hiesarclical set of rules Decision Trees
 Sourav Sen Gupta
 CDS 2015 | PGDBA | 6 Oct 2015

Deciding factors may be

\simeq heuristic rules

\longrightarrow If there are patrons (people inside) — Yes/No If you are hungry already - Yes / No
\longrightarrow Alternative options in the vicinity - Yes / No
The estimated time for waiting - In minutes
\longrightarrow If you already have a reservation — Yes/No
\longrightarrow If it is a Friday/Saturday night — Yes/No
If there is a Bar area to wait - Yes/No
The range of price at the place - High/Medium/Low
$\longrightarrow I f$ it is raining at the time - Yes/No
The genre of cuisine - French, Italian, Thai, Burger

Ref. - "Artificial Intelligence : A Modern Approach" - Stuart J. Russell and Peter Norvig

ML Pipeline

Training Data

Example	\downarrow 侕 \downarrow			f	Attributes		\forall		t		$\left[\begin{array}{c}\text { Goal } \\ \text { WillWait }\end{array}\right.$
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X_{1}	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0-10	Yes
X_{2}	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	NO
${ }^{1}$	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
${ }_{4}$	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	Tes
N_{5}	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	NO
${ }^{1}$	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X_{7}	No	Yes	No	No	None	\$	Yes	No	Burger	0-10	NO
χ_{8}	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0-10	Yes
0	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	150
-	Yes	Yes	Yes	Yes	Full	\$ \$ \$	No	Yes	Italian	10-30	No
$\left(X_{11}\right)$	No	No	No	No	None	\$	No	No	Thai	0-10	(10)
$N=28 x_{12}$	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30-60	Yes
TEST	Yes	Yes	Yes	No	Full	\$\$\$	No	No	Thai	30-60	?

Entropy \& Information Gain

-Why a logarithm function?

$$
\log \left(p_{1} \times p_{2}\right)=\log \left(p_{1}\right)+\log \left(p_{2}\right)
$$

- Shannon Entropy:

Issue: increasing number of events shrinks the probability.
Solution: use logarithm of probability instead and take the average.

How do we construct the tree ? i.e., how to pick attribute (nodes)?

Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

000000
 000000

For a training set containing p positive examples and n negatiye examples, we have:

$$
H\left(\frac{p}{p+n} \frac{(n)}{p+n}\right)=-\frac{p}{p+n} \log _{2} \frac{p}{p+n}-\frac{n}{p+n} \log _{2} \frac{n}{p+n}
$$

Information Gain

Reduction in Eutopy
Informaif = Parent Entropy - E(Child Entropy)

One notion of entropy is that of Shannon Entropy

$$
H(\mathcal{S})=-\sum_{c \in \mathcal{C}} p(c) \log (p(c))
$$

Come Gan

7	1	3	4	6	8	12
2	5	7	9	10	11	

$$
\begin{array}{cccc}
p=1 / 6 & p=1 / 6 & p=1 / 3 & p=1 / 3 \\
H=1 & H=1 & H=1 & H=1 \\
\hline
\end{array}
$$

Parent Entropy

$H=-\frac{1}{2} \log _{2} \frac{1}{2}-\frac{1}{2} \log _{2} \frac{1}{2}=1$
E(Child Entropy)

$$
\begin{aligned}
& H=\frac{1}{6} \cdot 1+\frac{1}{6} \cdot 1+\frac{1}{3} \cdot 1+\frac{1}{3} \cdot 1
\end{aligned}
$$

1	3	4	6	8	12
2	5	7	9	10	

E(Child Entropy)

$$
H=\frac{1}{6} \cdot 0+\frac{1}{3} \cdot 0+\frac{1}{2} \cdot 0.918
$$

How to pick nodes?

\square A chosen attribute A, with \underline{K} distinct values, divides the training set E into subsets E_{1}, \ldots, E_{K}.
The Expected Entropy (EH) remaining after trying attribute A (with branches $i=1,2, \ldots, \boldsymbol{K}$) is

$$
E H(A)=\sum_{i=1}^{K} \frac{p_{i}+n_{i}}{p+n_{i}} H\left(\frac{p_{i}}{p_{i}+n_{i}}, \frac{n_{i}}{p_{i}+n_{i}}\right)
$$

Information gain (I) or reduction in entropy for this attribute is:

$$
I(A)=H\left(\frac{p}{p+n}, \frac{n}{p+n}\right)-E H(A)^{\wedge}
$$

= Entropy in the parent node - remaining Expected Entropy in the child nodes

Classification Tree

Classification tree

- How to deal with continuous features?
- Create the splits randomly
- Compute information gain for each split
- Choose the one with maximum gain

A generic data point is denoted by a vector $\mathbf{v}=\left(x_{1}, x_{2}, \cdots, x_{d}\right)$

Classification tree

A generic data point is denoted by a vector $\mathbf{v}=\left(x_{1}, x_{2}, \cdots, x_{d}\right)$

$$
\mathcal{S}_{j}=\mathcal{S}_{j}^{\mathrm{L}} \cup \mathcal{S}_{j}^{\mathrm{R}}
$$

- Note that the histogram shows the posterior distribution for each class:

$$
p(\text { Class } \mid \text { Data })
$$

Choosing Split

Expressiveness of decision trees

The tree on previous slide is a Boolean decision tree:
\checkmark the decision is a binary variable (true, false), and
\boldsymbol{v} the attributes are discrete.
$\boldsymbol{\checkmark}$ It returns ally iff the input attributes satisfy one of the paths leading to an ally leaf:

$$
\text { ally } \Leftrightarrow(\text { neck }=\text { tie } \wedge \text { smile }=\text { yes }) \vee(\text { neck }=\neg \text { tie } \wedge \text { body }=\text { triangle }),
$$

i.e. in general
\mathbf{x} Goal $\Leftrightarrow\left(\right.$ Path $_{1} \vee$ Path $\left._{2} \vee \ldots\right)$, where
\boldsymbol{x} Path is a conjuction of attribute-value tests, i.e.
\boldsymbol{x} the tree is equivalent to a DNF of a function.
Any function in propositional logic can be expressed as a dec. tree.
\checkmark Trees are a suitable representation for some functions and unsuitable for others.
\checkmark What is the cardinality of the set of Boolean functions of n attributes?
\boldsymbol{x} It is equal to the number of truth tables that can be created with n attributes.
\boldsymbol{x} The truth table has 2^{n} rows, i.e. there is $2^{2^{n}}$ different functions
\boldsymbol{x} The set of trees is even larger; several trees represent the same function.
$\boldsymbol{\sim}$ We need a clever algorithm to find good hypotheses (trees) in such a large space.

Learning a Decision Tree

A computer game

Example 2:

Some robots changed their attitudes:

No obvious simple rule.
How to build a decision tree discriminating the 2 robot classes?

Alternative hypotheses

Example 2: Attribute description:

How to choose the best tree?

We want a tree that is
\checkmark consistent with the data,
\checkmark is as small as possible, and
\checkmark which also works for new data.
Consistent with data?
\checkmark All 3 trees are consistent.
Small?

\checkmark The right-hand side one is the simplest one: | | left | middle | right |
| :--- | :---: | :---: | :---: |
| | depth | 2 | 2 |
| leaves | 4 | 4 | 3 |
| | conditions | 3 | 2 |

Will it work for new data?
\checkmark We have no idea!
\checkmark We need a set of new testing data (different data from the same source).

Learning a Decision Tree

It is an intractable problem to find the smallest consistent tree among $>2^{2^{n}}$ trees.
We can find approximate solution: a small (but not the smallest) consistent tree.
Top-Down Induction of Decision Trees (TDIDT):
\checkmark A greedy divide-and-conquer strategy.
\boldsymbol{v} Progress:

1. Test the most important attribute.
2. Divide the data set using the attribute values.
3. For each subset, build an independent tree (recursion).
$\boldsymbol{\checkmark}$ "Most important attribute": attribute that makes the most difference to the classification.
\checkmark All paths in the tree will be short, the tree will be shallow

Attribute importance

head		body		smile		neck		holds		class
triangle		circle		yes		tie		nothing		ally
triangle		triangle		no		nothing		ball		ally
circle		triangle		yes		nothing		flower		ally
circle		circle		yes		tie		nothing		ally
triangle		square		no		tie		ball		enemy
circle		square		no		tie		sword		enemy
square		square		yes		bow		nothing		enemy
circle		circle		no		bow		sword		enemy
triangle:	2:1	triangle:	2:0	yes:	3:1	tie:	2:2	ball:	1:1	
circle:	2:2	circle:	2:1	no:	1:3	bow:	0:2	sword:	0:2	
square:	0:1	square:	0:3			nothing:	2:0	flower:	1:0	
								nothing:	2:1	

A perfect attribute divides the examples into sets each of which contain only a single class. (Do you remember the simply created perfect attribute from Example 1?)
A useless attribute divides the examples into sets each of which contains the same distribution of classes as the set before splitting.
None of the above attributes is perfect or useless. Some are more useful than others.

Choosing the test attribute

Information gain:
$\boldsymbol{\nu}$ Formalization of the terms "useless", "perfect", "more useful".
$\boldsymbol{\checkmark}$ Based on entropy, a measure of the uncertainty of a random variable V with possible values v_{i} :

$$
H(V)=-\sum_{i} p\left(v_{i}\right) \log _{2} p\left(v_{i}\right)
$$

\checkmark Entropy of the target class C measured on a data set S (a finite-sample estimate of the true entropy):

$$
H(C, S)=-\sum_{i} p\left(c_{i}\right) \log _{2} p\left(c_{i}\right)
$$

where $p\left(c_{i}\right)=\frac{N_{S}\left(c_{i}\right)}{|S|}$, and $N_{S}\left(c_{i}\right)$ is the number of examples in S that belong to class c_{i}.
\checkmark The entropy of the target class C remaining in the data set S after splitting into subsets S_{k} using values of attribute A (weighted average of the entropies in individual subsets):

$$
H(C, S, A)=\sum_{k} p\left(S_{k}\right) H\left(C, S_{k}\right), \quad \text { where } p\left(S_{k}\right)=\frac{\left|S_{k}\right|}{|S|}
$$

\checkmark The information gain of attribute A for a data set S is

$$
\operatorname{Gain}(A, S)=H(C, S)-H(C, S, A) .
$$

Choose the attribute with the highest information gain, i.e. the attribute with the lowest $H(C, S, A)$.

Choosing the test attribute (special case: binary classification)

\checkmark For a Boolean random variable V which is true with probability q, we can define:

$$
H_{B}(q)=-q \log _{2} q-(1-q) \log _{2}(1-q)
$$

\checkmark Entropy of the target class C measured on a data set S with N_{p} positive and N_{n} negative examples:

$$
H(C, S)=H_{B}\left(\frac{N_{p}}{N_{p}+N_{n}}\right)=H_{B}\left(\frac{N_{p}}{|S|}\right)
$$

P. Pošík © 2013

Choosing the test attribute (example)

head		body		smile		neck		holds
triangle:	$2: 1$	triangle:	$2: 0$	yes:	$3: 1$	tie:	$2: 2$	ball:
circle:	$2: 2$	circle:	$2: 1$	no:	$1: 3$	bow:	$0: 2$	sword:
square:	$0: 1$	square:	$0: 3$			nothing:	$2: 0$	flower:
								nothing:

head:

$p\left(S_{\text {head=tri }}\right)=\frac{3}{8} ; H\left(C, S_{\text {head=tri }}\right)=H_{B}\left(\frac{2}{2+1}\right)=0.92$
$p\left(S_{\text {head=cir }}\right)=\frac{4}{8} ; H\left(C, S_{\text {head=cir }}\right)=H_{B}\left(\frac{2}{2+2}\right)=1$
$p\left(S_{\text {head=sq }}\right)=\frac{1}{8} ; H\left(C, S_{\text {head }=\text { sq }}\right)=H_{B}\left(\frac{0}{0+1}\right)=0$
$H(C, S$, head $)=\frac{3}{8} \cdot 0.92+\frac{4}{8} \cdot 1+\frac{1}{8} \cdot 0=0.84$
Gain $($ head, $S)=1-0.84=0.16$
body:
$p\left(S_{\text {body=tri }}\right)=\frac{2}{8} ; H\left(C, S_{\text {body }}\right.$ tri $)=H_{B}\left(\frac{2}{2+0}\right)=0$
$p\left(S_{\text {body=cir }}\right)=\frac{3}{8} ; H\left(C, S_{\text {body=cir }}\right)=H_{B}\left(\frac{2}{2+1}\right)=0.92$
$p\left(S_{\text {body=sq }}\right)=\frac{3}{8} ; H\left(C, S_{\text {body }=\text { sq }}\right)=H_{B}\left(\frac{0}{0+3}\right)=0$
$H(C, S$, bod $y)=\frac{2}{8} \cdot 0+\frac{3}{8} \cdot 0.92+\frac{3}{8} \cdot 0=0.35$
$\operatorname{Gain}($ body,$S)=1-0.35=0.65$
smile:
$p\left(S_{\text {smile }=\text { yes }}\right)=\frac{4}{8} ; H\left(C, S_{\text {yes }}\right)=H_{B}\left(\frac{3}{3+1}\right)=0.81$
$p\left(S_{\text {smile=no }}\right)=\frac{4}{8} ; H\left(C, S_{\mathrm{no}}\right)=H_{B}\left(\frac{1}{1+3}\right)=0.81$
$H(C, S$, smile $)=\frac{4}{8} \cdot 0.81+\frac{4}{8} \cdot 0.81+\frac{3}{8} \cdot 0=0.81$
$\operatorname{Gain}($ smile,S $)=1-0.81=0.19$
neck:
$p\left(S_{\text {neck=tie }}\right)=\frac{4}{8} ; H\left(C, S_{\text {neck=tie }}\right)=H_{B}\left(\frac{2}{2+2}\right)=1$
$p\left(S_{\text {neck=bow }}\right)=\frac{2}{8} ; H\left(C, S_{\text {neck=bow }}\right)=H_{B}\left(\frac{0}{0+2}\right)=0$
$p\left(S_{\text {neck=no }}\right)=\frac{2}{8} ; H\left(C, S_{\text {neck=no }}\right)=H_{B}\left(\frac{2}{2+0}\right)=0$
$H(C, S$, neck $)=\frac{4}{8} \cdot 1+\frac{2}{8} \cdot 0+\frac{2}{8} \cdot 0=0.5$
$\operatorname{Gain}($ neck,$S)=1-0.5=0.5$

holds:

$p\left(S_{\text {holds }=\text { ball }}\right)=\frac{2}{8} ; H\left(C, S_{\text {holds=ball }}\right)=H_{B}\left(\frac{1}{1+1}\right)=1$
$p\left(S_{\text {holds=swo }}\right)=\frac{2}{8} ; H\left(C, S_{\text {holds=swo }}\right)=H_{B}\left(\frac{0}{0+2}\right)=0$
$p\left(S_{\text {holds }}=\right.$ flo $)=\frac{1}{8} ; H\left(C, S_{\text {holds=flo }}\right)=H_{B}\left(\frac{1}{1+0}\right)=0$
$p\left(S_{\text {holds=no }}\right)=\frac{3}{8} ; H\left(C, S_{\text {holds=no }}\right)=H_{B}\left(\frac{2}{2+1}\right)=0.92$
$H(C, S$, holds $)=\frac{2}{8} \cdot 1+\frac{2}{8} \cdot 0+\frac{1}{8} \cdot 0+\frac{3}{8} \cdot 0.92=0.6$
Gain $($ holds,$S)=1-0.6^{8}=0.4$
The body attribute
\checkmark brings us the largest information gain, thus
\checkmark it shall be chosen for the first test in the tree!

Entropy gain toy example

At each split we are going to choose the feature that gives the highest information gain.

\mathbf{x}^{1}	\mathbf{x}^{2}	Y
T	T	T
T	F	T
T	T	T
T	F	T
F	T	T
F	F	F
F	T	F
F	F	F

Figure 6: 2 possible features to split by

$$
\begin{aligned}
H\left(Y \mid X^{1}\right)=\frac{1}{2} H\left(Y \mid X^{1}=T\right)+\frac{1}{2} H\left(Y \mid X^{1}\right. & =F)=0+\frac{1}{2}\left(\frac{1}{4} \log _{2} \frac{1}{4}+\frac{3}{4} \log _{2} \frac{3}{4}\right) \approx .405 \\
I G\left(X^{1}\right) & =H(Y)-H\left(Y \mid X^{1}\right)=.954-.405=.549
\end{aligned}
$$

$$
\begin{array}{r}
H\left(Y \mid X^{2}\right)=\frac{1}{2} H\left(Y \mid X^{2}=T\right)+\frac{1}{2} H\left(Y \mid X^{2}=F\right)=\frac{1}{2}\left(\frac{1}{4} \log _{2} \frac{1}{4}+\frac{3}{4} \log _{2} \frac{3}{4}\right)+\frac{1}{2}\left(\frac{1}{2} \log _{2} \frac{1}{2}+\frac{1}{2} \log _{2} \frac{1}{2}\right) \approx .905 \\
I G\left(X^{2}\right)=H(Y)-H\left(Y \mid X^{2}\right)=.954-.905=.049
\end{array}
$$

Data Partition Rules

$x_{1}=$ word count

- $x_{1}, x_{2}=$ data features
- Each path in the tree corresponds to a region
- Deeper paths correspond to smaller regions

Data Partition Rules

Data Partition Rules

Walkthrough Decision Tree Example

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad		high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75 to 78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79t083	america
bad		high	high	high	low	70to74	america
good	4	low	medium	low	medium	75to78	europe
bad		medium	medium	medium	medium	75to78	europe

40 Records

- Data (matrix) example : automobiles
- Target : mpg $\in\{$ good, bad\} - 2 class /binary problem

Decision Tree Split

- Split by feature "cylinders", using feature values for branches

Decision Tree Splits

- each terminal leaf is labeled by majority (at that leaf). This leaf-label is used for prediction.

Decision Tree Splits

Prediction with a tree

- testpoint:

- cylinder=4
- maker=asia
- horsepower=low
- weight=low
- displacement=medium
- modelyear=75to78

Regression Tree

Variauce/squark ensor instead of Information

- same tree structure, split criteria Gain
- assume numerical labels
- for each terminal node compute the node label (predicted value) and the mean square error

Estimate a predicted value per tree node

$$
g_{m}=\frac{\sum_{t \in \chi_{m}} y_{t}}{\left|\chi_{m}\right|}
$$

Calculate mean square error

$$
E_{m}=\frac{\sum_{t \in \chi_{m}}\left(y_{t}-g_{m}\right)^{2}}{\left|\chi_{m}\right|}
$$

- choose a split criteria to minimize the weighted error at children nodes

Regression Tree

labels: 1, 2, 2, 3
labels: 10, 12, 14, 15

$$
\begin{array}{r}
g=\frac{10+12+14+15}{4}=12.75 \\
\text { Error }=\sum_{i}\left(\text { label }_{i}-g\right)^{2}=14.75
\end{array}
$$

- choose a split criteria to minimize the weighted or total error at children nodes
- in the example total error after the split is $14.75+$ $2=16.75$

Prediction with a tree

- for each test datapoint $x=\left(x^{1}, x^{2}, \ldots, x^{d}\right)$ follow the corresponding path to reach a terminal node n
- predict the value/label associated with node n

Overfitting

- decision trees can overfit quite badly
- in fact they are designed to do so due to high complexity of the produced model
- if a decision tree training error doesn't approach zero, it means that data is inconsistent
-
- some ideas to prevent overfitting:
- create more than one tree, each using a different subset of features; average/vote predictions
- do not split nodes in the tree that have very few datapoints (for example less than 10)
- only split if the improvement is massive

Pruning

- done also to prevent overfitting
- construct a full decision tree
- then walk back from the leaves and decide to "merge" overfitting nodes
- when split complexity overwhelms the gain obtained by the spit

