## text statistics

## outline

${ }^{2}$ Zipf's law<br>${ }^{2}$ Heap's Law<br>${ }^{2}$ log-log plots<br>${ }^{2}$ least squares ${ }^{-}$tting<br>${ }^{2}$ information theory<br>${ }^{2}$ collocations<br>${ }^{2}$ M arkov M odels

## frequent words

## Word <br> Occurrences

## Percentage

| the | $8,543,794$ | 6.8 |
| :--- | :---: | :--- |
| of | $3,893,790$ | 3.1 |
| to | $3,364,653$ | 2.7 |
| and | $3,320,687$ | 2.6 |
| in | $2,311,785$ | 1.8 |
| is | $1,559,147$ | 1.2 |
| for | $1,313,561$ | 1.0 |
| that | $1,066,503$ | 0.8 |
| said | $1,027,713$ |  |

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus 125,720,891 total word occurrences; 508,209 unique words

## Zipf's law

- A few words occur very often
- 2 most frequent words can account for $10 \%$ of occurrences
- top 6 words are 20\%, top 50 words are 50\%
- Many words are infrequent
- "Principle of Least Effort"
- easier to repeat words rather than coining new ones
- Rank $\cdot$ Frequency $\approx$ Constant
- pr = (Number of occurrences of word of rank r)/N
- N total word occurrences
- probability that a word chosen randomly from the text will be the word of rank r
- for $D$ unique words $\Sigma p_{r}=1$
$-\mathrm{r} \cdot \mathrm{pr}=\mathrm{A}$
$-A \approx 0.1$
George Kingsley Zipf, 1902-1950
Linguistic professor at Harvard


## Zipf's law

| Word | Freq | $r$ | $P r$ | $r^{*} P r$ |
| :--- | ---: | ---: | ---: | ---: |
| the | 15659 | 1 | 6.422 | 0.0642 |
| of | 7179 | 2 | 2.944 | 0.0589 |
| to | 6287 | 3 | 2.578 | 0.0774 |
| a | 5830 | 4 | 2.391 | 0.0956 |
| and | 5580 | 5 | 2.288 | 0.1144 |
| in | 5245 | 6 | 2.151 | 0.1291 |
| that | 2494 | 7 | 1.023 | 0.0716 |
| for | 2197 | 8 | 0.901 | 0.0721 |
| was | 2147 | 9 | 0.881 | 0.0792 |
| with | 1824 | 10 | 0.748 | 0.0748 |
| his | 1813 | 11 | 0.744 | 0.0818 |
| is | 1800 | 12 | 0.738 | 0.0886 |
| he | 1687 | 13 | 0.692 | 0.0899 |
| as | 1576 | 14 | 0.646 | 0.0905 |
| on | 1523 | 15 | 0.625 | 0.0937 |
| by | 1443 | 16 | 0.592 | 0.0947 |
| at | 1318 | 17 | 0.541 | 0.0919 |
| it | 1232 | 18 | 0.505 | 0.0909 |
| itom | 1217 | 19 | 0.499 | 0.0948 |
| but | 1136 | 20 | 0.466 | 0.0932 |
| u | 949 | 21 | 0.389 | 0.0817 |
| had | 9377 | 22 | 0.384 | 0.0845 |
| last | 909 | 23 | 0.373 | 0.0857 |
| be | 906 | 24 | 0.372 | 0.0892 |
| who | 883 | 25 | 0.362 | 0.0905 |


| Word | Freq | $r$ | $P r$ | $r^{*} P r$ |
| :--- | :---: | :--- | :--- | :--- |
| has | 880 | 26 | 0.361 | 0.0938 |
| not | 875 | 27 | 0.359 | 0.0969 |
| an | 863 | 28 | 0.354 | 0.0991 |
| s | 862 | 29 | 0.354 | 0.1025 |
| s | 860 | 30 | 0.353 | 0.1058 |
| have | 858 | 31 | 0.352 | 0.1091 |
| were | 812 | 32 | 0.333 | 0.1066 |
| their | 807 | 33 | 0.331 | 0.1092 |
| are | 742 | 34 | 0.304 | 0.1035 |
| one | 679 | 35 | 0.278 | 0.0975 |
| they | 668 | 36 | 0.274 | 0.0986 |
| its | 646 | 37 | 0.265 | 0.098 |
| all | 626 | 38 | 0.257 | 0.0976 |
| week | 582 | 39 | 0.239 | 0.0931 |
| government | 577 | 40 | 0.237 | 0.0947 |
| when | 572 | 41 | 0.235 | 0.0962 |
| would | 554 | 42 | 0.227 | 0.0954 |
| been | 553 | 43 | 0.227 | 0.0975 |
| out | 544 | 44 | 0.223 | 0.0982 |
| new | 539 | 45 | 0.221 | 0.0995 |
| which | 539 | 45 | 0.221 | 0.0995 |
| up | 535 | 47 | 0.219 | 0.1031 |
| more | 516 | 48 | 0.212 | 0.1016 |
| into | 504 | 49 | 0.207 | 0.1013 |
| only | 488 | 50 | 0.2 | 0.1001 |
| will |  |  |  |  |

Top 50 words from 423 short TIME magazine articles

## Zipf's law

| Word | Freq | $r$ | Pr(\%) | $r^{*} \mathrm{Pr}$ | Word | Freq | $r$ | Pr(\%) | $r^{*} \mathrm{Pr}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| the | 2,420,778 | 1 | 6.488 | 0.0649 | has | 136,007 | 26 | 0.365 | 0.0948 |
| of | 1,045,733 | 2 | 2.803 | 0.0561 | are | 130,322 | 27 | 0.349 | 0.0943 |
| to | 968,882 | 3 | 2.597 | 0.0779 | not | 127,493 | 28 | 0.342 | 0.0957 |
| a | 892,429 | 4 | 2.392 | 0.0957 | who | 116,364 | 29 | 0.312 | 0.0904 |
| and | 865,644 | 5 | 2.32 | 0.116 | they | 111,024 | 30 | 0.298 | 0.0893 |
| in | 847,825 | 6 | 2.272 | 0.1363 | its | 111,021 | 31 | 0.298 | 0.0922 |
| said | 504,593 | 7 | 1.352 | 0.0947 | had | 103,943 | 32 | 0.279 | 0.0892 |
| for | 363,865 | 8 | 0.975 | 0.078 | will | 102,949 | 33 | 0.276 | 0.0911 |
| that | 347,072 | 9 | 0.93 | 0.0837 | would | 99,503 | 34 | 0.267 | 0.0907 |
| was | 293,027 | 10 | 0.785 | 0.0785 | about | 92,983 | 35 | 0.249 | 0.0872 |
| on | 291,947 | 11 | 0.783 | 0.0861 |  | 92,005 | 36 | 0.247 | 0.0888 |
| he | 250,919 | 12 | 0.673 | 0.0807 | been | 88,786 | 37 | 0.238 | 0.0881 |
| is | 245,843 | 13 | 0.659 | 0.0857 | this | 87,286 | 38 | 0.234 | 0.0889 |
| with | 223,846 | 14 | 0.6 | 0.084 | their | 84,638 | 39 | 0.227 | 0.0885 |
| at | 210,064 | 15 | 0.563 | 0.0845 | new | 83,449 | 40 | 0.224 | 0.0895 |
| by | 209,586 | 16 | 0.562 | 0.0899 | or | 81,796 | 41 | 0.219 | 0.0899 |
| it | 195,621 | 17 | 0.524 | 0.0891 | which | 80,385 | 42 | 0.215 | 0.0905 |
| from | 189,451 | 18 | 0.508 | 0.0914 | we | 80,245 | 43 | 0.215 | 0.0925 |
| as | 181,714 | 19 | 0.487 | 0.0925 | more | 76,388 | 44 | 0.205 | 0.0901 |
| be | 157,300 | 20 | 0.422 | 0.0843 | after | 75,165 | 45 | 0.201 | 0.0907 |
| were | 153,913 | 21 | 0.413 | 0.0866 | us | 72,045 | 46 | 0.193 | 0.0888 |
| an | 152,576 | 22 | 0.409 | 0.09 | percent | 71,956 | 47 | 0.193 | 0.0906 |
| have | 149,749 | 23 | 0.401 | 0.0923 | up | 71,082 | 48 | 0.191 | 0.0915 |
| his | 142,285 | 24 | 0.381 | 0.0915 | one | 70,266 | 49 | 0.188 | 0.0923 |
| but | 140,880 | 25 | 0.378 | 0.0944 | people | 68,988 | 50 | 0.185 | 0.0925 |

Top 50 words from 84,678 Associated Press 1989 articles

## Zipf's Law and H.P.Luhn



Figure 2.1. A plot of the hyperbolic curve relating $f$, the frequency of occurrence and $r$, the rank order (Adaped from Schultz ${ }^{4}$ page 120)

## Zipf's law: predicting frequencies

- A word that occurs $n$ times has rank $r_{n}=A N / r r \cdot p_{r}=A$
- Several words may occur n times
- Assume rank given by $r_{n}$ applies to last of the words that occur $n$ times
- $r_{n}$ words occur $n$ times or more (ranks $1 . . r_{n}$ )
- $r_{n+1}$ words occur $n+1$ times or more
- Note: $r_{n}>r_{n+1}$ since words that occur frequently are at the start of list (lower rank)

| 4. a | 98 |
| :---: | :---: |
| 5. and | 90 |
| 6. in | 90 |
| 7. said | 90 |
| 4 8. for | 88 |
| $\mathrm{r}_{98}=4$ 9. that | 88 |
| $\mathrm{r}_{90}=7 \quad 10$. was | 87 |
| $r_{79}=20$ 11. on | 85 |
| 79 12. he | 85 |
| 13. is | 85 |
| 14. with | 85 |
| 15. at | 84 |
| 16. by | 83 |
| 17. it | 80 |
| 18. from | 79 |
| 19. as | 79 |
| 20. be | 79 |
| 21. were | 78 |
| 22. an | 78 |
| 23. have | 73 |
| 24. his | 73 |
| 25. but | 72 |

## Zipf's law: predicting frequencies

$r \cdot p_{r}=A$

- The number of words that occur exactly $n$ times is
$I_{n}=r_{n}-r_{n+1}=A N / n-A N /(n+1)=A N /(n(n+1))$
- Highest ranking term occurs once and has rank

D = AN/1

- Proportion of words with frequency n is
$I_{n} / D=1 /(n(n+1))$
- Proportion of words occurring once is $1 / 2$


## Zipf's law: predicting frequencies

| $\cdots$ | Predicted <br> Proportion of <br> Occurrences <br> $\mathbf{1 / n ( n + 1 )}$ | Actual Proportion <br> occurring $\mathbf{n}$ times <br> $\mathbf{I}_{\mathbf{n}} \mathbf{D}$ | Actual Number <br> of Words <br> occurring $\mathbf{n}$ <br> times |
| :---: | :---: | :---: | :---: |
| 1 | .500 | .402 | 204,357 |
| 2 | .167 | .132 | 67,082 |
| 3 | .083 | .069 | 35,083 |
| 4 | .050 | .046 | 23,271 |
| 5 | .033 | .032 | 16,332 |
| 6 | .024 | .024 | 12,421 |
| 7 | .018 | .019 | 9,766 |
| 8 | .014 | .016 | 8,200 |
| 9 | .011 | .014 | 6,907 |
| 10 | .009 | .012 | 5,893 |

Frequencies from 336,310 documents in the 1GB TREC Volume 3 Corpus

## Zipf's law and real data

- A law of the form $y=k x^{c}$ is called a power law.
- Zipf's law is a power law with $c=-1$
$-r=A \cdot n^{-1}$
$n=A \cdot r^{-1}$
- A is a constant for a fixed collection
- On a log-log plot, power laws give a straight line with slope $c$.
$-\log (y)=\log \left(k x^{c}\right)=\log (k)+\operatorname{cog}(\mathrm{x})$
$-\log (\mathrm{n})=\log \left(A r^{-1}\right)=\log (\mathrm{A})-1 \cdot \log (\mathrm{r})$
- Zipf is quite accurate except for very high and low rank.


## high and low ranks



## Zipf's law: Mandelbrot correction

- The following more general form gives bit better fit
- Adds a constant to the denominator
$-y=k(x+t)^{c}$
- Here,
$\mathrm{n}=\mathrm{A} \cdot(\mathrm{r}+\mathrm{t})^{-1}$



## Zipf's law

- Zipf's explanation was his "principle of least effort."
-Balance between speaker's desire for a small vocabulary and hearer's desire for a large one.
- Debate (1955-61) between Mandelbrot and H. Simon over explanation.
- Li (1992) shows that just random typing of letters including a space will generate "words" with a Zipfian distribution.
- http://linkage.rockefeller.edu/wli/zipf/
- Short words more likely to be generated


## Explanations for Zipf Law

Zipf's explanation was his "principle of least effort." Balance between speaker's desire for a small vocabulary and hearer's desire for a large one.

- Debate (1955-61) between Mandelbrot and H. Simon over explanation
- Li (1992) shows that just random typing of letters including a space will generate "words" with a Zipfian distribution.
- http://linkage.rockefeller.edu/wli/zipf/
- Short words more likely to be generated


## Heap's law

- How does the size of the overall vocabulary (number of unique words) grow with the size of the corpus?
- Vocabulary has no upper bound due to proper names, typos, etc.
- New words occur less frequently as vocabulary grows
- If $V$ is the size of the vocabulary and the $N$ is the length of the corpus in words:

$$
-V=K N^{\beta}(0<\beta<1)
$$

- Typical constants:
$-K \approx 10-100$
$-\beta \approx 0.4-0.6$ (approx. square-root of $n$ )
- Can be derived from Zipf's law by assuming documents are generated by randomly sampling words from a Zipfian distribution


## Heap's law



