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For a query @ with R relevant documents, the average precision of a given ranked list of documents is
the sum of the precisions at relevant documents within that list, divided by R.

For any document list of length k and for all 4, 1 < i < k, let z; € {0,1} denote the relevance of the
document at rank . We may then define the sum of the precisions at relevant documents as follows.
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Now let p(z1,...,2,) denote a joint distribution over the relevances associated with document lists of

length n. The expected sum precision is then
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Now assume that p(z1,...,2z,) is a product distribution; i.e.,

p(@1,. .. 2n) = p1(z1) - p2(22) -+ P (@n).

For notational convenience, let p; = p;(1) for all 4. In other words, p; is the probability that the document
at rank ¢ is relevant. We now prove the following claim.

Claim 1 Given a product distribution p(z1,...,T,) over the relevances associated with document lists of

length n, the expected sum precision is
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Proof: The expected sum precision can be calculated as follows.
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Thus, we have a recurrence for the expected sum precision. Iterating this recurrence, we obtain
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Since the average precision is the sum precision divided by the constant R, we have that the expected

average precision is
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