
1some slides courtesy James allan@umass

compression

2

outline
• Introduction
• Fixed Length Codes

– Short-bytes
– bigrams / Digrams
– n-grams

• Restricted Variable-Length Codes
– basic method
– Extension for larger symbol sets

• Variable-Length Codes
– Huffman Codes / Canonical Huffman Codes
– Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

• Synchronization
• Compressing inverted files

3

compression
• Encoding transforms data from one representation to
• another
• Compression is an encoding that takes less space

– e.g., to reduce load on memory, disk, I/O, network
• Lossless: decoder can reproduce message exactly
• Lossy: can reproduce message approximately
• Degree of compression:

– (Original - Encoded) / Encoded
– example: (125 Mb - 25 Mb) / 25 Mb = 400%

4

compression
• Advantages of Compression

– Save space in memory (e.g., compressed cache)
– Save space when storing (e.g., disk, CD-ROM)
– Save time when accessing (e.g., I/O)
– Save time when communicating (e.g., over network)

• Disadvantages of Compression
– Costs time and computation to compress and uncompress
– Complicates or prevents random access
– May involve loss of information (e.g., JPEG)
– Makes data corruption much more costly. Small errors may

make all of the data inaccessible

5

compresion
• Text Compression vs Data Compression

• Text compression predates most work on general data compression.

• Text compression is a kind of data compression optimized for text (i.e.,
based on a language and a language model).

• Text compression can be faster or simpler than general data
compression, because of assumptions made about the data.

• Text compression assumes a language and language model
• Data compression learns the model on the fly.

• Text compression is effective when the assumptions are met;
• Data compression is effective on almost any data with a skewed

distribution

6

outline
• Introduction
• Fixed Length Codes

– Short-bytes
– bigrams / Digrams
– n-grams

• Restricted Variable-Length Codes
– basic method
– Extension for larger symbol sets

• Variable-Length Codes
– Huffman Codes / Canonical Huffman Codes
– Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

• Synchronization
• Compressing inverted files
• Compression in block-level retrieval

7

fixed length compression
• Storage Unit: 5 bits
• If alphabet ≤ 32 symbols, use 5 bits per symbol
• If alphabet > 32 symbols and ≤ 60

– use 1-30 for most frequent symbols (“base case”),
– use 1-30 for less frequent symbols (“shift case”), and
– use 0 and 31 to shift back and forth (e.g., typewriter).
– Works well when shifts do not occur often.
– Optimization: Just one shift symbol.
– Optimization: Temporary shift, and shift-lock
– Optimization: Multiple “cases”.

8

fixed length compression :  
• Storage Unit: 8 bits (0-255)
• Use 1-87 for blank, upper case, lower case, digits and 25special

characters
• Use 88-255 for bigrams (master + combining)
• master (8): blank, A, E, I, O, N, T, U
• combining(21): blank, plus everything but J, K, Q, X, Y Z
• total codes: 88 + 8 * 21 = 88 + 168 = 256
• Pro: Simple, fast, requires little memory.
• Con: based on a small symbol set
• Con: Maximum compression is 50%.

– average is lower (33%?).
• Variation: 128 ASCII characters and 128 bigrams.
• Extension: Escape character for ASCII 128-255

9

fixed length compression : n-

• Storage Unit: 8 bits
• Similar to bigrams, but extended to cover sequences

of 2 or more characters.
• The goal is that each encoded unit of length > 1

occurs with very high (and roughly equal) probability.
• Popular today for:

– OCR data (scanning errors make bigram assumptions less
applicable)

– asian languages
• two and three symbol words are common
• longer n-grams can capture phrases and names

10

fixed length compression : summary

• Three methods presented
• all are simple

– very effective when their assumptions are correct

• all are based on a small symbol set, to varying
degrees

– some only handle a small symbol set
– some handle a larger symbol set, but compress best when a

few symbols comprise most of the data

• all are based on a strong assumption about the
language(English)

11

outline
• Introduction
• Fixed Length Codes

– Short-bytes
– bigrams / Digrams
– n-grams

• Restricted Variable-Length Codes
– basic method
– Extension for larger symbol sets

• Variable-Length Codes
– Huffman Codes / Canonical Huffman Codes
– Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

• Synchronization
• Compressing inverted files
• Compression in block-level retrieval

12

restricted variable length codes
• an extension of multicase encodings (“shift key”)

where different code lengths are used for each case.
Only a few code lengths are chosen, to simplify
encoding and decoding.

• Use first bit to indicate case.
• 8 most frequent characters fit in 4 bits (0xxx).
• 128 less frequent characters fit in 8 bits (1xxxxxxx)
• In English, 7 most frequent characters are 65% of

occurrences
• Expected code length is approximately 5.4 bits per

character, for a 32.8% compression ratio.
• average code length on WSJ89 is 5.8 bits per

character, for a 27.9% compression ratio

13

restricted variable length codes: more

• Use more than 2 cases.
• 1xxx for 23 = 8 most frequent symbols, and
• 0xxx1xxx for next 26 = 64 symbols, and
• 0xxx0xxx1xxx for next 29 = 512 symbols, and
• ...
• average code length on WSJ89 is 6.2 bits per
symbol, for a 23.0% compression ratio.

• Pro: Variable number of symbols.
• Con: Only 72 symbols in 1 byte.

14

restricted variable length codes :

• 1xxxxxxx for 27 = 128 most frequent symbols

• 0xxxxxxx1xxxxxxx for next 214 = 16,384
symbols

• ...

• average code length on WSJ89 is 8.0 bits per
symbol, for a 0.0% compression ratio (!!).

• Pro: Can be used for integer data
– Examples: word frequencies, inverted lists

15

restricted variable –length codes :

• Restricted Variable-Length Codes can be used on
words (as opposed to symbols)

• build a dictionary, sorted by word frequency, most
frequent words first

• Represent each word as an offset/index into the
dictionary

• Pro: a vocabulary of 20,000-50,000 words with a Zipf
distribution requires 12-13 bits per word

– compared with a 10-11 bits for completely variable length
• Con: The decoding dictionary is large, compared with

other methods.

16

restricted variable-length codes:

• Four methods presented. all are
– simple
– very effective when their assumptions are correct

• No assumptions about language or language
models

• all require an unspecified mapping from
symbols to numbers (a dictionary)

• all but the basic method can handle any size
dictionary

17

outline
• Introduction
• Fixed Length Codes

– Short-bytes
– bigrams / Digrams
– n-grams

• Restricted Variable-Length Codes
– basic method
– Extension for larger symbol sets

• Variable-Length Codes
– Huffman Codes / Canonical Huffman Codes
– Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

• Synchronization
• Compressing inverted files
• Compression in block-level retrieval

18

Huffman codes
• Gather probabilities for symbols

– characters, words, or a mix
• build a tree, as follows:

– Get 2 least frequent symbols/nodes, join with a parent node.
– Label least probable branch 0; label other branch 1.
– P(node) = Σi P(childi)
– Continue until the tree contains all nodes and symbols.

• The path to a leaf indicates its code.
• Frequent symbols are near the root, giving them

short codes.
• Less frequent symbols are deeper, giving them

longer codes.

19

Huffman codes

20

Huffman codes
• Huffman codes are “prefix free”; no code is a prefix of another.
• Many codes are not assigned to any symbol, limiting the amount of

compression possible.
• English text, with symbols for characters, is approximately 5 bits per

character (37.5% compression)
• English text, with symbols for characters and 800 frequent words, yields

4.8-4.0 bits per character (40-50% compression).
• Con: Need a bit-by-bit scan of stream for decoding.
• Con: Looking up codes is somewhat inefficient. The decoder must store

the entire tree.
• Traversing the tree involves chasing pointers; little locality.
• Variation: adaptive models learn the distribution on the fly.
• Variation: Can be used on words (as opposed to characters).

21

Huffman codes

22

Huffman codes

23

Lempel-Ziv
• an adaptive dictionary approach to variable length

coding.
• Use the text already encountered to build the

dictionary.
• If text follows Zipf's laws, a good dictionary is built.
• No need to store dictionary; encoder and decoder

each know how to build it on the fly.
• Some variants: LZ77, Gzip, LZ78, LZW, Unix

compress
• Variants differ on:

– how dictionary is built,
– how pointers are represented (encoded), and
– limitations on what pointers can refer to.

24

Lempel Ziv: encoding
• 0010111010010111011011

25

Lempel Ziv: encoding
• 0010111010010111011011

• break into known prefixes

• 0|01 |011|1 |010|0101|11|0110|11

26

Lempel Ziv: encoding
• 0010111010010111011011

• break into known prefixes

• 0|01 |011|1 |010|0101|11|0110|11

• encode references as pointers

• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

27

Lempel Ziv: encoding
• 0010111010010111011011

• break into known prefixes
• 0|01 |011|1 |010|0101|11|0110|11

• encode references as pointers
• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

• encode the pointers with log(?)bits
• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0 |

0010,?

28

Lempel Ziv: encoding
• 0010111010010111011011

• break into known prefixes
• 0|01 |011|1 |010|0101|11|0110|11

• encode references as pointers
• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

• encode the pointers with log(?)bits
• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0 |0010,?

• final string

29

Lempel Ziv: decoding
• 01101100101100011011110100010

30

Lempel Ziv: decoding
• 01101100101100011011110100010

• decode the pointers with log(?)bits

• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|
101,0 |0010,?

31

Lempel Ziv: decoding
• 01101100101100011011110100010

• decode the pointers with log(?)bits

• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|
101,0 |0010,?

• encode references as pointers

• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

32

Lempel Ziv: decoding
• 01101100101100011011110100010

• decode the pointers with log(?)bits
• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0 |

0010,?

• encode references as pointers
• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

• decode references
• 0|01 |011|1 |010|0101|11|0110|11

33

Lempel Ziv: decoding
• 01101100101100011011110100010

• decode the pointers with log(?)bits
• 0|1,1|01,1 |00,1|011,0 |001,1 |011,1|101,0 |0010,?

• encode references as pointers
• 0|1,1|1,1 |0,1|3,0 |1,1 |3,1|5,0 |2,?

• decode references
• 0|01 |011|1 |010|0101|11|0110|11

• original string

34

Lempel Ziv optimality
• LempelZiv compression rate

approaches (asymptotic) entropy

– When the strings are generated by an
ergodic source [CoverThomas91].

– easier proof : for i.i.d sources
• that is not a good model for English

35

LempelZiv optimality –i.i.d source

35

LempelZiv optimality –i.i.d source
• !"# x $!%!&...!n ' (")*"+," -. !"+/#0 + /"+1

"2'#"3 45 ' 663 (-*2," '+3 789: $ #0" ;2-4'1

46!6#5 #- ("" (*,0 ' (")*"+,"

• ('5 <"=;"!>6? 42"'@(6+#- c ;02'("(x $

y%y&...yc '+3 ,'!! cl $ A -. ;02'("(-. !"+/#0 l

#0"+ ! !-/Q8x: "
P

l
cl !-/cl

8;2--.:
P

|yi|$l
Q8yi: < % (-

"

|yi|$l
Q8yi: < 8

%
cl
:cl

• 6. pi 6(#0" (-*2," ;2-4'4 .-2 !i #0"+ 45 !'B

-. !'2/" +*=4"2(x B6!! 0'?" 2-*/0!5 npi -,,*21

2"+,"(-. !i '+3 #0"+

logQ8x: $! !-/
"

i
p
npi
i # n

P
pi !-/pi $ nHsource

• +-#" #0'#
P

l
cl !-/cl 6(2-*/0!5 #0" <"=;"!>6?

"+,-36+/ !"+/#0 (- #0 "6+")*'!6#5 2"'3(

nH "# LZencodingB06,0 6(#- ('5H #" LZrateC

36

outline
• Introduction
• Fixed Length Codes

– Short-bytes
– bigrams / Digrams
– n-grams

• Restricted Variable-Length Codes
– basic method
– Extension for larger symbol sets

• Variable-Length Codes
– Huffman Codes / Canonical Huffman Codes
– Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

• Synchronization
• Compressing inverted files
• Compression in block-level retrieval

37

synchronization
• It is difficult to randomly access encoded text

• With bit-level encoding (e.g., Huffman codes), it is difficult to
know where one code ends and another begins.

• With adaptive methods, the dictionary depends upon the prior
encoded text.

• Synchronization points can be inserted into an
encoded message, from which decoding can begin.

– For example, pad Huffman codes to the next byte, or restart an
adaptive dictionary.

– Compression effectiveness is reduced, proportional to the number of
synchronization points

38

self-syncronizing codes
• In a self-synchronizing code, the decoder can start in the

middle of a message and eventually synchronize(figure out the
code).

• It may not be possible to guarantee how long it will take the
decoder to synchronize.

• Most variable-length codes are self-synchronizing to some
extent

• Fixed-length codes are not self-synchronizing, but boundaries
are known (synchronization points).

• adaptive codes are not self-synchronizing.

39

synchronization

40

outline
• Introduction
• Fixed Length Codes

– Short-bytes
– bigrams / Digrams
– n-grams

• Restricted Variable-Length Codes
– basic method
– Extension for larger symbol sets

• Variable-Length Codes
– Huffman Codes / Canonical Huffman Codes
– Lempel-Ziv (LZ77, Gzip, LZ78, LZW, Unix compress)

• Synchronization
• Compressing inverted files
• Compression in block-level retrieval

41

compression of inverted files
• Inverted lists are usually compressed

• Inverted files with word locations are about the size of the raw
data

• Distribution of numbers is skewed
– Most numbers are small (e.g., word locations, term frequency)

• Distribution can be made more skewed easily
– Delta encoding: 5, 8, 10, 17 → 5, 3, 2, 7

• Simple compression techniques are often the best choice
– Simple algorithms nearly as effective as complex algorithms
– Simple algorithms much faster than complex algorithms
– Goal: Time saved by reduced I/O > Time required to uncompress

42

inverted list indexes
• The longest lists, which take up the most space, have
the most frequent (probable) words.

• Compressing the longest lists would save the most
space.

• The longest lists should compress easily because
they contain the least information (why?)

• algorithms:
– Delta encoding
– Variable-length encoding
– Unary codes
– Gamma codes
– Delta codes

43

Inverted List Indexes: Compression

• Delta Encoding ("Storing Gaps")

• Reduces range of numbers.

• Produces a more skewed distribution.

• Increases probability of smaller numbers.

• Stemming also increases the probability of
smaller numbers. (Why?)

44

Inverted List Indexes: Compression  

• Variable-Length Codes (Restricted Fixed-
Length Codes)

• review the numeric data generalization of
restricted variable length codes

• advantages:
– Effective
– Global

45

Inverted List Compression: 

• Represent a number n ≥ 0 as n 1-bits
and a terminating 0.

• Great for small numbers.
• Terrible for large numbers

46

Inverted List Compression: 
• a combination of unary and binary codes

• The unary code stores the number of bits needed to
represent n in binary.
• The binary code stores the information necessary to

reconstruct n.
• unary code stores dlog ne
• binary code stores n - 2blog nc

• Example: n = 9
– log 9 = 3, so unary code is 1110.
– 9-8=1, so binary code is 001.
– The complete encoded form is 1110001 (7 bits).

• This method is superior to a binary encoding

47

Inverted List Compression: 
• Generalization of the Gamma code

• Encode the length portion of a Gamma code in a
Gamma code.

• Gamma codes are better for small numbers.
• Delta codes are better for large numbers.
• Example:

– For gamma codes, number of bits is 1 + 2 *log n
– For delta codes, number of bits is:
log n + 1 + 2 * log(1 + log n)

