
CS6200: Information Retrieval
Slides by: Jesse Anderton

Distributed Indexing
Indexing, session 8

The scale of web indexing makes it infeasible to maintain an index on
a single computer. Instead, we distribute the task across a cluster (or
more).

The traditional way to provision a data center is to buy several large
mainframes running a massive database, such as Oracle. In contrast,
distributed indexes generally run on large numbers of cheap
computers that are expected to fail and be replaced frequently.

A primary tool for running software across these clusters is
MapReduce, and similar frameworks.

Distributing Indexing

Suppose you have a very large file of credit
card transactions. Each line has a credit
card number and a transaction amount. You
wish to know the total charged to each card.

You could use a hash table in memory, but if
there are enough numbers you will run out of
space.

If the file was sorted, you could just count
amounts in a single pass.

Similarly, MapReduce programs depend on
proper sorting to group sub-tasks together
on a single computer.

By Analogy

4404-5414-0324-3881 $78.62

4532-7096-2202-7659 $26.92

4787-8099-6978-7089 $451.05

4485-0342-4391-4731 $5.23

4916-2026-7936-6663 $34.50

Credit Card Log

MapReduce is a distributed programming
framework focused on data placement
and distribution.

Mappers take a list of input records and
transform them, generally into a list of the
same length.

Reducers take a list of input records and
transform them, generally into a single
value.

A chain of mappers and reducers is
constructed to transform a large dataset
into a (usually simpler) output value.

MapReduce

Basic Process:!

1. The raw input is sent to the mappers, which
transform it into a sequence of <key, value>
pairs.

2. Shufflers take the mapper output and sent it to
the reducers. A given reducer typically gets all
the pairs with the same key.

3. Reducers process batches of all pairs with the
same key.

The Mapper and Reducer jobs must be
idempotent, meaning that they deterministically
produce the same output from the same input. This
provides fault tolerance, should a machine fail.

MapReduce

This mapper and reducer will count
the number of distinct credit card
numbers in the input.

The mapper emits (outputs) pairs
whose keys are credit card numbers.

The reducer processes a batch of
pairs with the same credit card
number, and emits the total for the
card.

Example: Credit Cards

This mapper and reducer index a
collection of documents.

The mapper emits pairs whose keys
are terms and whose values are
docid:position pairs.

The reducer encodes all postings for
the same term.

How can WriteWord() and
EncodePosting() be written to have
idempotence?

Example: Indexing

MapReduce is a powerful framework which has been extended in
many interesting ways to support sophisticated distributed algorithms.

Here, we’ve seen a simple approach to indexing based on
MapReduce. Consider how we might process queries with
MapReduce.

Next, we’ll take a look at a distributed storage system to complement
our distributed processing.

Map Reduce Summary

CS6200: Information Retrieval
Slides by: Jesse Anderton

Big Table
Storage systems such as BigTable are natural fits for distributed
algorithm execution.

Google invented BigTable to handle its index, document cache, and
most of its other massive storage needs.

This has produced a whole generation of distributed storage systems,
called NoSQL systems. Some examples include MongoDB,
Couchbase, etc.

BigTable was developed by Google to manage their storage needs.

It is a distributed storage system designed to scale across hundreds
of thousands of machines, and to gracefully continue service as
machines fail and are replaced.

Storage systems such as BigTable are natural fits for processes
distributed with MapReduce.

“A Bigtable is a sparse, distributed, persistent multidimensional sorted
map.” –Chang et al, 2006.

Distributed Storage

The data in BigTable is logically organized into rows. For instance, the
inverted list for a term can be stored in a single row.

A single cell is identified by its row key, column, and timestamp. Efficient
methods exist for fetching or updating particular groups of cells. Only
populated cells consume filesystem space: the storage is inherently
sparse.

BigTable Rows

BigTable rows reside within logical
tables, which have pre-defined columns
and group records of a particular type.

The rows are subdivided into ~200MB
tablets, which are the fundamental
underlying filesystem blocks. Tablets
and transaction logs are replicated to
several machines in case of failure.

If a machine fails, another server can
immediately read the tablet data and
transaction log with virtually no
downtime.

BigTable Tablets

All operations on a BigTable are row-based operations.

Most SQL operations are impossible here: no joins or other structured
queries.

BigTable rows can have massive numbers of columns, and individual
cells can contain large amounts of data. For instance, it’s no problem
to store a translation of a document into many languages, each in its
own column of the same row.

BigTable Operations

CS6200: Information Retrieval
Slides by: Jesse Anderton

Query Processing
Both doc-at-a-time and term-at-a-time have their advantages.

• Doc-at-a-time always knows the best k documents, so uses less
memory.

• Term-at-a-time only reads one inverted list at a time, so is more disk
efficient and more easily parallelized (e.g., use one cluster node per
query term).

There are two main approaches to scoring documents for a query on
an inverted index.

• Document-at-a-time processes all the terms’ posting lists in parallel,
calculating the score for each document as it’s encountered.

• Term-at-a-time processes posting lists one at a time, updating the
scores for the documents for each new query term.

There are optimization strategies for either approach that significantly
reduce query processing time.

Query Processing

We scan through the postings for all
terms simultaneously, calculating the
score for each document.

We remember scores for the top k
documents found so far.

Recall that the document score has the
form:

!

for document features f(w) and query
features g(w).

Doc-at-a-Time Processing

All terms processed in parallel

�

Y�S

H(Y) · I(Y)

This algorithm implements doc-at-a-
time retrieval.

It uses a list L of inverted lists for the
query terms, and processes each
document in sequence until all have
been scored.

The documents are placed into the
priority queue R so the top k can be
returned.

Doc-at-a-Time Algorithm
Get the top k documents for query Q from index I,!

with doc features f and query features g

For term-at-a-time processing, we
read one inverted list at a time.

We maintain partial scores for the
documents we’ve seen so far, and
update them for each term.

This may involve remembering more
document scores, because we don’t
necessarily know which documents
will be in the top k (but sometimes we
can guess).

Term-at-a-Time Processing
All docs processed in parallel

This algorithm implements term-at-a-
time retrieval.

It uses an accumulator A of partial
document scores, and updates a
document’s score when the doc is
encountered in an inverted list.

Once all scores are calculated, we
place the documents into a priority
queue R so the top k can be returned.

Term-at-a-Time Algorithm
Get the top k documents for query Q from index I,!

with doc features f and query features g

CS6200: Information Retrieval
Slides by: Jesse Anderton

Optimized Query Processing
There are many more ways to speed up query processing. Rapid
query responses are essential for the user experience of search
engines, so this is a heavily studied area.

In general, methods can be categorized as safe methods, which
always return the top k documents, or unsafe methods which just
return k “pretty good” documents.

Next, we’ll look at ways we can arrange indexes to speed up results
for common or easy queries.

There are two main approaches to query optimization:

1. Read less data from the inverted lists  
e.g., use skip lists to jump past “unpromising” documents

2. Calculate scores for fewer documents  
e.g., use conjunctive processing: require documents to have all
query terms

Optimization Strategy

This doc-at-a-time implementation
only considers documents which
contain all query terms.

Note that we assume that docids are
encountered in sorted order in the
inverted lists.

Conjunctive Doc-at-a-Time

This is the term-at-a-time version of
conjunctive processing.

Here, we delete accumulators for
documents which are missing query
terms.

Conjunctive Term-at-a-Time

If we only plan to show the user the top k documents, that implies that
all documents we return have scores at least as good as the kth-best
document.

Let τ be the minimum score of any document we return. We can use an
estimate of τ to stop processing low-scoring documents early.

• For doc-at-a-time, our estimate τ' is the score of the kth-best doc seen
so far

• For term-at-a-time, τ' is the kth-largest score in any accumulator

Threshold Methods

Return the top two documents. All scores are between 0 and 1. We score documents
by taking the dot product of document and query scores.

Query term vector: [0.7, 0.1, 0.2]

Doc 1: [0.3, 0.4, 0.5] Score: 0.3×0.7 + 0.4×0.1 + 0.5×0.2 = 0.35

Doc 2: [0.5, 0.1, 0.1] Score: 0.5×0.7 + 0.1×0.1 + 0.1×0.2 = 0.38

Doc 3: [0.01, 1, 1] Score: 0.01×0.7 + 1×0.1 + 1×0.2 = 0.307

For doc 3, even though the last two terms have perfect scores the document was
rejected. We can tell from the first term that it will never score highly enough to be
retrieved. We don’t even have to look at the second or third terms.

Example: Threshold Filtering

The MaxScore Method is an algorithm for efficiently retrieving the top k documents by
comparing the top score a document could have to the estimate τ’.

At index time, we compute the largest score μw any document achieved for each term
w. We use these scores at query time to estimate the maximum score any document
could have, based on the information so far.

For instance, suppose τ’ > μtree in the below lists for the query “eucalyptus tree.” We can
skip all the grey documents, because no score for tree is enough to be included
without also matching eucalyptus.

!

MaxScore Method

There are also many unsafe optimizations we could use. These may not return
the top k documents, but they will generally return k “good enough” documents.

• Query processing can be abandoned early, e.g., after some elapsed time or
minimum document score is reached.

• High-frequency terms can be ignored in term-at-a-time queries, and
documents at the end of the lists can be ignored in doc-at-a-time.

When we plan to process partial postings, it’s a good idea to sort them by
some sort of quality score (e.g., PageRank) so we will probably return high-
quality documents.

Unsafe Optimizations

CS6200: Information Retrieval
Slides by: Jesse Anderton

Tiered Indexes
The organization of indexes in a large-scale search engine is important for
rapid query processing.

Inverted lists can be sorted in various ways to improve inexact top k retrieval
performance, and tiered indexes are often used to handle “easy” queries
quickly while still offering good performance for rarer, more difficult queries.

Good multi-level caching strategies are also essential for achieving good
performance, particularly for web and peer-to-peer search.

Champion Lists are inverted lists for terms
which contain only the highest-scoring
documents for that term.

At indexing time, we compute a document’s
matching score for a term. If it’s one of the top
r documents, we add it to the champion list.

At query time, we first match documents in
the champion list for any query term, and only
proceed to other documents if that didn’t find
enough results.

We can pick larger r for terms with higher df.
Why would this help?

Champion Lists

used d1 d3 champions

cars d1 d3

d2

champions

others

cheap d1 d2 champions

d1 d2 d3
tf 2 6 0
tf 1 0 6
tf 8 3 5

Champion Lists

As a generalization of champion lists, we can
sort the postings for a term by some
document quality score qd. Suppose the
quality score is part of our matching function:

!

!

Recall that we want to sort the postings by a
common value so we can easily merge them.
We previously sorted by docid.

Sorting by global document quality still
allows efficient merging, though sorting by a
term-based matching score would not.

Sorting by Quality
Postings sorted by quality

UEQTG(&,3) = ɐS& + (� � ɐ)
�

Y�3

H(Y) · I(Y)

used d3 d1

cars d3 d1

cheap d1 d2

d1 d2 d3
q 0.5 0.25 0.75

d2

If we use term-at-a-time processing, we
can sort the lists in different orders.

Impact Ordering sorts lists by some
notion of term relevance. As a simple
example, tfw,d can be used.

Here, we often stop processing
documents early in each list. We may
process query terms in order of
decreasing df, and stop processing each
list when document scores stop
changing much. We may also skip low-df
terms.

Impact Ordering
Postings sorted by tf

used d3 d1

cars d1 d3

cheap d2 d1

d2

d1 d2 d3
tf 2 6 0
tf 1 0 6
tf 8 3 5

Tiered Indexes take these ideas further.
We use multiple indexes. Documents
likely to have the highest scores are in
the first index, and subsequent indexes
have progressively worse documents.

We process queries in one index at a
time, stopping when we find enough
documents. Only a few queries will need
all indexes.

Early tiers are often optimized for speed.
For instance, the top tier might be held
in RAM, while lower tiers are on disk.

Tiered Indexes
d1 d2 d3

tf 27 3 0
tf 17 0 6
tf 8 13 16

used d1

cars d2 d3

cheap d1

used d3

cars d1

cheap d2

Tier 1!
tf ≥ 10

Tier 2!
tf < 10

Caching also plays an essential role in improving query performance for large search
engines. Many forms of caching are used.

• Results for common queries are cached. A substantial fraction of queries are run by
many users (e.g., “facebook”).

• Merged inverted lists for common sets of query terms are cached. This is particularly
useful for common phrases (e.g., “new york city”).

• Caching is particularly important in Peer-to-peer search, where a query may download
cached results from other peers.

Caching is often implemented in a multi-level way, e.g., the query cache is checked first,
then a cache of merged lists is checked, and finally a cache of individual inverted lists.

Query Caching

CS6200: Information Retrieval
Slides by: Jesse Anderton

Indexing: Wrap Up

Inverted indexes are data structures
meant to enable rapid query
processing.

We store many types of information in
indexes; modern scoring functions
combine evidence from many topical
and quality features.

The indexing process needs to be
carefully engineered to create and
update inverted lists efficiently, taking
data volume into account. In particular,
good index compression is key.

Inverted Indexes
Topical Features!
9.7 fish
4.2 tropical
22.1 tropical fish
8.2 seaweed
4.2 surfboards
Quality Features!
14 incoming links
3 days since last update

Document

Query!
tropical fish Scoring Function

Document Score!
24.5

Queries may be processed in doc-at-
a-time or term-at-a-time order; either
approach has its advantages and
optimization strategies.

Indexes are often sorted, tiered, and
cached in order to support rapid
results for common or easy queries
and good results for uncommon or
difficult queries.

Query Processing
Topical Features!
9.7 fish
4.2 tropical
22.1 tropical fish
8.2 seaweed
4.2 surfboards
Quality Features!
14 incoming links
3 days since last update

Document

Query!
tropical fish Scoring Function

Document Score!
24.5

