$$W = \sum_{i=1}^{\infty} r_i$$

 $\mu_{\rm W} = 0$

where r_i are the signed ranks

the mean of the dist. for W

the std. dev. of the dist. for \boldsymbol{W}

$$\sigma_W = \sqrt{\frac{n(n+1)(2n+1)}{6}}$$

 $z = \frac{(W - \mu_W) \pm 0.5}{}$

 $= \frac{W - 0.5}{}$

0.5 added when W neg., subtracted when pos.

when
$$W > 0$$