#### text statistics

## outline

#### <sup>2</sup> Zipf's law

- <sup>2</sup> Heap's Law
- <sup>2</sup> log–log plots
- <sup>2</sup> least squares <sup>-</sup>tting
- <sup>2</sup> information theory
- <sup>2</sup> collocations
- <sup>2</sup> Markov Models

### frequent words

| Occurrences | Percentage                                                                                           |
|-------------|------------------------------------------------------------------------------------------------------|
| 8,543,794   | 6.8                                                                                                  |
| 3,893,790   | 3.1                                                                                                  |
| 3,364,653   | 2.7                                                                                                  |
| 3,320,687   | 2.6                                                                                                  |
| 2,311,785   | 1.8                                                                                                  |
| 1,559,147   | 1.2                                                                                                  |
| 1,313,561   | 1.0                                                                                                  |
| 1,066,503   | 0.8                                                                                                  |
| 1,027,713   | 0.8                                                                                                  |
|             | 8,543,794<br>3,893,790<br>3,364,653<br>3,320,687<br>2,311,785<br>1,559,147<br>1,313,561<br>1,066,503 |

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus 125,720,891 total word occurrences; 508,209 unique words

- A few words occur very often
  - 2 most frequent words can account for 10% of occurrences
  - top 6 words are 20%, top 50 words are 50%
- Many words are infrequent
- "Principle of Least Effort"
  - easier to repeat words rather than coining new ones
- Rank  $\cdot$  Frequency  $\approx$  Constant
  - pr = (Number of occurrences of word of rank r)/N
  - N total word occurrences
  - probability that a word chosen randomly from the text will be the word of rank r
  - for D unique words  $\Sigma p_r = 1$

 $- r \cdot pr = A$  $- A \approx 0.1$ 

George Kingsley Zipf, 1902-1950 Linguistic professor at Harvard

| Word | Freq  | r  | Pr    | r*Pr   |
|------|-------|----|-------|--------|
| the  | 15659 | 1  | 6.422 | 0.0642 |
| of   | 7179  | 2  | 2.944 | 0.0589 |
| to   | 6287  | 3  | 2.578 | 0.0774 |
| а    | 5830  | 4  | 2.391 | 0.0956 |
| and  | 5580  | 5  | 2.288 | 0.1144 |
| in   | 5245  | 6  | 2.151 | 0.1291 |
| that | 2494  | 7  | 1.023 | 0.0716 |
| for  | 2197  | 8  | 0.901 | 0.0721 |
| was  | 2147  | 9  | 0.881 | 0.0792 |
| with | 1824  | 10 | 0.748 | 0.0748 |
| his  | 1813  | 11 | 0.744 | 0.0818 |
| is   | 1800  | 12 | 0.738 | 0.0886 |
| he   | 1687  | 13 | 0.692 | 0.0899 |
| as   | 1576  | 14 | 0.646 | 0.0905 |
| on   | 1523  | 15 | 0.625 | 0.0937 |
| by   | 1443  | 16 | 0.592 | 0.0947 |
| at   | 1318  | 17 | 0.541 | 0.0919 |
| it   | 1232  | 18 | 0.505 | 0.0909 |
| from | 1217  | 19 | 0.499 | 0.0948 |
| but  | 1136  | 20 | 0.466 | 0.0932 |
| u    | 949   | 21 | 0.389 | 0.0817 |
| had  | 937   | 22 | 0.384 | 0.0845 |
| last | 909   | 23 | 0.373 | 0.0857 |
| be   | 906   | 24 | 0.372 | 0.0892 |
| who  | 883   | 25 | 0.362 | 0.0905 |

| Word       | Freq | r  | Pr    | r*Pr   |
|------------|------|----|-------|--------|
| has        | 880  | 26 | 0.361 | 0.0938 |
| not        | 875  | 27 | 0.359 | 0.0969 |
|            |      |    |       |        |
| an         | 863  | 28 | 0.354 | 0.0991 |
| S          | 862  | 29 | 0.354 | 0.1025 |
| have       | 860  | 30 | 0.353 | 0.1058 |
| were       | 858  | 31 | 0.352 | 0.1091 |
| their      | 812  | 32 | 0.333 | 0.1066 |
| are        | 807  | 33 | 0.331 | 0.1092 |
| one        | 742  | 34 | 0.304 | 0.1035 |
| they       | 679  | 35 | 0.278 | 0.0975 |
| its        | 668  | 36 | 0.274 | 0.0986 |
| all        | 646  | 37 | 0.265 | 0.098  |
| week       | 626  | 38 | 0.257 | 0.0976 |
| government | 582  | 39 | 0.239 | 0.0931 |
| when       | 577  | 40 | 0.237 | 0.0947 |
| would      | 572  | 41 | 0.235 | 0.0962 |
| been       | 554  | 42 | 0.227 | 0.0954 |
| out        | 553  | 43 | 0.227 | 0.0975 |
| new        | 544  | 44 | 0.223 | 0.0982 |
| which      | 539  | 45 | 0.221 | 0.0995 |
| up         | 539  | 45 | 0.221 | 0.0995 |
| more       | 535  | 47 | 0.219 | 0.1031 |
| into       | 516  | 48 | 0.212 | 0.1016 |
| only       | 504  | 49 | 0.207 | 0.1013 |
| will       | 488  | 50 | 0.2   | 0.1001 |

Top 50 words from 423 short TIME magazine articles

| Word | Freq      | r   | Pr(%) | r*Pr   |
|------|-----------|-----|-------|--------|
| the  | 2,420,778 | 1   | 6.488 | 0.0649 |
| of   | 1,045,733 | 2   | 2.803 | 0.0561 |
| to   | 968,882   | 3   | 2.597 | 0.0779 |
| а    | 892,429   | - 4 | 2.392 | 0.0957 |
| and  | 865,644   | 5   | 2.32  | 0.116  |
| in   | 847,825   | 6   | 2.272 | 0.1363 |
| said | 504,593   | 7   | 1.352 | 0.0947 |
| for  | 363,865   | 8   | 0.975 | 0.078  |
| that | 347,072   | 9   | 0.93  | 0.0837 |
| was  | 293,027   | 10  | 0.785 | 0.0785 |
| on   | 291,947   | 11  | 0.783 | 0.0861 |
| he   | 250,919   | 12  | 0.673 | 0.0807 |
| is   | 245,843   | 13  | 0.659 | 0.0857 |
| with | 223,846   | 14  | 0.6   | 0.084  |
| at   | 210,064   | 15  | 0.563 | 0.0845 |
| by   | 209,586   | 16  | 0.562 | 0.0899 |
| it   | 195,621   | 17  | 0.524 | 0.0891 |
| from | 189,451   | 18  | 0.508 | 0.0914 |
| as   | 181,714   | 19  | 0.487 | 0.0925 |
| be   | 157,300   | 20  | 0.422 | 0.0843 |
| were | 153,913   | 21  | 0.413 | 0.0866 |
| an   | 152,576   | 22  | 0.409 | 0.09   |
| have | 149,749   | 23  | 0.401 | 0.0923 |
| his  | 142,285   | 24  | 0.381 |        |
| but  | 140,880   | 25  | 0.378 | 0.0944 |

| Word    | Freq    | r  | Pr(%) | r*Pr   |
|---------|---------|----|-------|--------|
| has     | 136,007 | 26 | 0.365 | 0.0948 |
| are     | 130,322 | 27 | 0.349 | 0.0943 |
| not     | 127,493 | 28 | 0.342 | 0.0957 |
| who     | 116,364 | 29 | 0.312 | 0.0904 |
| they    | 111,024 | 30 | 0.298 | 0.0893 |
| its     | 111,021 | 31 | 0.298 | 0.0922 |
| had     | 103,943 | 32 | 0.279 | 0.0892 |
| will    | 102,949 | 33 | 0.276 | 0.0911 |
| would   | 99,503  | 34 | 0.267 | 0.0907 |
| about   | 92,983  | 35 | 0.249 | 0.0872 |
| i       | 92,005  | 36 | 0.247 | 0.0888 |
| been    | 88,786  | 37 | 0.238 | 0.0881 |
| this    | 87,286  | 38 | 0.234 | 0.0889 |
| their   | 84,638  | 39 | 0.227 | 0.0885 |
| new     | 83,449  | 40 | 0.224 | 0.0895 |
| or      | 81,796  | 41 | 0.219 | 0.0899 |
| which   | 80,385  | 42 | 0.215 | 0.0905 |
| we      | 80,245  | 43 | 0.215 | 0.0925 |
| more    | 76,388  | 44 | 0.205 | 0.0901 |
| after   | 75,165  | 45 | 0.201 | 0.0907 |
| us      | 72,045  | 46 | 0.193 | 0.0888 |
| percent | 71,956  | 47 | 0.193 | 0.0906 |
| up      | 71,082  | 48 | 0.191 | 0.0915 |
| one     | 70,266  | 49 | 0.188 | 0.0923 |
| people  | 68,988  | 50 | 0.185 | 0.0925 |

Top 50 words from 84,678 Associated Press 1989 articles

### Zipf's Law and H.P.Luhn



Figure 2.1. A plot of the hyperbolic curve relating f, the frequency of occurrence and r, the rank order (Adaped from Schultz <sup>44</sup>page 120)

#### Zipf's law: predicting frequencies

- A word that occurs n times has rank  $r_n = AN/r$   $r \cdot p_r = A$
- Several words may occur n times
- $\bullet$  Assume rank given by  $r_n$  applies to last of the words that occur n times
- r<sub>n</sub> words occur n times or more (ranks 1..r<sub>n</sub>)
- $r_{n+1}$  words occur n+1 times or more - Note:  $r_n > r_{n+1}$  since words that occur frequently are at the start of list (lower rank)



#### Zipf's law: predicting frequencies

$$r \cdot p_r = A$$

- The number of words that occur exactly n times is  $I_n = r_n r_{n+1} = AN/n AN/(n+1) = AN / (n(n+1))$
- Highest ranking term occurs once and has rank
  D = AN/1
- Proportion of words with frequency n is  $I_n/D = 1/(n(n+1))$
- Proportion of words occurring once is 1/2

#### Zipf's law: predicting frequencies

| Rask | Predicted<br>Proportion of<br>Occurrences<br>1/n(n+1) | Actual Proportion<br>occurring n times<br>I <sub>n</sub> /D | Actual Number<br>of Words<br>occurring n<br>times |
|------|-------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|
| 1    | .500                                                  | .402                                                        | 204,357                                           |
| 2    | .167                                                  | .132                                                        | 67,082                                            |
| 3    | .083                                                  | .069                                                        | 35,083                                            |
| 4    | .050                                                  | .046                                                        | 23,271                                            |
| 5    | .033                                                  | .032                                                        | 16,332                                            |
| 6    | .024                                                  | .024                                                        | 12,421                                            |
| 7    | .018                                                  | .019                                                        | 9,766                                             |
| 8    | .014                                                  | .016                                                        | 8,200                                             |
| 9    | .011                                                  | .014                                                        | 6,907                                             |
| 10   | .009                                                  | .012                                                        | 5,893                                             |

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus

### Zipf's law and real data

- A law of the form  $y = kx^c$  is called a power law.
- Zipf's law is a power law with c = -1- r = A·n<sup>-1</sup> n = A·r<sup>-1</sup> - A is a constant for a fixed collection
- On a log-log plot, power laws give a straight line with slope c.
- $-\log(y) = \log(kx^c) = \log(k) + \log(x)$
- $-\log(n) = \log(Ar^{-1}) = \log(A) 1 \cdot \log(r)$
- Zipf is quite accurate except for very high and low rank.

#### high and low ranks



### Zipf's law: Mandelbrot correction

- The following more general form gives bit better fit
  - Adds a constant to the denominator
  - $-y=k(x+t)^{c}$



• Zipf's explanation was his "principle of least effort."

•Balance between speaker's desire for a small vocabulary and hearer's desire for a large one.

• Debate (1955-61) between Mandelbrot and H. Simon over explanation.

• Li (1992) shows that just random typing of letters including a space will generate "words" with a Zipfian distribution.

- http://linkage.rockefeller.edu/wli/zipf/
- Short words more likely to be generated

### Explanations for Zipf Law

Zipf's explanation was his "principle of least effort." Balance between speaker's desire for a small vocabulary and hearer's desire for a large one.

- Debate (1955-61) between Mandelbrot and H. Simon over explanation
- Li (1992) shows that just random typing of letters including a space will generate "words" with a Zipfian distribution.
  - http://linkage.rockefeller.edu/wli/zipf/
  - Short words more likely to be generated

# Heap's law

• How does the size of the overall vocabulary (number of unique words) grow with the size of the corpus?

- Vocabulary has no upper bound due to proper names, typos, etc.
- New words occur less frequently as vocabulary grows

• If V is the size of the vocabulary and the N is the length of the corpus in words:

 $-V = KN^{\beta} (0 < \beta < 1)$ 

- Typical constants:
  - $-K \approx 10 100$
  - $-\beta \approx 0.4-0.6$  (approx. square-root of n)

 Can be derived from Zipf's law by assuming documents are generated by randomly sampling words from a Zipfian distribution

### Heap's law

