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ABSTRACT
This paper compares the effectiveness of two well-known
query-dependent link-based ranking algorithms,“Hyperlink-
Induced Topic Search” (HITS) and the “Stochastic Approach
for Link-Structure Analysis” (SALSA). The two algorithms
are evaluated on a very large web graph induced by 463
million crawled web pages and a set of 28,043 queries and
485,656 results labeled by human judges. We employed
three different performance measures – mean average pre-
cision (MAP), mean reciprocal rank (MRR), and normal-
ized discounted cumulative gain (NDCG). We found that as
an isolated feature, SALSA substantially outperforms HITS.
This is quite surprising, given that the two algorithms op-
erate over the same neighborhood graph induced by the
query result set. We also studied the combination of SALSA
and HITS with BM25F, a state-of-the-art text-based scoring
function that incorporates anchor text. We found that the
combination of SALSA and BM25F outperforms the com-
bination of HITS and BM25F. Finally, we broke down our
query set by query specificity, and found that SALSA (and
to a lesser extent HITS) is most effective for general queries.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Storage and Retrieval—search process, selection process

General Terms
Algorithms, Measurement, Experimentation

Keywords
HITS, SALSA, link-based ranking, retrieval performance,
web search
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1. INTRODUCTION
One of the fundamental problems in Information Retrieval

is the ranking of search results. In the context of web search,
where the corpus is massive and queries rarely contain more
than three terms, most searches produce hundreds of results.
Given that the majority of search engine users examine only
the first page of results [7], effective ranking algorithms are
key to satisfying users’ needs.

Leading search engines rely on many features in their
ranking algorithms. Sources of evidence can include tex-
tual similarity between query and documents (or query and
anchor texts of hyperlinks pointing to documents), the pop-
ularity of documents with users (measured for instance via
browser toolbars or by clicks on links in search result pages),
and finally hyperlinkage between web pages, which is viewed
as a form of peer endorsement among content providers.

Over the past decade, there has been an abundance of
research on link-based ranking algorithms. Most of this re-
search has centered around proposing new link-based rank-
ing algorithms or improving the computational efficiency of
existing ones (primarily PageRank), but there are only very
few published studies on validating the effectiveness (rank-
ing performance) of well-known algorithms on real and large-
scale data sets. We believe that this is primarily due to the
fact that conducting such studies requires substantial re-
sources: large web graphs, which are typically obtained by
crawling a substantial portion of the web; query logs, which
are hard to obtain from commercial search engines due to
privacy concerns; and human relevance judgments of result
sets, which are expensive to produce.

This paper presents a follow-on study on earlier work [12],
where we compared the performance of arguably the two
most famous link-based ranking algorithms, PageRank [13]
and HITS [6], with a state-of-the-art text-based scoring func-
tion (BM25F [15]) and what we considered the base-line
link-based feature (web page in-degree). To our great sur-
prise, this earlier study found that a base-line link-based
feature (the in-degree of web pages, considering only hyper-
links from web pages in a different domain) outperformed
both HITS and PageRank, and that the text-based scoring
function BM25F vastly outperformed all of the link-based
features. Moreover, we found that HITS performed slightly
worse than in-degree, despite the fact that it is a query-
dependent feature (and relatively expensive to compute).

One might conclude that the effectiveness of link-based
features in the ranking of web search results has been over-
stated all along. Alternatively, one might take the view
that link-based features, since they signify peer endorse-



ment of content providers, have gradually deteriorated over
the past decade, due to the fact that the web has morphed
from being a largely non-commercial space in 1992 to be-
ing overwhelmingly commercial today, making objective en-
dorsements among competing content providers much less
likely. This decrease in the fraction of non-nepotistic hy-
perlinks is further aggravated by the fact that most users
navigate to web sites through the mediation of a search en-
gine or one of a handful of popular portals, and consequently
very few private individuals feel compelled to publish their
collection of bookmarks — a practice that was quite com-
mon in the early days of the web, and undoubtedly provided
a fair amount of unbiased evidence.

However, the above conclusion turns out to be at least
partly unwarranted. This paper shows that SALSA [9, 10],
a query-dependent link-based ranking algorithm inspired by
HITS and PageRank, is substantially more effective as an
isolated feature than any of the link-based features examined
in our earlier paper, although it still falls well short of the
state-of-the-art textual scoring function BM25F. When com-
bining any of the link-based features with BM25F, SALSA’s
advantage mostly disappears, but it is still the best link-
based feature. Finally, when breaking down our query set
by query specificity, we found that SALSA is particularly
effective for very general queries.

The study described in this paper was conducted on the
same data sets (the same web graph and the same set of
queries and labeled results) as our earlier study, and uses
the same measures of retrieval performance (mean average
precision, mean reciprocal rank, and normalized discounted
cumulative gain), allowing for an “apples to apples” com-
parison.

The remainder of this paper is structured as follows: sec-
tion 2 surveys related work; section 3 characterizes our data
sets; section 4 reviews the measures we used to assess rank-
ing performance; section 5 describes the HITS and SALSA
algorithms; section 6 gives a short overview of the Scalable
Hyperlink Store, the computational infrastructure we used
to implement HITS and SALSA; section 7 presents our ex-
perimental results; and section 8 offers concluding remarks
and avenues for future research.

2. RELATED WORK
The idea of using peer endorsement between web content

providers, manifested by hyperlinks between web pages, as
evidence in ranking dates back to the mid-1990’s. Within
a span of 12 months, Marchiori proposed considering links
as endorsements [11], Kleinberg introduced HITS, an algo-
rithm that computes hub and authority scores for pages in
the distance-one neighborhood of the result set, and Page
et al. described PageRank [13], an algorithm that com-
putes the global importance of a web page and that was
intended to improve on Marchiori’s simple link-counting by
recursively taking the importance of endorsing pages into ac-
count. Both HITS and PageRank proved to be highly influ-
ential algorithms in the web research community, inspiring
a large amount of follow-on work. A particular interesting
such instance is Lempel and Moran’s SALSA algorithm [9],
which combines key ideas from HITS and PageRank. Lem-
pel and Moran’s paper presents persuasive arguments for
the merits of SALSA and provides a thorough analysis of its
mathematical properties, but their experimental validation
was fairly weak (presumably for the very reasons stated in

section 1): They conducted their evaluation on a mere five
queries, using the AltaVista search engine to compile result
sets for each query and AltaVista’s link: feature to obtain
back-link information. AltaVista’s link: feature returned
some back-links, but by no means all and certainly not a
uniform random sample.

This paper is follow-on work to our earlier study of the rel-
ative performance of HITS, PageRank, web page in-degree,
and BM25F [12]. It is based on the same data sets, uses
the same retrieval performance measures, and compares our
new measurements of the performance of SALSA with the
measurements presented in that earlier paper.

We are aware of one earlier study that tried to assess the
performance of SALSA and compared it to that of HITS,
PageRank and in-degree. That study by Borodin et al. was
based on 34 queries, result sets of 200 pages per query ob-
tained from Google, and a neighborhood graph derived by
retrieving 50 back-links per result using Google’s link: fea-
ture, which has the same limitations as AltaVista’s link: fea-
ture. By contrast, our study is conducted on a set of over
28,000 queries and a web graph containing close to 3 billion
URLs.

3. OUR DATA SETS
The study presented in this paper is based on the same

two data sets used in our earlier comparison of HITS with
PageRank and in-degree [12]. These two data sets are a large
web graph and a substantial set of queries with associated
results, some of which were labeled by human judges.

The web graph was obtained by performing a breadth-first
search web crawl that retrieved 463,685,607 pages. These
pages contain 17,672,011,890 hyperlinks (after eliminating
duplicate links embedded in the same web page), which refer
to a total of 2,897,671,002 distinct URLs. The mean out-
degree of a crawled web page is 38.11; the mean in-degree
of discovered pages (whether crawled or not) is 6.10.

Our query set was produced by sampling 28,043 queries
from the Live Search query log, and retrieving a total of
66,846,214 result URLs for these queries, or about 2,838 re-
sults per query on average. It should be pointed out that
our web graph covers only 9,525,566 pages or 14.25% of the
result set. 485,656 of the results in the query set (about 17.3
results per query) were rated by human judges as to their rel-
evance to the given query using a six point scale, the ratings
being “definitive”, “excellent”, “good”, “fair”, “bad”, and
“detrimental”. Results were selected for judgment based on
their commercial search engine placement; in other words,
the subset of labeled results is biased towards documents
considered relevant by pre-existing ranking algorithms. Our
performance measures (described in the following section)
treat unlabeled results as “detrimental”. Spot-checking the
set of unlabeled results suggests that this assumption is in-
deed reasonable.

4. MEASURES OF EFFECTIVENESS
The study described in this paper used the same retrieval

performance measures we employed in our earlier compari-
son of HITS, PageRank and in-degree: Mean average preci-
sion, mean reciprocal rank, and normalized discounted cu-
mulative gain. In this section, we will briefly review their
respective definitions. In the following, given a rank-ordered
vector of n results, let rat(i) be the rating of the result at



rank i, with 5 being “definitive” and 0 being “detrimental”
or “unlabeled”, and let rel(i) be 1 if the result at rank i is
relevant1 and 0 otherwise.

4.1 Mean Average Precision
The precision P@k at document cut-off value k is de-

fined to be 1
k

Pk
i=1 rel(i), i.e. the fraction of relevant results

among the k highest-ranking results. The average precision
at document cut-off value k is defined to be:

AP@k =

Pk
i=1 rel(i) P@i
Pn

i=1 rel(i)

The mean average precision MAP@k at document cut-off
value k of a query set is the (arithmetic) mean of the average
precisions of all queries in the query set.

4.2 Mean Reciprocal Rank
The reciprocal rank at document cut-off value k is defined

to be:

RR@k =

ȷ

1
i

if ∃i ≤ k : rel(i) = 1 ∧ ∀j < i : rel(j) = 0
0 otherwise

The mean reciprocal rank MRR@k at document cut-off
value k of a query set is the mean of the reciprocal ranks of
all queries in the query set.

4.3 Normalized Discounted Cumulative Gain
The normalized discounted cumulative gain measure [8]

is a non-binary, graded measure that considers all docu-
ments in the result set, but discounts the contribution of
low-ranking documents. NDCG is actually a family of per-
formance measures. In this study, we used the following
instantiation: We define the discounted cumulative gain at
document cut-off value k to be:

DCG@k =
k

X

i=1

1
log(1 + i)

“

2rat(i) − 1
”

The normalized discounted cumulative gain NDCG@k of a
scored result set is defined to be the DCG@k of the result set
rank-ordered according to the scores divided by the DCG@k
of the result set rank-ordered by an “ideal” scoring function,
one that rank-orders results according to their rating.

5. HITS AND SALSA
In the mid-1990s, Jon Kleinberg proposed an algorithm

called Hypertext-Induced Topic Search or HITS for short [6].
HITS is a query-dependent algorithm: It views the docu-
ments in the result set as a set of nodes in the web graph;
it adds some nodes in the immediate neighborhood in the
graph to form a base set, it projects the base set onto the
full web graph to form a neighborhood graph, and finally it
computes two scores, a hub score and an authority score, for
each node in the neighborhood graph.

By contrast, the PageRank algorithm computes the query-
independent importance of a web page [13]. A web page u
with importance score (“PageRank”) R(u) propagates a uni-
form fraction of its score to each of the pages it links to. For

1In this study, we consider a result to be relevant if it has
a label of “good” or better, and irrelevant if it has a label
of “fair” or worse”. We did investigate if considering docu-
ments labeled “fair” as relevant would lead to any qualitative
change in results, and found that not to be the case.

technical reasons, the propagation of scores is attenuated by
a damping factor, and each node in the web graph receives a
share of the scores that are thus diverted. PageRank is often
viewed as a random walk over the web graph, and in that
view the score of a page is the stationary probability that a
node is currently being visited by the random process.

The Stochastic Approach to Link-Sensitivity Analysis (or
SALSA for short) combines key ideas from HITS and Page-
Rank. SALSA uses exactly the same definition of query-
specific neighborhood graph as HITS does, and it also com-
putes a hub score and an authority score for each node in
the neighborhood graph. However, while HITS uses an ap-
proach called “mutual enforcement” where hubs enforce au-
thorities and vice versa, SALSA computes these scores by
performing two independent random walks on the neighbor-
hood graph, a hub walk and an authority walk, thus adopting
a key idea of PageRank.

The remainder of this section provides a formal definition
of neighborhood graph, using the same notation as our ear-
lier paper [12], and then describes the HITS and SALSA
algorithms.

5.1 The neighborhood graph of a result set
HITS and SALSA are based on two intuitions: First, hy-

perlinks can be viewed as topical endorsements: A hyperlink
from a page u devoted to topic T to another page v is likely
to endorse the authority of v with respect to topic T . Sec-
ond, the result set of a particular query is likely to have a
certain amount of topical coherence. Therefore, it makes
sense to perform link analysis not on the entire web graph,
but rather on just the neighborhood of pages contained in
the result set, since this neighborhood is more likely to con-
tain topically relevant links. But while the set of nodes im-
mediately reachable from the result set is manageable (given
that most pages have only a limited number of hyperlinks
embedded into them), the set of pages immediately leading
to the result set can be enormous. For this reason, Klein-
berg suggests sampling a fixed-size random subset of the
pages linking to any page with high in-degree in the result
set. Moreover, Kleinberg suggests considering only links
that cross host boundaries, the rationale being that links
between pages on the same host (“intrinsic links”) are likely
to be navigational or nepotistic and not topically relevant.

Given a web graph (V, E) with vertex set V and edge set
E ⊆ V ×V , and the set of result URLs to a query (called the
root set R ⊆ V ) as input, HITS computes a neighborhood
graph consisting of a base set B ⊆ V (the root set and
some of its neighboring vertices) and some of the edges in
E induced by B. In order to formalize the definition of the
neighborhood graph, we first introduce a sampling operator
and the concept of a link-selection predicate.

Given a set A, the notation Sn[A] draws n elements uni-
formly at random from A; Sn[A] = A if |A| ≤ n.

A link section predicate P takes an edge (u, v) ∈ E. In
this study, we use the following three link section predicates:

all(u, v) ⇔ true

ih(u, v) ⇔ host(u) ≠ host(v)

id(u, v) ⇔ domain(u) ≠ domain(v)

where host(u) denotes the host of URL u, and domain(u)
denotes the domain of URL u. So, all is true for all links,
whereas ih is true only for inter-host links, and id is true
only for inter-domain links.



The outlinked-set OP of the root set R w.r.t. a link-
selection predicate P is defined to be:

OP =
[

u∈R

{v ∈ V : (u, v) ∈ E ∧ P (u, v)}

The inlinking-set IP
s of the root set R w.r.t. a link-selection

predicate P and a sampling value s is defined to be:

IP
s =

[

v∈R

Ss[{u ∈ V : (u, v) ∈ E ∧ P (u, v)}]

The base set BP
s of the root set R w.r.t. P and s is defined

to be:

BP
s = R ∪ IP

s ∪ OP

The neighborhood graph (BP
s , NP

s ) has the base set BP
s as

its vertex set and an edge set NP
s containing those edges in

E that are covered by BP
s and permitted by P :

NP
s = {(u, v) ∈ E : u ∈ BP

s ∧ v ∈ BP
s ∧ P (u, v)}

To simplify notation, we write B to denote BP
s , and N to

denote NP
s .

5.2 The HITS algorithm
For each node u in the neighborhood graph, HITS com-

putes two scores: an authority score A(u), estimating how
authoritative u is on the topic induced by the query, and a
hub score H(u), indicating whether u is a good reference to
many authoritative pages. This is done using the following
algorithm:

HITS-Hub-and-Authority-Scores:

1. For all u ∈ B do H(u) :=
q

1
|B| , A(u) :=

q

1
|B| .

2. Repeat until H and A converge:

(a) For all v ∈ B : A′(v) :=
P

(u,v)∈N H(u)

(b) For all u ∈ B : H ′(u) :=
P

(u,v)∈N A(v)

(c) H := 1
∥H′∥2

H ′, A := 1
∥A′∥2

A′

where ∥X∥2 is the euclidean norm of vector X.

5.3 The SALSA algorithm
For each node u in the neighborhood graph, SALSA com-

putes an authority score A(u) and a hub score H(u) using
the following two independent algorithms:

SALSA-Hub-Scores:

1. Let BH be {u ∈ B : out(u) > 0}.

2. For all u ∈ B:

H(u) :=

ȷ 1
|BH |

if u ∈ BH

0 otherwise

3. Repeat until H converges:

(a) For all u ∈ BH :

H ′(u) :=
X

(u,v)∈N

X

(w,v)∈N

H(w)
in(v)out(w)

(b) For all u ∈ BH : H(u) := H ′(u)

SALSA-Authority-Scores:

1. Let BA be {u ∈ B : in(u) > 0}.

2. For all u ∈ B:

A(u) :=

ȷ 1
|BA|

if u ∈ BA

0 otherwise

3. Repeat until A converges:

(a) For all u ∈ BA:

A′(u) :=
X

(v,u)∈N

X

(v,w)∈N

A(w)
out(v)in(w)

(b) For all u ∈ BA : A(u) := A′(u)

6. THE SCALABLE HYPERLINK STORE
We implemented HITS and SALSA on top of the Scalable

Hyperlink Store, a special-purpose storage system for the
web graph. SHS was heavily influenced by the Compaq Link
Database [14], but unlike that system, SHS is distributed
over many machines. It maintains the web graph in main
memory to allow extremely fast random access to nodes
(URLs) and edges (hyperlinks), and it uses data compres-
sion techniques that leverage structural properties (namely,
the prevalence of relative links) of the web graph to achieve
fairly good compression. Serving the full 17.7 billion link
graph mentioned in section 3 requires six machines, each
with 16 GB of main memory.

The two principal abstractions used in SHS are a URL
store and two link stores, one to trace links forward and
another to trace them back. Clients use SHS by linking
against a library containing classes that implement clerks
for the URL store and the link stores; all the intricacies
common to distributed systems are handled by the clerks
and the SHS servers.

The URL store maintains a bijection between URLs (strings)
and UIDs (integers that serve as short-hands for URLs).
Clients can map URLs to UIDs and UIDs back to URLs.
The API of the URL store clerk looks as follows:

class UrlStoreClerk {
... // omitting private members

public:
UrlStoreClerk(char *serverNameFile);
~UrlStoreClerk();
INT64 UrlToUid(char *url);
char *UidToUrl(INT64 uid);
SeqInt64 BatchedUrlToUid(SeqString& urls);
SeqString BatchedUidToUrl(SeqInt64& uids);
... // omitting methods irrelevant to this paper

};

The UrlStoreClerk constructor takes the name of a file
that contains the names of the SHS servers maintaining the
graph. The central methods are UrlToUid, which maps a
URL to a UID, and UidToUrl, which maps a UID back to a
URL. The methods BatchedUrlToUid and BatchedUidToUrl
are variants of the previous two methods that allow the map-
ping of entire batches of URLs or UIDs; their purpose is to
allow client applications to amortize RPC overheads. As a
point of reference, mapping a URL to a UID takes about
3 microseconds, while performing a null RPC takes about
100 microseconds; so providing a mechanism to batch up
requests is performance-critical. Our implementations of
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Figure 1: Effectiveness of authority scores computed using different parameterizations of HITS and SALSA;
measured in terms NDCG, MAP and MRR.

HITS and SALSA perform a single call to BatchedUrlToUid
per query.

An SHS service maintains two link stores: One for deter-
mining the outgoing links of a given web page, and one for
determining the incoming links. The API of the link store
clerk is as follows:

class LinkStoreClerk {
... // omitting private members
public:
LinkStoreClerk(char *serverNameFile, bool fwdDB);
~LinkStoreClerk();
SeqInt64 GetLinks(INT64 uid);
SeqInt64 SampleLinks(INT64 uid, int num);
SeqInt64 *BatchedGetLinks(SeqInt64& uids);
SeqInt64 *BatchedSampleLinks(SeqInt64& uids, int num);
... // omitting methods irrelevant to this paper

};

The LinkStoreClerk constructor takes the name of a file
that contains the names of the SHS servers maintaining the
graph, and a boolean value indicating whether to access the
forward or the backward link store. The method GetLinks
takes a UID u and returns the set of UIDs that u links
to (or that link to u, if the backward store is consulted).
The method SampleLinks takes a UID u and an integer n,
and returns a uniform random sample of n UIDs that u
links to (or that link to u); if there are fewer than n such
UIDs, all are returned. The methods BatchedGetLinks and
BatchedSampleLinks are variants of the previous two meth-
ods that allow client applications to batch up many UIDs,
so as to amortize RPC overhead. As a point of reference,
GetLinks takes about 0.4 microseconds per returned UID,
excluding the RPC overhead. Our implementations of HITS
and SALSA perform one call to BatchedSampleLinks and
two calls to BatchedGetLinks per query.

7. EXPERIMENTAL RESULTS
For the experiments described in this paper, we compiled

three SHS databases, one containing all 17.6 billion links

in our web graph (all), one containing only links between
pages that are on different hosts (ih, for “inter-host”), and
one containing only links between pages that are on different
domains (id). Using each of these databases, we computed
HITS and SALSA authority and hub scores for various pa-
rameterizations of the sampling operator S , sampling be-
tween 1 and 100 back-links of each page in the root set.
Result URLs that were not covered by our web graph auto-
matically received authority and hub scores of 0, since they
were not connected to any other nodes in the neighborhood
graph and therefore did not receive any endorsements.

We performed 45 HITS and 45 SALSA computations, each
combining one of the three link selection predicates (all, ih,
and id) with a sampling value. For each combination, we
loaded one of the three databases into an SHS system run-
ning on six machines (each equipped with 16 GB of RAM),
and computed authority and hub scores, one query at a
time. The longest-running combination (SALSA using the
all database and sampling 100 back-links of each root set
vertex) required 60,425 seconds to process the entire query
set, or about 2.15 seconds per query on average.

The first question we are interested in concerns the rela-
tionship between the performance of HITS and SALSA and
the number of back-links sampled per result. One would
expect that sampling more back-links should improve the
effectiveness of both HITS and SALSA, since it leads to a
closer approximation of the complete neighborhood graph.
However, we were surprised! Figure 1 shows the retrieval
performance of HITS and SALSA authority scores as a func-
tion of the number of sampled back-links. The figure con-
tains six graphs, for the two algorithms (HITS and SALSA)
times the three performance measures used (NDCG, MAP,
and MRR, all at document cut-off value 10). Each graph
shows three curves, one for each of the three SHS databases
(all, ih, and id). The horizontal axes (drawn on a log scale)
denote the number of back-links sampled per result, the ver-
tical axes denote retrieval performance.
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Figure 2: Effectiveness of different isolated features; measured in terms of NDCG, MAP and MRR.

The all versions of both HITS and SALSA behave ac-
cording to our intuition. The performance of each variant
increases as more back-links are sampled. It also appears
that at beyond ten samples, the slope of each curve is de-
creasing, suggesting that there are diminishing returns to
including more samples.

The ih and id versions of HITS show a mixed behavior.
According to the NDCG measure, performance increases as
more back-links are sampled, much in the same way as it
does for the all version; however, the absolute performance
is substantially higher. According to both MAP and MRR,
performance maximizes at about 10 samples, and levels out
slightly below the maximum when more samples are drawn.

Finally, the ih and id versions of SALSA behave differ-
ently from what our intuition would suggest. Depending on
the measure used, performance is maximal for between 3
and 8 samples, and falls off in a pronounced fashion as more
samples are drawn. This behavior persists across the entire
possible range of document cut-off values (not shown for rea-
sons of space).2 At this point, we have no clear explanation
for this counterintuitive behavior. Our best hypothesis is
that a small fraction of the nodes in Iih

∞ or Iid
∞ have a dele-

terious effect on effectiveness, and that they are more likely
to be included in Iih

s or Iid
s as s is increased. Testing this

hypothesis is our next goal.
Next, we compare the effectiveness of SALSA as an iso-

lated feature to that of other features. Figure 2 compares
SALSA to all the features covered in our earlier paper [12]:
HITS, PageRank, web page in- and out-degree, and BM25F.
The figure shows three graphs, one for each of the three per-
formance measures. The vertical axis denotes retrieval per-
formance. Each graph shows a set of bars, one per isolated
feature; the bars are ordered by decreasing height. Under
all measures, the three variants of SALSA authority scores
(with the number of sampled back-links chosen to maxi-
mize effectiveness) clearly outperform all other link-based
features, although they are still well below the performance
of BM25F. The ih and id variant of SALSA authority scores
perform about equally well, while the all variant fares sub-
stantially worse. The performance of SALSA hub scores, on
the other hand, is indistinguishable from that of the other
out-link based features.

Actual retrieval systems rely on multiple sources of evi-
dence (hundreds in the case of commercial search engines),
and combine evidence in various ways. In order to assess

2This anomaly manifests itself in a similar or even more
pronounced fashion for other SALSA-like algorithms that
we experimented with, but that are beyond the scope of
this paper.

the impact of a single feature on the overall performance of
a scoring function, it is not enough to measure the perfor-
mance of the feature in isolation, since it may be correlated
with other features that are provided to the scoring function.
One must measure the impact of including this feature on
the performance of the combined evidence.

We chose a fairly simple model for combining features:
Given a set of n features Fi(d) (with 1 ≤ i ≤ n) of a result
document d, we apply a feature-specific transform Ti, adjust
the contribution of the transformed feature using a scalar
weight wi, and add up the contributions of the individual
features. This leads us with the following scoring function:

score(d) =
n

X

i=1

wiTi(Fi(d))

For each feature, we chose a transform function that we em-
pirically determined to be well-suited. Table 1 shows the
chosen transform functions. We tuned the scalar weights
by selecting 5000 queries at random from the test set, us-
ing an iterative refinement process to determine the weight
that maximized the given performance measure, fixed the
weight, and used the remaining 23,043 queries to assess the
performance of the scoring function.

We combined each of the link-based features with BM25F,
our state-of-the-art textual feature, using the above scoring
function, and measured the performance. Figure 3 shows
the results, using the same visualization as figure 2; however,
note that the vertical axes do not start at 0. The right-most
bar in each graph shows the performance of BM25F as an
isolated feature, so as to provide a baseline.

According to the MAP and MRR measures, the combina-
tion of BM25F and SALSA authority scores performs best,
although the margin of the combination of BM25F and web-
page in-degree or PageRank is rather slim. According to
the NDCG measure, SALSA authority scores and page in-

Feature Transform function
salsa-aut-* T (s) = log(s + 3 · 10−6)
salsa-hub-* T (s) = log(s + 3 · 10−2)
hits-aut-* T (s) = log(s + 3 · 10−3)
hits-hub-* T (s) = log(s + 1 · 10−1)
degree-in-* T (s) = log(s + 3 · 10−2)
degree-out-* T (s) = log(s + 3 · 103)
pagerank T (s) = log(s + 3 · 10−12)
bm25f T (s) = s

Table 1: Near-optimal feature transform functions.
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Figure 3: Effectiveness measures for linear combinations of link-based features with BM25F.

degree are about tied. Overall, any feature dominated by
incoming links (page in-degree, HITS and SALSA author-
ity scores, and PageRank) seems to improve performance
by roughly the same amount over the BM25F baseline. We
speculate that this is due to the fact that these features are
not actually independent: BM25F itself incorporates in-link
information, in the guise of anchor text.

We should stress that the results shown in figure 3 are
not necessarily damning for sophisticated (and accordingly
computationally expensive) link-based ranking algorithms.
It might well be that the various link-based features would
exhibit a more differentiated behavior if they were combined
with BM25F using a more sophisticated scoring function,
such as a two-layered RankNet [4].

Finally, we investigated the relationship between “query
specificity” and isolated features. Ideally, we would quantify
the specificity of a query by the cardinality of the result set it
produces. General queries produce large result set (making
good ranking algorithms all the more important), whereas
specific queries produce smaller result sets. Unfortunately,
our query set does not contain the size of the result set.
Therefore, we adopted the same approach as in our earlier
paper, and approximated query specificity by the sum of the
inverse document frequencies of the individual query terms.
Recall that the IDF of a term t with respect to a document
collection C is defined to be log |C|

|C(t)| , where C(t) is the sub-
set of documents in C containing t. By summing up IDFs
of the individual query terms, we make the (unwarranted)
assumption that the terms in a single query are indepen-
dent of each other. This approximation will overestimate
the specificity of a query. Alas, while not perfect, it is at
least directionally accurate.

We broke our query set down into 13 subsets according
to specificity, and used each of five selected features (Page-
Rank, id in-degree, HITS authority scores computed on the
Bid

100 neighborhood, SALSA authority scores computed on
the Bid

3 neighborhood, and BM25F) in isolation to rank the
queries in each subset. Figure 4 shows the performance of
each feature for each query subset. As usual, the figure
shows three graphs, one per performance measure. The
lower horizonal axis of each graph shows query specificity
(the most general queries being on the far left); the upper
horizontal axis shows the size of each of the 13 query sub-
sets. The vertical axis denotes retrieval performance. Each
graph contains five curves, one for each of the chosen fea-
tures. We can see that all the link-based features perform
best for fairly general queries (peaking at an IDF sum of 4
to 8), whereas BM25F performs best for moderately specific
queries (peaking at an IDF sum of 10 to 14). Among the

link-based features, SALSA authority scores clearly perform
best, dominating all other link-based features across the en-
tire query specificity range. According to the MAP and
MRR measures, none of the five features performs very well
for highly specific queries, although BM25F outperforms all
the link-based features, as is to be expected for highly dis-
criminative queries. The NDCG graph has outliers for query
specificities [20, 22) and [24,∞), which we don’t fully under-
stand but attribute to noise.

Figure 4 suggests that web search engines should weigh
evidence differently when scoring the results to a query de-
pending on its specificity. It is reasonable to assume that
we could break down queries along other dimensions as well
(say, navigational vs. transactional), and see a similarly dif-
ferentiated behavior.

8. CONCLUSIONS AND FUTUREWORK
This paper describes a large-scale evaluation of the per-

formance of SALSA relative to other link-based features.
It builds on an earlier comparison of HITS, PageRank, in-
degree, and BM25F. While our earlier study found that
HITS and PageRank were underperforming the base-line
link-based feature of inter-domain in-degree, casting doubt
on the usefulness of sophisticated link-based features in the
ranking of web search results, this study finds that SALSA,
a query-dependent link-based ranking algorithm, substan-
tially outperforms the link-based features examined in our
earlier study. It also finds that SALSA is particularly effec-
tive at scoring fairly general queries.

We hope (and have some reason to believe) that there
exist other query-dependent link-based ranking algorithms
that perform yet better. Our next goal is to investigate the
“sampling anomaly”: one would expect that increasing the
number of result set ancestors sampled into the neighbor-
hood graph would more closely approximate the structure of
the full distance-one neighborhood graph, and should thus
lead to better retrieval performance. However, this is not
true for SALSA (and incidentally also not true for other
algorithms that we have experimented with but that are
beyond the scope of this paper). We believe that under-
standing the cause of this anomaly will provide us with a
deeper understanding of how some nodes in the neighbor-
hood graph can have a deleterious effect on ranking algo-
rithms, and hopefully lead to heuristics for excluding such
nodes from the ranking computation and thus increasing
ranking performance.

Going beyond that, we are planning to experiment with
variations of HITS and SALSA, and with other query-depen-
dent ranking algorithms proposed in the literature, such as
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Figure 4: Effectiveness measures for selected isolated features, broken down by query specificity.

the MAX algorithm proposed by Borodin et al. We feel
confident that link-based ranking features still hold great
(and untapped) potential.
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