of a certain topic.
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Figure 4: Topical Features Example

Features from ML
Tools from Machine Learning can be used to generate additional features for a page.
e Document classifiers are used to identify news articles, blogs, reviews, and other types of specialized
pages.

e Document clustering can find very similar pages, which is useful for providing diverse result lists and
“more like this” functions (e.g. clustering news articles by story).
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Figure 5: Features from ML Example

4.2 Feature Matrix

When we have collected all the document features we are interested in, we can use standard Machine Learning
classifiers to learn how to predict document relevance from document features. This makes scoring functions
such as BM25 simply one component of a more complicated relevance predictor. And all documents and
queries can be converted into numeric vectors that provide this rich information to learning algorithms. This
allows us to leverage the best ML techniques for document ranking. A example is shown as below:
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Figure 6: Features Matrix Example

4.3 setup for IR data

* split TRAIN/TEST across queries. Learning to rank setup
* sort the output per query
* compute IR measures

5 ES feature value collection, sparse Feature Matrix

5.1 ES function calls for feature values “span near query”
5.2 enumerate unigrams, bigrams

5.3 Sparse Feature Matrix

*Cheng’s format on disk, including auxiliary files
*Sparse Matrix in memory

5.4 skip-grams, slop
5.5 Running Cheng’s Learning Algorithms

6 Data Sampling, Feature Selection, Regularization

* overfitting
* feature selection
* regularization L2
* regularization L1
* data sampling



7 Feature Analysis

* top features for regression
* top features for Decision Trees
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