• say LempelZiv breaks into c phrases x =

• let $x = \alpha_1 \alpha_2 ... \alpha_n$ a sequence of length n gen-

erated by a iid source and Q(x) = the proba-

- say LempelZiv breaks into c phrases $x=y_1y_2...y_c$ and call $c_l=\#$ of phrases of length l then $-\log Q(x)\geq\sum\limits_l c_l\log c_l$ (proof) $\sum\limits_{|y_i|=l}Q(y_i)<1$ so $\prod\limits_{|y_i|=l}Q(y_i)<(\frac{1}{c_l})^{c_l}$
- if p_i is the source probab for α_i then by law of large numbers x will have roughly np_i occurrences of α_i and then $log Q(x) = -\log \prod\limits_i p_i^{np_i} \approx n \sum p_i \log p_i = n H_{source}$
- ullet note that $\sum\limits_{l}c_{l}\log c_{l}$ is roughly the LempelZiv encoding length so th einequality reads nH>pprox LZencoding which is to say Hpprox LZrate.