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ABSTRACT

There is great interest in producing effectiveness measures
that model user behavior in order to better model the utility
of a system to its users. These measures are often formulated
as a sum over the product of a discount function of ranks
and a gain function mapping relevance assessments to nu-
meric utility values. We develop a conceptual framework for
analyzing such effectiveness measures based on classifying
members of this broad family of measures into four distinct
families, each of which reflects a different notion of system
utility. Within this framework we can hypothesize about the
properties that such a measure should have and test those
hypotheses against user and system data. Along the way we
present a collection of novel results about specific measures
and relationships between them.

Categories and Subject Descriptors: H.3 [Information
Storage and Retrieval]; H.3.4 [Systems and Software]:
Performance Evaluation

General Terms: Experimentation, Measurement

Keywords: information retrieval, evaluation, user models

1. INTRODUCTION

There has always been interest in producing effectiveness
measures that model user behavior for systems-based eval-
uations with test collections. These measures frequently in-
volve summing over the product of a discount function of
ranks and a gain function mapping relevance assessments to
numeric utility values, i.e.

M =
KX

k=1

gain(relk) · discount(k)

The widely-used discounted cumulative gain (DCG) mea-
sure, for instance, is typically formulated with an exponen-
tial gain function and a log-harmonic discount [10], while
rank-biased precision (RBP) uses binary relevance and a ge-
ometric discount [12]. Expected reciprocal rank (ERR) maps
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graded relevance judgments to probabilities and discounts
dynamically according to the relevance judgments at previ-
ous ranks [6]. Many traditional measures can be interpreted
this way as well [21].

The discount function is often viewed as modeling a user
that scans down a ranked list, growing less interested with
each successive rank; the gain function models the utility
the user derives from each document. This interpretation
hides a great deal of diversity in the choices one can make
in such a measure. Some use a probability density function
as the discount; others do not. Some discount dynamically
depending on relevance; others use a static discount. De-
pending on these choices, the actual user model can vary in
subtle ways. In this work we aim to formulate a conceptual
framework—a way to organize and describe these choices
so as to provide structure for reasoning about properties of
these measures in general.

To illustrate this point, consider DCG and RBP: click log
analysis has suggested that RBP matches “reality” (in the
sense of being more closely correlated to observed click be-
havior) much closer than DCG [6, 20, 21]. Despite that,
DCG continues to be far more widely-used in research and
development. We may hypothesize why: inertia? familiar-
ity? or is it possible that DCG is actually modeling some-
thing quite different than RBP, and what it measures as a
result is more useful to developers? We lean towards the
latter explanation, and with this work we hope to provide a
framework within which to test it.

Though we use RBP and DCG as motivators, our interest
is not specifically in them but in model-based measures in
general. The primary contribution of this work is increased
understanding of effectiveness measures based on explicit
user models. We define our framework in Section 2; this
framework generates many possible measures (Section 3).
Given the measures generated by the framework, we for-
mulate specific hypotheses about qualities such a measure
should have and test them in data (Section 4). Finally, we
explore differences in modeling document utility indepen-
dently of rank discounting (Section 5). Along the way we
prove a number of novel results about individual measures
and relationships between them.

2. MODELS

We argue that model-based measures are actually com-
posed from three distinct underlying models:

1. a browsing model that describes how a user interacts
with results;



2. a model of document utility, describing how a user de-
rives utility from individual relevant documents;

3. a utility accumulation model that describes how a user
accumulates utility in the course of browsing.

Decisions about each component model can be made inde-
pendently of the others. This establishes a framework for
evaluating the outcomes of those decisions.

By far the most well-developed browsing model is that of
a user scanning down ranked results one-by-one and stop-
ping at some rank k. In this work we focus entirely on that
model, comparing different ways of modeling the stopping
rank. Similarly, binary and graded relevance are the two
most common ways to model document utility. For simplic-
ity, throughout this section and the next we only consider
binary relevance. Graded relevance (and other types of rel-
evance or utility judgments) can be included in measures in
relatively straightforward ways discussed in Section 5 below.

Thus the scope of this section and the next is limited to
describing four utility accumulation models that we see in
existing measures, as well as looking at different choices in
modeling the stopping rank k in the simple browsing model.
While there are other, more accurate browsing models [20,
11, 2], we believe they can be studied within some framework
similar to the one we present here.

2.1 Model 1: Expected utility

Consider a model of a user as progressing down a ranked
list, looking at each document, and stopping at some rank
k. The probabilistic component of the model is a distribu-
tion P (k). Since a user can only stop at exactly one rank,P∞

i=1 P (i) = 1. To model the cost of browsing, we usually
constrain P (k) so that P (1) ≥ P (2) ≥ ... ≥ P (n).

Given a probability distribution, a measure reflecting this
model has the form:

M1 :
nX

k=1

relkP (k) (1)

This expression can be understood as the expected relevance
of the document at the stopping rank. This follows from the
fact that the events of stopping at each rank k are mutually
exclusive, and an expectation is computed as the sum of
event probabilities times a numeric value of the event (in
this case document relevance).

An exemplar for this model is rank-biased precision (RBP)
[12], in which k is assumed to be geometrically distributed
with “persistence” or “patience” parameter θ:1

PRBP (k) = (1− θ)k−1θ

θ is a value between 0 and 1 reflecting the patience of users
for progressing down the ranked list. It can be thought
of as an a priori probability of quitting at any given rank;
the probability that a user will stop at rank k = 2 is the
probability that they do not stop at rank k = 1 times the
probability that they do stop at rank k = 2: (1− θ)θ.

2.2 Model 2: Expected total utility

The model above captures a user stopping at a particular
rank, but not that the user looked at the documents above
1RBP was not originally defined as the expected relevance
of one document, but it is a valid (and we argue more parsi-
monious) way to backfit to the expression. We discuss this
further in Section 3.2.

that rank. No matter where a user chooses to stop, they will
see the first document with probability 1. They will only see
the second if they do not stop at rank 1, so the probability
of viewing document 2 is 1 − P (1). Continuing this way, it
becomes apparent that the viewing probability at rank k is
simply the cumulative probability of stopping at all ranks
from k to n. Define this cumulative probability F (k) as:

F (k) =
nX

i=k

P (k)

Given a distribution, we can define a measure with the form:

M2 :
nX

k=1

relkF (k) =
nX

k=1

relk

nX

i=k

P (i) (2)

The underlying user model becomes more apparent after
algebraic manipulation. Arranging summands relkP (i) in
an n× n matrix, we obtain the following:

2

6664

rel1P (1) rel1P (2) rel1P (3) · · · rel1P (n)
rel2P (2) rel2P (3) · · · rel2P (n)

rel3P (3) · · · rel3P (n)
· · · · · ·

relnP (n)

3

7775

Summing each row first, then summing the results, gives the
expression above. Alternatively, summing each column first
shows that:

M2 :
nX

k=1

relk

nX

i=k

P (i) =
nX

k=1

P (k)
kX

i=1

reli

=
nX

k=1

RkP (k)

where Rk =
Pk

i=1 reli, i.e. the number of relevant docu-
ments retrieved from rank 1 to rank k. This reveals an
alternative user model: a user picks a stopping rank k, and
then derives utility from all of the relevant documents from
ranks 1 through k. The measure is the expected total utility.

We claim that discounted cumulative gain (DCG) [10] is an
exemplar of this model, with F (k) = 1/ log2(k + 1). Define
a stopping probability:

PDCG(k) =
1

log2(k + 1)
− 1

log2(k + 2)

Then:

nX

k=1

RkPDCG(k) =
nX

k=1

„
1

log2(k + 1)
− 1

log2(k + 2)

« kX

i=1

reli

=
nX

k=1

relk

nX

i=k

„
1

log2(i + 1)
− 1

log2(i + 2)

«

=
nX

k=1

relk

„
1

log2(k + 1)
− 1

log2(n + 2)

«

For large enough n, 1/ log2(n + 2) becomes negligible, and
the expression reduces to:

nX

k=1

relk
1

log2(k + 1)
= DCG@n

This means that DCG can be interpreted as modeling a
user that picks a stopping rank k with probability PDCG(k),



then derives utility from all relevant documents to that rank.
While others have treated DCG’s discount as a viewing prob-
ability rather than a stopping probability [6], as far as we
know this overall interpretation of DCG is novel, and clearly
different from the usual interpretation which is closer to M1

above. Furthermore, the stopping probability distribution is
shaped similarly to the geometric distribution used by RBP
(Fig. 1), meaning that DCG may encode a more realistic
browsing model than previously thought.

2.3 Model 3: Expected effort

Rather than compute expected utility, as M1 and M2 do,
we could compute the expected effort a user must put forth
to achieve a particular amount of utility.

M3 :
nX

k=1

f(k)P (k) (3)

Here P (k) is conditional on relevance judgments (the “gain
times discount” formulation is recovered from the use of reli
in P (k)). Unlike the previous two models, this is an expec-
tation of effort modeled by rank rather than an expectation
of relevance. If f(k) = k, it is the expected stopping rank;
if f(k) = 1/k it is the expected reciprocal stopping rank.
The presumption is that f(k) can be defined in a way that
accurately reflects user effort.

The expected reciprocal rank (ERR) [6] measure is exem-
plar for this class. Let f(k) = 1/k and

PERR(k) = θrelk

k−1Y

i=1

(1− θreli)

Here θreli is a parameter indicating the probability that a
document with relevance reli would be useful to the user.
With binary relevance (reli = 0 or 1), and with θ0 = 0 and
θ1 = θ, this can be rewritten as:

PERR(k) = relk(1− θ)Rk−1θ

revealing that PERR is geometric over total accumulated rel-
evance, with non-zero probability only at ranks at which rel-
evant documents appear. Here θ can still be understood as
a patience parameter, as in RBP, but now the probability of
stopping at a nonrelevant document is zero while the prob-
ability of stopping at a relevant document is θ. Thus we
could reasonably re-express this model as:

M3 :
RX

Rk=1

f(k)P (Rk)

This makes explicit the idea of evaluating the effort the user
expends to find Rk relevant documents (or in general to
achieve a given amount of utility).

2.4 Model 4: Expected average utility

The final model combines the utility- or reward-based
models M1 and M2 and the effort-based model M3.

M4 :
nX

k=1

relk

nX

i=k

f(i)P (i) (4)

Intuitively, this models a user that, after each relevant docu-
ment, considers the expected effort of further browsing. As

with M2, the underlying user model becomes more trans-
parent after algebraic manipulation:

nX

k=1

relk

nX

i=k

f(i)P (i) =
nX

k=1

f(k)P (k)
kX

i=1

reli

=
nX

k=1

f(k)RkP (k)

and if f(k) = 1/k,

nX

k=1

Rk

k
P (k) =

nX

k=1

prec@k · P (k)

Thus the user model is based on average gain per document
viewed: a user stops at a rank k and gains Rk total utility
over k documents for an average of prec@k each.

Average precision (AP) is the exemplar for this model
(note the similarity to Robertson’s AP model [13]). If

PAP (k) =
relk
R

where R is the total number of relevant documents in the
corpus, we recover AP from the expression. Like PERR(k),
this models a user that will never stop at a nonrelevant doc-
ument, but unlike any of our other distributions, it uses a
simple uniform distribution over all possible stopping points.
AP assumes knowledge of the complete set of relevant doc-
uments, but this is not required for measures in this family.

3. MEASURES

The previous section establishes our framework with four
utility accumulation models for one common browsing model.
Each accumulation model has a well-known exemplar mea-
sure, and those four measures have four different ways to
model the stopping rank for browsing:

PRBP (k) = (1− θ)k−1θ

PDCG(k) =
1

logθ(k + θ − 1)
− 1

logθ(k + θ)

PERR(k) = relk(1− θ)Rk−1θ

PAP (k) =
relk
R

For compactness we will assume base θ = 2 for PDCG. For
simplicity of exposition we still assume binary relevance,
which is where the simplified PERR comes from. Rk is
the total number of relevant documents retrieved at ranks 1
through k. We will add two more distributions to those:

PRR(k) =
1

k(k + 1)
PRRR(k) =

relk
Rk(Rk + 1)

These distributions are interesting because their cumulative
forms are reciprocal ranks—hence the names PRR (for re-
ciprocal rank) and PRRR (for reciprocal relevant rank)—and
because they arise naturally as a mixture of the geometric
distributions in both RBP and binary-ERR (Section 3.4).

The six distributions can be characterized by whether they
are static, i.e. independent of relevance judgments, or dy-
namic, i.e. dependent on a specific ranking (cf. Yilmaz et
al. [20]). PRBP , PDCG, and PRR are static; PERR, PAP ,
and PRRR are dynamic.

All six distributions and their cumulative forms F (k) are
illustrated in Figure 1. The three static distributions have
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Figure 1: Comparison of stopping probability density functions. The left two plots compare stopping prob-
abilities; the right two compare viewing probabilities (cumulative distributions of stopping probabilities).
Upper left: static density functions; upper right: static cumulative density functions. Lower left: dynamic
density functions (for a ranking with relevant documents at ranks 1, 2, 3, 5, 8, 11, 17, 24); lower right:
dynamic cumulative density functions.

similar shape, but PDCG and PRR have much fatter tails
than PRBP —while this is difficult to see by inspection of
Figure 1, it is very clear on a log-scale plot. Furthermore,
PDCG has a substantially fatter tail than PRR, which be-
comes clear when looking at their cumulative densities. The
dynamic distributions all give zero stopping probability to
ranks at which nonrelevant documents appear. PERR and
PRRR have a similar shape over relevant documents, but
PRRR has a fatter tail (visible by inspection and very clear
in the cumulative density). PAP is uniform over relevant
documents, so its cumulative density decreases slowly. For
RBP and ERR, we used θ = 0.5; these properties hold for
other common values.

3.1 Alternative measures

The choice of a probability distribution produces up to
four different measures, one for each model. We have mixed
and matched models and distributions to produce eleven
measures in addition to our four exemplars (Table 1). We
have attempted to name them in a way that makes clear
both the choice of model and distribution.

RBTR (rank biased total relevance, M2 with PRBP ):

RBTR =
nX

k=1

Rk(1− θ)k−1θ =
nX

k=1

relk(1− θ)k−1

RBAP (rank biased average precision, M4 with PRBP ):

RBAP =
nX

k=1

prec@k · (1− θ)k−1θ

CDG (cumulated discounted gain, M1 with PDCG):

CDG =
nX

k=1

relk

„
1

log2(k + 1)
− 1

log2(k + 2)

«

DAG (discounted average gain, M4 with PDCG):

DAG =
nX

k=1

prec@k

„
1

log2(k + 1)
− 1

log2(k + 2)

«

EPR (expected precision, M4 with PERR):

EPR =
nX

k=1

prec@k · relk(1− θ)Rk−1θ

ARR (average reciprocal rank, M3 with PAP ):

ARR =
nX

k=1

relk
kR

RRG (reciprocal rank gain, M1 with PRR):

RRG =
nX

k=1

relk
k(k + 1)

RR (reciprocal rank, M2 with PRR):

RR =
nX

k=1

Rk

k(k + 1)
=

nX

k=1

relk
k

RAP (reciprocal average precision, M4 with PRR):

RAP =
nX

k=1

prec@k · 1
k(k + 1)



type P (k|θ, rel1...reln) M1 :
P

relkP (k) M2 :
P

RkP (k) M3 :
P 1

k P (k) M4 :
P

prec@kP (k)
PRBP = (1− θ)k−1θ RBP RBTR – RBAP

static PDCG = 1
log(k+1) −

1
log(k+2) CDG DCG – DAG

PRR = 1
k(k+1) RRG RR – RAP

PERR = relk(1− θ)Rk−1θ – – ERR EPR
dynamic PAP = relk

R – – ARR AP
PRRR = relk

Rk(Rk+1) – – RRR RRAP

Table 1: A model and a probability distribution together specify a measure, or possibly a family of measures
parametrized by θ. Cells with – have been deemed uninteresting because they are either constant-valued or
isomorphic to traditional recall or precision. Measures in bold font are the chosen exemplars for the model.

RRR (reciprocal relevant rank, M3 with PRRR):

RRR =
nX

k=1

1
k

relk
Rk(Rk + 1)

RRAP (reciprocal relevant average precision, M4 with PRRR):

RRAP =
nX

k=1

prec@k
relk

Rk(Rk + 1)

We do not claim that these measures are altogether new
to IR—we know that some have been described before in
various contexts (particularly our so-called RR, which has
frequently been described as “DCG with a reciprocal rank
discount”). Furthermore, there are other model-based mea-
sures that we do not discuss (e.g. the NCU family [16]). Our
interest is less in developing or arguing for any particular
measures than in using them to explore hypotheses about
model-based measures in general.

3.2 Normalization

Some of the measures require normalization. The M2 fam-
ily in particular is heavily dependent on the total number
of judged relevant documents for a topic. In addition, some
of the probability distributions may not sum to one if the
total number of relevant documents is low or if the rank-
ing is truncated. Both of these are confounding effects that
normalization helps resolve.

To normalize, we simply divide the value of the measure
by the maximum possible value given the judged relevant
documents, i.e. the value of the measure on a perfect rank-
ing. This ensures that the maximum achievable value is 1
for all topics and all systems. This is of course a well-known
normalization procedure, commonly used with DCG to pro-
duce nDCG [10]. We will apply it to all measures in the M2

family, as well as a few other measures that do not naturally
fall between 0 and 1 such as ARR.

Normalization is a somewhat thorny topic. In present-
ing RBP, Moffat and Zobel started with an unnormalized
version that would fit in our M2 family, but explicitly chose
not to normalize by the maximum achievable effectiveness—
instead normalizing by the expected number of documents
viewed [12] and thereby moving the measure into the M1

family. There is a tradeoff between preserving the user
model and having a measure that can be averaged across
topics, and it is not always clear how to resolve it.

3.3 Rank cut-offs

Some measures are calculated to a pre-specified rank cut-
off rather than over the full ranking of n documents. This

is particularly true of DCG. In the case of a rank cut-off
K � n, the math in Section 2.2 does not work—K must be
large enough that 1/ log2(K + 2) is close to zero, and that
is certainly not the case for the usual values of K.

There is a simple resolution that fits with the user model,
though. First, note that we can express DCG@K in terms of
P (k) and F (K+1) with some simple algebraic manipulation:

DCG@K =
KX

k=1

relk
1

log2(k + 1)
=

KX

k=1

relkFDCG(k)

=
KX

k=1

relk

nX

i=k

PDCG(i)

=
KX

k=1

relk

 
KX

i=k

PDCG(i) +
nX

i=K+1

PDCG(i)

!

=
KX

k=1

relk

 
KX

i=k

PDCG(i) + FDCG(K + 1)

!

=
KX

k=1

relk

KX

i=k

PDCG(i) +
KX

k=1

relkFDCG(K + 1)

We can then apply the same algebraic trick we used in Sec-
tion 2.2 to complete the expression as:

DCG@K =
KX

k=1

RkPDCG(k) + RKFDCG(K + 1)

Note that RKFDCG(K + 1) =
Pn

k=K+1 RKPDCG(k). Thus
the user model is exactly the same. The difference is that
calculation of the measure now assumes the worst case for
a user that chooses to stop beyond rank K—that the user
will not find any new relevant documents, and therefore will
only derive utility from those at ranks 1–K.

This argument generalizes to any M2 measure.Therefore
a rank cut-off K solves a problem with non-converging dis-
counts by making a worst-case assumption about the effec-
tiveness of the system below K.

3.4 Reciprocal rank distributions

Here we show how our PRR and PRRR distributions emerge
from a mixture of geometric distributions, and that their cu-
mulative forms are reciprocal ranks.

The geometric distribution has a parameter θ that requires
the researcher/developer to specify a value a priori. Perhaps
being unwilling to make any strong statements about user
patience, one could instead use several different values of
θ and average the results. Taken to the limit, they could
obtain P (k) by averaging geometric distributions over all



possible values of θ:

P (k) =

Z 1

0

P (k|θ)p(θ)dθ =

Z 1

0

(1− θ)k−1θp(θ)dθ

where p(θ) is uniform over the range [0, 1]. Since it is uni-
form, we can disregard it; then integration by parts gives:

PRR(k) =
1

k(k + 1)

Thus PRR can be seen as an average of infinitely many geo-
metric distributions.

The cumulative distribution is:

FRR(k) =
nX

i=k

1
i(i + 1)

=
nX

i=k

i + 1− i
i(i + 1)

=
nX

i=k

„
1
i
− 1

i + 1

«

=
1
k
− 1

n + 1

As n→∞, 1
n+1 → 0, so for large enough n this is approxi-

mated as reciprocal rank 1/k. It does not require very large
n for the effect to be negligible.

The same argument generalizes the binary-relevance ver-
sion of PERR to PRRR as an average of infinitely many geo-
metric distributions over ranks of relevant documents.

4. ANALYSIS

We have presented a framework for classifying and gen-
erating measures that model system utility to a user. The
benefit of a framework is that it poses questions and also
provides a guide to answering them. Our goal is not to eval-
uate the new measures we propose, but to formulate specific
hypotheses about model-based measures in general and an-
swer them by appealing to our suite of measures.

Some of the questions the framework raises are:

1. Are utility-based models (M1, M2) better than effort-
based models (M3, M4)? Our hypothesis is that there
is no difference on average.

2. Are measures based on stopping probabilities (M1, M3)
better than measures based on viewing probabilities
(M2, M4)? Our hypothesis is that the latter are more
robust to different sources of variance.

3. What properties should P have to produce a good mea-
sure? We hypothesize that it should have a fatter tail
(within reason), and that static distributions are more
robust than dynamic.

“Better” and “good” are of course qualitative words whose
meaning depends on the retrieval task being studied, the
users of the system, and a host of other factors. We will look
at goodness-of-fit to user data and robustness of evaluation,
though there are other ways to evaluate these questions.

4.1 Click logs

One possible definition of a “good” measure is one that
more closely models user behavior. We compared our static
stopping rank distributions to aggregated clicks from the
2006 AOL log. Of course, processing click log data is it-
self implicitly model-based. Comparing models to click logs
should be seen not as comparing models to reality, but as
comparing one model to another under all the assumptions
that both models require. In this case we cannot know stop-
ping ranks; we need to model them from recorded clicks.

We tried two different models. The first simply maps each
recorded click to a stopping rank to estimate an empirical
distribution of stopping ranks, with each rank mutually ex-
clusive of the others. The implicit model is that every click
is a new event for a new user/query pair, even if it is in
not actually the last click by that user for that query. The
second maps only the last recorded click for a user/query to
a stopping rank. This may be more realistic, but it results
in throwing out all clicks but the last. Other models are
possible (e.g. the “gap” model of Zhang et al. [21]).

Both empirical distributions are shown in Figure 2 along
with our static distributions. Among the distributions we
are considering, PRR is clearly the best fit to both models
of the data. Previous work has suggested that DCG and
reciprocal rank discounts do not adequately model users [20,
21, 6]. This analysis suggests they might model users well in
some data, provided they are considered cumulative densities
rather than probability densities.

4.1.1 Critique of click log analysis
While click log analysis can provide a guide for evaluating

a probability distribution P (k), it is not clear to us how it
could be used to evaluate a model of utility accumulation.
How can we use click log data to choose between M1 (in
which a user derives utility only from the document at the
stopping rank) and M2 (in which a user derives utility from
all relevant documents from rank 1 to the stopping rank)?
How can we use it to choose between M1 and M3 (in which
a user expends a certain amount of effort to achieve a given
total utility)? These decisions must be made on the basis of
more than just user data.

Furthermore, even if only a small fraction of users are
negatively affected by a poor model fit, the cost of not pro-
viding those users with the best possible system may be
disproportionately large. Suppose that the probability of a
user becoming frustrated and quitting the search engine al-
together increases over ranks in a reverse geometric way up
to rank K, so that

P (quit engine|k) = (1− θ)K−k

This is distinguished from

P (stop current search at k) = (1− θ)k−1θ

Then:

P (stop search and quit engine at k)

= P (quit engine|k)P (stop search at k)

= (1− θ)K−k(1− θ)k−1θ = (1− θ)K−1θ

which is completely independent of rank! We may as well
use a uniform stopping probability—leading us right back
to traditional precision and recall.

We do not advocate that model; we only wish to point
out the pitfalls in focusing on behavior evidenced in logs.
This analysis suggests to us that fatter-tailed distributions
are superior even if they do not fit behavior data, because
those distributions are better-equipped for the risk of not
satisfying users that are in the tail.

4.2 Robustness and stability

The previous section supposes that one purpose of an ef-
fectiveness measure is to model users in order to estimate
the utility of the system. Another purpose of evaluation
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Figure 2: Comparison of empirical click probabilities to static stopping rank models. The left plot uses every
recorded click; the right only uses the last recorded click for a user/query pair. It is clear that PRR is the
best fit to both distributions (though better fits are possible).

is to choose among different retrieval models, features, and
system implementations. For that purpose we would like
decisions to be roughly the same whether they are based
on a few topics versus many, or extensive relevance judg-
ments versus shallow pools, or one group of assessors ver-
sus another. The extent to which conclusions are different
depending on differences in the data used to compute the
measures reflects the robustness and stability of those mea-
sures. To investigate these properties we will look at how
evaluation measure scores and relative rankings of systems
change as the underlying data changes.

4.2.1 Data
Our primary data is the TREC-6 ad hoc data consisting

of TREC topics 301–350, 72,270 total relevance judgments,
and 74 submitted runs over a corpus of about 550,000 doc-
uments [18]. This is a small corpus, but its deep judgments
make it useful for our study. Furthermore, there is an al-
ternate set of relevance judgments from the University of
Waterloo for these topics, allowing us to investigate the ef-
fect of assessor disagreement [9, 17].

We also used two more recent test collections:

• The named page retrieval task for the TREC 2006 Ter-
abyte track [3]. This is a high-precision task: there
are only a few relevant documents in the corpus. The
data consists of TREC topics 901–1081, 2,361 total
relevance judgments, and 43 submitted runs over the
GOV2 corpus of some 25 million web pages.

• The ad hoc task for the TREC 2009 Web track (cat-
egory A set) [7]. The data consists of TREC Web
topics 1–50, 18,666 relevance judgments, and 37 sub-
mitted runs over the ClueWeb09 corpus of 1 billion
web pages.

4.2.2 Evaluation
The approach is simple: we select some subset of the

data (e.g. a subset of topics or a subset of judgments) and
evaluate all systems with all 15 of our measures. We then
use Kendall’s τ rank correlation to compare the results to
the “true” rankings using the full TREC data. Kendall’s τ
ranges from -1 to 1, with greater values indicating greater
correlation. In practice, for meta-evaluation studies like this
one Kendall’s τ is nearly always over 0.6, and a value of 0.9
would be considered an effectively “perfect” correlation con-
sidering the presence of variance [17].

Since our hypotheses are about model families or distribu-
tions rather than individual measures, we average Kendall’s
τ results for each measure within a family or with a particu-
lar property. We use the averages to evaluate the hypothesis.

4.2.3 Results
The single clearest fact from the results is that measures

in the M2 family with fatter tails tend to be more robust.
However, this is not true in all cases: when the judgment
pool is shallow, models with distributions that put more
weight on top-ranked documents tend to be more robust.
For tasks with few relevant documents, tail fatness does not
appear to matter. Detailed results follow below.

Varying assessors: We evaluated all 74 TREC-6 systems
with all 15 of our measures over two different sets of rele-
vance judgments. Table 2 shows the τ correlations for every
measure between the rankings from the two judgment sets.
The final column shows the mean τ for each stopping dis-
tribution; it is clear that the fatter-tail distributions PDCG

and PAP are most robust w.r.t. assessor disagreement, while
the slimmer-tail distributions PRBP and PERR are least ro-
bust. Dynamic distributions actually appear to be more
robust than static distributions on average, which we found
surprising since they seem to have a greater dependence on
which documents have been judged relevant.

The last row shows the mean τ for each model family; M2

is more robust to assessor disagreement than the others. M3

and M4 are about equally robust, with M3 taking the edge
if the outlying fat-tailed PAP is removed. M1 is least robust
to assessor disagreement.

Varying topic sample: We evaluated all 74 TREC-6 sys-
tems with all 15 of our measures over increasing topic sample
sizes from N = 5 to 45. For each level of N , we performed
100 trials with a random subset of topics; each trial used the
same topic sample to evaluate all 15 measures.

Figure 3 plots summary results for distribution model
family (left) and tail type (right). Again we see that fat-
ter tails result in more stable results, and M2 provides more
stable results than the other models. There are differences
from the assessor disagreement results, however. M3 ap-
pears to be least robust to varying the topic sample despite
being more robust to assessor disagreement, while M1 and
M4 look equally robust. The difference in robustness due to
tail fatness is less pronounced, with a maximum difference



type P (k) M1 M2 M3 M4 mean
PRBP τRBP = 0.813 τRBTR = 0.816 – τRBAP = 0.801 0.810

static PDCG τCDG = 0.831 τDCG = 0.920 – τDAG = 0.819 0.857
PRR τRRG = 0.819 τRR = 0.859 – τRAP = 0.812 0.830
PERR – – τERR = 0.829 τEPR = 0.836 0.833

dynamic PAP – – τARR = 0.847 τAP = 0.896 0.872
PRRR – – τRRR = 0.826 τRRAP = 0.844 0.835

mean 0.821 0.865 0.834 0.835

Table 2: Kendall’s τ correlation between TREC-6 relevance judgments and alternate judgments. The last
column shows row means (mean τ for each P (k)); the last row shows column means (mean τ for each model).
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Figure 3: Kendall’s τ correlations as topic sample size increases (averaged over 100 samples of size N). All
differences are significant with p < 104. Fat-tailed distributions and the M2 family clearly offer the greatest
stability to topic set size.
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Figure 4: Kendall’s τ correlations as pool depth in-
creases. Correlation is already very good with a pool
depth of just 1; this suggests that these systems are
retrieving many common documents.

of 0.026 between any two points (though this is statistically
significant).

Varying pool depth: We formed shallower judgment pools
from the original TREC-6 qrels by iterating over systems
and pooling only documents that appeared above a partic-
ular rank cutoff. For each of these pools we evaluated all
74 systems by all 15 measures and correlated the resulting
ranking of systems to the“true”ranking using all judgments.

Figure 4 shows increasing τs for each of our models. The
M2 family is actually least robust to missing judgments,
while the M1 family is most robust. This makes sense, as
the M1 family places much more weight on the top-most
documents than the others, and the top-ranked documents
are the ones that are judged in both datasets. The M4 fam-

ily is more robust to missing judgments than the M3 fam-
ily, possibly because M4 discounts lower-ranked documents
more. Nevertheless, all four are quite robust on average,
most likely because five of our six distributions weight the
top-ranked documents very highly. Results for tail fatness
are not shown, but here too there is a reversal: slim-tail dis-
tributions are more robust to shallow pools than fatter-tail
ones. Again, this is most likely because the slimmer tails
result in much more weight on the top-ranked documents.

Varying test collection: For our other two collections, we
varied topic sample size and calculated τ correlations.

For the TREC 2006 Terabyte named page task—a high-
precision task—the distribution does not appear to matter.
There is almost no difference between τ correlations with
fat- or slim-tailed distributions. M2 measures are still more
robust than other families, though M3 is a very close second.
This supports our intuition that M3 is particularly useful for
tasks where there are only a few highly-relevant documents.

For the TREC 2009 Web ad hoc task, M3 measures with
slim- or medium- tail distributions are most robust to vary-
ing topic sample. Fat-tail distributions are quite poor. M2

measures are least robust, though not by much. This is most
likely due to the challenge of evaluating an ad hoc retrieval
task with sparse relevance judgments, but it may suggest
that ERR is the best measure we have for web evaluation.

5. DOCUMENT UTILITY

To this point our discussion has focused on stopping prob-
ability distributions within a common browsing model and
models of how users accumulate utility over documents. We
simplified the idea of document utility itself to simple binary



relevance, but we can investigate alternative models for that
independently of stopping probabilities.

5.1 Graded judgments

Some documents are more useful than others. A com-
mon way to model this is with judgment grades, such as
the ternary scale nonrelevant, relevant, highly relevant and
the quinary scale bad, fair, good, excellent, perfect. A gain
function maps grades to numeric values.

Though we have focused on binary judgments, graded
judgments fit easily within our framework. DCG and ERR
are, of course, explicitly designed with graded judgments
in mind. AP can be adapted to graded judgments using a
user-modeling distribution mapping grades to probabilities
of relevance [14]. At any point where we use relk or Rk for
binary judgments, we can substitute the mapping function
gain(relk) or the cumulative gain CGk =

Pk
i=1 gain(reli)

respectively. In ERR, we can write P (k) as:

PERR(k) =
Y

g∈grades

(1− θg)Gk−1θg

where the product is over unique grades, θg is a patience
parameter for grade g, and Gk is the total number of docu-
ments with grade g up to rank k. This is a slightly different
formulation that originally presented by Chapelle et al. [6],
but we feel it more clearly shows ERR as modeling cumu-
lated gain up to rank k.

5.2 Preference judgments

Another way to model the idea that some documents are
more useful is with preference judgments of the form “A is
preferred to B for query q”. When transitive, such judg-
ments result in a total ordering of documents by utility [15].
Previous work has shown that preferences can be made eas-
ier and faster than graded judgments [5]. Kendall’s τ rank
correlation is based on preferences, and it can be extended
to other measures for IR effectiveness [4].

Models M2 and M4 can be seen as instances of a more
general family of preference-based measures. Consider the
following stochastic process applied to a system ranking:
sample a rank k with probability P (k). Then sample one
or more documents ranked above k. For each of those doc-
uments that was preferred by assessors to the document at
k, increment a count of total concordant pairs.

Suppose we just have binary relevance and a preference
relation stating that A is preferred to B if and only if A is
judged relevant. If in the second sampling stage we sample
only one document uniformly at random, the expectation of
the process is exactly M4 with f(k) = 1/k. If we use all
documents above k, the expectation is exactly M2.

For natural preference relations, uniform P (k) results in
the process having expectation proportional to Kendall’s
τ . This suggests that both M2 and M4 can be viewed as
weighted versions of τ . This was already known for AP, our
exemplar M4 measure [19]; the fact that DCG can be viewed
in this way is novel.

5.3 Novelty and diversity

In the novelty and diversity retrieval setting, document
utility is a function of its relevance to different possible user
intents as well as its redundancy with other documents in
a ranking. The so-called “intent aware” (IA) family of mea-
sures uses a distribution of intents P (i|q) for a given query q

to compute a weighted average of a measure like AP or DCG
computed with document judgments for each intent [1]. Any
measure that fits in our framework can be turned into an in-
tent aware variant by computing such a weighted average.

Redundancy can be penalized when computing total util-
ity. Up to this point we have computed total utility as the
number of retrieved relevant documents Rk. We could in-
stead define the utility of the top k retrieved documents as:

Uk =
kX

j=1

reljF (Rj)

where Rj is the number of relevant documents up to rank
j and F (Rj) is a redundancy discount taking the form of a
cumulative probability density based on P (Rj), the proba-
bility that the last relevant document a user would look at
is the Rjth. The α-nDCG measure [8] uses F (Rj) = αRj−1;
it is based on the same geometric penalty that ERR uses.

A full intent-aware, redundancy-penalizing novelty/diversity
measure in the M2 family could then be given as:

M =
X

i∈Iq

P (i|q)
nX

k=1

UikP (k|i)

where Iq is the set of intents for query q and Uik is defined
as the utility to intent i (using relevance judgments distin-
guished by intent). Measures in the M3 and M4 families
follow straightforwardly. Note that M1 cannot truly model
redundancy penalization in a natural way, since it does not
model accumulated utility.

This suggests two directions for diversity evaluation:

• Consider the use of a stopping probability conditional
on intent, i.e. P (k|i). For an ambiguous query like
“cardinals” for instance, some intents may be “naviga-
tional” (e.g. finding the home page for the St. Louis
Cardinals baseball team) and others may be “informa-
tional” (e.g. finding information about Catholic car-
dinals). A user with the former need might be bet-
ter modeled by a steeply-decreasing density function,
while the latter might be better modeled by a more
gentle decrease. Existing diversity measures assume
that the same model will be used for all intents.

• Consider alternative models of decrease in utility due
to redundancy. α-nDCG uses a geometric decrease.
As we have seen in this work, a geometric discount by
rank is quite harsh compared to user behavior; it may
be a harsh penalty for redundancy as well. Our defi-
nition of Uk above allows a researcher or developer to
plug in any probability density function to model the
probability that information is still useful after having
seen it Rj times.

6. DISCUSSION AND CONCLUSION

On one level this work is a collection of novel observations
about common evaluation measures and user models. At
that level, these observations emerge primarily from alge-
braic manipulation.

• The discounts in DCG and RBP are used for differ-
ent purposes. RBP’s is the probability of stopping
at a particular rank, while DCG’s is the probability
of viewing a particular rank while progressing down.
This leads to different interpretations of the two, as



well as the understanding that their discounts are not
directly comparable to each other. DCG’s discount
should instead be understood as arising from a stop-
ping probability distribution that much more closely
models user behavior.

• Nearly any measure that can be formulated in terms
of a relevance gain times a rank discount can also be
formulated in terms of a stopping probability distribu-
tion. The only constraint is that disc(1) ≥ disc(2) ≥
· · · ≥ disc(n). Zhang et al. have shown that many
traditional measures can be expressed this way [21].

• The reciprocal-rank discount arises naturally as the
cumulative density of an infinite mixture of geometric
discounts. It also fits user behavior better than other
discounts when properly interpreted.

• M2 measures with a rank cut-off are equivalent to using
no rank cut-off, but making a worst-case assumption
about relevance below a certain rank.

• DCG and other measures in both the M2 and M4 fam-
ilies can be understood as weighted rank correlations.

• Our measure families generalize to families of measures
for novelty and diversity with new questions about
modeling distributions.

At a deeper level, these observations all emerged from
a conceptual framework in which we describe a measure
in terms of its browsing model, specific attributes of its
browsing model, and utility accumulation model. This alone
shows the value of the framework: it led us to discover things
that were not previously known about measures. We went
further and used the framework to formulate specific hy-
potheses about models and measures. Some of our hypothe-
ses turned out to be true in most cases: that fatter-tail distri-
butions would be more robust; that measures in the M2 fam-
ily would be more robust. Others turned out to be wrong:
that measures in the M4 family would be more robust; that
M3 would not be significantly better than M1; that dynamic
distributions would be less robust than static distributions.
These results open the door to additional hypotheses and
discoveries about evaluation based on user models.

On a personal note, we will confess to beginning this study
with an unease about DCG—we felt that the discount was
perhaps too flat to model real users, that its user model was
ad hoc, and that it was unclear what it really measured.
We come out of it with a newfound appreciation of DCG.
The stopping probability may still be ad hoc (it is not a
formal probability distribution), but it is much more clear
to us that the discount is not too flat and that it actually
measures something very useful. Furthermore, it is a highly
robust measure; within our framework, the fact that it uses
M2 and a fat-tail distribution predicts that it would be. To
answer the question we posed in Section 1, perhaps this is
why DCG has continued to find such wide use: not due to
inertia or familiarity, but because it really is a useful user-
centered measure of system effectiveness.
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