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Abstract

Latent semantic indexing (LSI) is an information retrieval technique based on the spectral
analysis of the term-document matrix, whose empirical success had heretofore been without
rigorous prediction and explanation. We prove that, under certain conditions, LSI does succeed
in capturing the underlying semantics of the corpus and achieves improved retrieval performance.
We also propose the technique of random projection as a way of speeding up LSI. We complement
our theorems with encouraging experimental results. We also argue that our results may be
viewed in a more general framework, as a theoretical basis for the use of spectral methods in a
wider class of applications such as collaborative filtering.

1 Introduction

The field of information retrieval has traditionally been considered outside the scope of database the-
ory. While database theory deals with queries that are precise predicates (the so-called “employee-
manager-salary paradigm”), in information retrieval we have the rather nebulous and ill-defined
concept of “relevance”, which depends in intricate ways on the intent of the user and the nature
of the corpus. Evidently, very little theory can be built on this basis. (See [11, 22] for surveys on
information retrieval, including discussions of the technique that is the focus of this paper, from
database and theoretical points of view, respectively; [23, 24] are classical texts on the subject of
information retrieval.)

However, the field of information retrieval has been evolving in directions that bring it closer
to databases. Information retrieval systems are increasingly being built on relational (or object-
relational) database systems, rather than on flat text and index files. Another important change is
the dramatic expansion of the scope of information retrieval, with the advent of multimedia, the
internet, and globalized information; database concepts and some theory have started to find fertile
ground there (see for example [10, 3, 19], as well a record number of information retrieval papers in
the 1997 SIGMOD Proceedings)! Secondly, the techniques employed in information retrieval have

! And, perhaps as importantly, the stakes have become too high for database theory to lightly pass this field by.



become more mathematical and sophisticated, more plausibly amenable to analytical treatment.
The present paper is an attempt to treat rigorously one such technique, latent semantic indexing
(LSI), introduced next. Thirdly, information retrieval systems are increasingly being built on
relational (or object-relational) database systems (rather than on flat text and index files). Finally,
the advent of the web has enabled powerful new applications such as collaborative filtering (also
known as target or personalized recommendation systems) that can be tackled using techniques
inspired in part by information retrieval [4]; more on this in Section 6.

IR and LSI

The complexity of information retrieval is best illustrated by the two nasty classical problems
of synonymy (missing documents with references to “automobile” when querying on “car”) and
polysemy (retrieving documents about the internet when querying on “surfing”). To deal with
these two and other similar problems, we would ideally like to represent documents (and queries)
not by terms (as in conventional vector-based methods), but by the underlying (latent, hidden)
concepts referred to by the terms. This hidden structure is not a fixed many-to-many mapping
between terms and concepts, but depends critically on the corpus (document collection) in hand,
and the term correlations it embodies.

Latent Semantic Indexing [6] is an information retrieval method which attempts to capture this
hidden structure by using techniques from linear algebra. Briefly (see the next section for a more
detailed description), vectors representing the documents are projected in a new, low-dimensional
space obtained by singular value decomposition of the term-document matrix A (see the next
subsection). This low-dimensional space is spanned by the eigenvectors of AT A that correspond to
the few largest eigenvalues —and thus, presumably, to the few most striking correlations between
terms. Queries are also projected and processed in this low-dimensional space. This results not only
in great savings in storage and query time (at the expense of some considerable preprocessing), but
also, according to empirical evidence reported in the literature, to improved information retrieval
[1, 8, 9]. Indeed, it has been repeatedly reported that LSI outperforms, with regard to precision
and recall in standard collections and query workloads, more conventional vector-based methods,
and that it does address the problems of polysemy and synonymy.

There is very little in the literature in the way of a mathematical theory that predicts this
improved performance. An interesting mathematical fact due to Eckart and Young (stated below
as Theorem 1), often cited as an explanation of the improved performance of LS, states, informally,
that LSI retains as much as possible the relative position of the document vectors. This may only
provide an explanation of why LSI does not deteriorate too much in performance over conventional
vector-space methods; it fails to justify the observed improvement in precision and recall.

This paper is a first attempt at using mathematical techniques to rigorously explain the empir-
ically observed improved performance of LSI. Since LSI seems to exploit and reveal the statistical
properties of a corpus, we must start with a rigorous probabilistic model of the corpus (that is
to say, a mathematical model of how corpora are generated); we do this in Section 3. Briefly, we
model topics as probability distributions on terms. A document is then a probability distribution
that is the convex combination of a small number of topics. We also include in our framework
style of authorship, which we model by a stochastic matrix that modifies the term distribution. A
corpus is then a collection of documents obtained by repeatedly drawing sample documents. (In



Section 6 we briefly discuss an alternative probabilistic model, motivated in part by applications
to collaborative filtering.)

Once we have a corpus model, we would like to determine under what conditions LSI results
in enhanced retrieval. We would like to prove a theorem stating essentially that if the corpus is
a reasonably focused collection of meaningfully correlated documents, then LSI performs well. The
problem is to define these terms so that (1) there is a reasonably close correspondence with what
they mean intuitively and in practice, and (2) the theorem can be proved. In Section 4 we prove
results that, although not quite as general as we would have liked, definitely point to this direction.
In particular, we show that in the special case in which (a) there is no style modifier; (b) each
document is on a single topic; and (c¢) the terms are partitioned among the topics so that each
topic distribution has high probability on its own terms, and low probability on all others; then
LSI, projecting to a subspace of dimension equal to the number of topics, will discover these topics
exactly, with high probability assuming that the length of each document in the corpus is large
enough.

In Section 5 we show that, if we project the term-document matrix on a completely random low-
dimensional subspace, then with high probability we have a distance-preservation property akin to
that enjoyed by LSI. This suggests that random projection may yield an interesting improvement
on LSI: we can perform the LSI precomputation not on the original term-document matrix, but
on a low-dimensional projection, at great computational savings and no great loss of accuracy
(Theorem 5).

Random projection can be seen as an alternative to (and a justification of) sampling in LSI.
Reports on LSI experiments in the literature seem to suggest that LSI is often done not on the
entire corpus, but on a randomly selected subcorpus (both terms and documents may be sampled,
although it appears that most often documents are). There is very little non-empirical evidence of
the accuracy of such sampling. Our result suggests a different and more elaborate (and computa-
tionally intensive) approach —projection on a random low-dimensional subspace— which can be
rigorously proved to be accurate.

2 LSI background

A corpus is a collection of documents. Each document is a collection of terms from a universe of n
terms. Each document can thus be represented as a vector in ®” where each axis represents a term.
The 2th coordinate of a vector represents some function of the number of times the ¢th term occurs
in the document represented by the vector. There are several candidates for the right function to
be used here (0-1, frequency, etc.), and the precise choice does not affect our results.

Let A be an n x m matrix of rank r whose rows represent terms and columns represent doc-
uments. Let the singular values of A (the eigenvalues of AAT) be oy > 09 > ... > o, (not
necessarily distinct). The singular value decomposition of A expresses A as the product of three
matrices A = UDVT, where D = diag(ay,...,0,) is an r x r matrix, U = (uy,...,u,) is an n x r
matrix whose columns are orthonormal, and V' = (vy,...,v,) is an m X r matrix which is also
column-orthonormal.

LSI works by omitting all but the &k largest singular values in the above decomposition, for
some appropriate k; here k is the dimension of the low-dimensional space alluded to in the informal



description on page 2. It should be small enough to enable fast retrieval, and large enough to
adequately capture the structure of the corpus (in practice, k is in the few hundreds, compared
with r in the many thousands). Let Dy = diag(o1,...,0k), Ux = (u1,...,ux) and Vi = (v1, ..., vg).
Then

Ap = Uy DV

is a matrix of rank k, which is our approximation of A. The rows of Vi Dy above are then used
to represent the documents. In other words, the column vectors of A (documents) are projected
to the k-dimensional space spanned by the column vectors of Uy; we sometimes call this space the
LSI space of A. How good is this approximation? The following well-known theorem gives us some
idea (the subscript I denotes the Frobenius norm).

Theorem 1 (Eckart and Young, see [16].) Among all n x m matrices C' of rank at most k, Ay is
the one that minimizes [|[A — C||3 = 32, ;(Aij — Cij)?

Therefore, LSI preserves (to the extent possible) the relative distances (and hence, presumably,
the retrieval capabilities) in the term-document matrix while projecting it to a lower-dimensional
space. It remains to be seen in what way it improves these retrieval capabilities.

3 The probabilistic corpus model

There are many useful formal models of IR in the literature, and probability plays a major role
in many of them —see for instance the surveys and comparisons in [14, 23, 25]. The approach
in this body of work is to formulate information retrieval as a problem of learning the concept of
“relevance” that relates documents and queries. The corpus and its correlations plays no central
role. In contrast, our focus is on the probabilistic properties of the corpus.

Since LSI is supposed to exploit and bring out the structure of the corpus, it will fare well in a
meaningful collection of strongly correlated documents, and will produce noise in a random set of
unrelated documents. In order to study the dependence of the performance of LSI on the statistical
properties of the corpus, we must start with a probabilistic model of a corpus. We state now our
basic probabilistic model, which we will use for much of this paper.

Let the universe of all terms be U. A topic is a probability distribution on U. A meaningful
topic is very different from the uniform distribution on U, and is concentrated on terms that might
be used to talk about a particular subject. For example, the topic of “space travel” might favor the
terms “galaxy” and “starship”, while rarely mentioning “misery” or “spider”. A possible criticism
against this model is that it does not take into account correlations of terms within the same topic
(for example, a document on the topic “internet” is much more likely to contain the term “search”
if it also contains the term “engine”).

The structure of documents is also heavily affected by authorship style. We model style as a
|U| x |U| stochastic matrix (a matrix with nonnegative entries and row sums equal to 1), denoting
the way whereby style modifies the frequency of terms. For example, a “formal” style may map
“car” often to “automobile” and “vehicle,” and seldom to “car” — and almost never to “wheels.”
Admittedly, this is not a comprehensive treatment of style; for example, it makes the assumption
— not always valid — that this influence is independent of the underlying topic.



A corpus model C is a quadruple C = (U, T, S, D), where U is the universe of terms, 7 is a set
of topics, and § a set of styles, and D a probability distribution on T x8 x Z*, where by T we
denote the set of all convex combinations of topics in 7, by S the set of all convex combinations of
styles in S, and by Z* the set of positive integers (the integers represent the lengths of documents).
That is, a corpus model is a probability distribution on topic combinations (intuitively, favoring
combinations of a few related topics), style combinations, and document lengths (total number of
term occurrences in a document).

A document is generated from a corpus model ¢ = (U, 7,8 D) through the following two-step
sampling process. In the first step, a convex combination of topics T from T, a convex combination
of styles S from &, and a positive integer £ are sampled according to distribution D. Then terms
are sampled £ times to form a document, each time according to distribution 7S. A corpus of size
m is a collection of m documents generated from C by repeating this two-step sampling process m
times.

4 An analysis of LSI

Does LSI indeed bring together semantically related documents? And does it deal effectively with
the problem of synonymy? We present below theoretical evidence that it does. Our results assume
the corpus model has a particularly simple structure. We show that, in this case, LSI does discover
the structure of the corpus, and handles synonymy well. These results should be taken only as
indications of the kinds of results that can be proved; our hope is that the present work will lead to
more elaborate techniques, so that LSI can be proved to work well under more realistic assumptions.

We will first need a useful lemma, which formalizes the following intuition: if the k largest
singular values of a matrix A are well-separated from the remaining singular values, then the
subspace spanned by the corresponding singular vectors is preserved well when a small perturbation

is added to A.

Lemma 1 Let A be an n X m matriz of rank r with singular value decomposition
A=UDVT,

where D = diag(oy,...,0.). Suppose that, for some k, 1 <k <r, op/oks1 > coy /oy for sufficiently
large constant c. Let I be an arbitrary n X m matriz with ||F||s < ¢, where ¢ is a sufficiently small
positive constant. Let A’ = A+ F and let U'D'V'T be its smgular-value decomposition. Let Uy, and
Ul be n X k matrices consisting of the first k columns of U and U’ respectively. Then, U, = U, R+
for some k X k orthonormal matriz R and some n x k matriz G with ||Gl|; < O(¢).

The proof of this lemma, given in the appendix, relies on a theorem of Stewart [17] about
perturbing a symmetric matrix.

Let C = (U, T, D) be a corpus model. We call C pure if each document involves only a single
topic. We call C e-separable, where 0 < € < 1, if a set of terms Uy is associated with each topic
T € T so that (1) Ur are mutually disjoint and (2) for each 7', the total probability 7" assigns to
the terms in Uy is at least 1 — e. We call Up the primary set of terms of topic T.



The assumption that a corpus model is style-free and pure is probably too strong and its
elimination should be addressed in future investigations. On the other hand, the assumption that
a corpus is e-separable for some small value of € may be reasonably realistic, since documents are
usually preprocessed to eliminate commonly-occurring stop-words.

Let C be a pure corpus model and let k& = |T| denote the number of topics in C. Since C
is pure, each document generated from C is in fact generated from some single topic T: we say
that the document belongs to the topic T. Let C' be a corpus generated from C and, for each
document d € C, let vg denote the vector assigned to d by the rank-k LSI performed on C'. We say
that the rank-k LSI is 0-skewed on the corpus instance C' if, for each pair of documents d and d’,
vg-vg < O||vgl|l|vg || if d and d’ belong to different topics and vg-vgy > 1—6||vg||||vg || if they belong
to the same topic. Informally, the rank-k& LSI is §-skewed on a corpus (for small §), if it assigns
nearly orthogonal vectors to two documents from different topics and nearly parallel vectors to two
documents from a single topic: LSI does a particularly good job of classifying documents when
applied to such a corpus. We would like to show that the rank-k LSI is O(¢)-skewed on a corpus
generated from an e-separable corpus model with k topics. We start from the case where ¢ = 0.

Theorem 2 Let C be a pure, 0-separable corpus model with k topics such that the probability each
topic assigns to each term is at most T, where T > 0 is a sufficiently small constant. Let C be a
corpus of m documents generated from C. Then, the rank-k LSI is 0-skewed on C' with probability
1-0O(m™1).

Proof. Let C; denote the subset of the generated corpus C' consisting of documents belonging to
topic T;, 1 < ¢ < k. Each document of C; consists only of terms in U, the primary set of terms
associated with topic T;. Thus, the term-document matrix A representing corpus C' consists of
blocks B;, 1 < i < k: the rows of B; correspond to terms in U; and columns of B; correspond
to documents in C;; the entire matrix A can have non-zero entries in these rows and columns
only within B;. Therefore, AT A is block-diagonal with blocks BZ»TBZ'7 1 <1 < k. Now focus on
a particular block BI B; and let \; and X denote the largest and the second largest eigenvalues
of BI'B;. Intuitively, the matrix B! B; is essentially the adjacency matrix of a random bipartite
multigraph and then, from the standard theory of spectra of graphs[5], we have that A'/A; — 0
with probability 1 as 7 — 0 and |C;| — co. Below we give a formal justification of this by showing
that a quantity that captures this property, the conductance [21] (equivalently, ezpansion) of Bl B;
is high. The conductance of an undirected edge-weighted graph G = (V, E) is

min Yies,jes Wi 1)
scv min{|S], [S]}

Let 2!, 22, ..., 2" be random documents picked from the topic T;. Then we will show that the
conductance is Q(%), where |T;| is the number of terms in the topic 7;. Let GG be the graph

induced by the adjacency matrix BZ»TBZ'. For any subset S of the vertices (documents),

Z wt(i, j) = Z AR
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Assume w.lo.g. that |S| < [S]. Let p, be the probability of the s term in 7;. Then we can

estimate, for each term, }° . za{ > min{p;/2,ps — €} with probability at least 1 — % using the

independence of the 27’s via a simple application of Chernoff-Hoeffding bound [18]. Using this we

lower bound the weight of the cut (5, 5):

D) - (Do a?) = Y ay(min{ps/2, ps — €})

i€s €3 ics
which is Q(%) with high probability by a second application of the Chernoff-Hoeffding bound.
The desired bound on the conductance follows from this.

Thus, if the sample size m = |C] is sufficiently large, and the maximum term probability 7
is sufficiently small (note this implies that the size of the primary set of terms for each topic is
sufficiently large), the k largest eigenvalues of ATA are \;, 1 < i < k, with high probability.
Suppose now that our sample C indeed enjoys this property. Let 1i; denote the eigenvector of B! B;
corresponding to eigenvalue A; (in the space where coordinates are indexed by the terms in 7;) and
let w; be its extension to the full term space, obtained by padding zero entries for terms not in
T;. Then, the k-dimensional LSI-space for corpus C'is spanned by the mutually orthogonal vectors
u;, 1 <7 < k. When a vector vy representing a document d € C; is projected into this space, the
projection is a scalar multiple of u;, because vg is orthogonal to u; for every j # i. Therefore, the
rank-k LSI is 0-skewed on C as claimed. a

The following theorem generalizes the above result to the corpus which is slightly perturbed
from the one generated from a 0-separable corpus model.

Theorem 3 Let C be a pure, e-separable corpus model with k topics such that the probability each
topic assigns to each term is at most 7, where T > 0 is a sufficiently small constant. Let B be the
term-document matriz of a corpus of m documents generated from C and let C' be a corpus whose
term-document matriz is A = B+ F where ||F||y < €. Then, the rank-k LSI is O(¢)-skewed on C
with probability 1 — O(m™').

Proof. The term document matrix B consists of blocks B; as in the proof of Theorem 2.

Let W), and W/ denote the basis matrix of the k-dimensional space the rank-k LSI applied to
B and A, respectively, identifies. Since the two-norm of the perturbation F' = A — B is at most
¢, Lemma 1 implies that the W] is obtained from Wj applying an orthogonal transformation and
then adding a perturbation with a two-norm of O(e). Roughly speaking, since the space spanned
by W/ is a small perturbation of that spanned by Wy, projecting a vector representing a document
in C; into W/ yields a vector close, in its direction, to u; (the dominating eigenvector of B B;).
Therefore, the LSI representations of two documents are almost in the same direction if they belong
to the same topic and are nearly orthogonal if they belong to different topics. The analysis below
shows that the rank-k LSI is indeed O(¢)-skewed on C' with high probability.

Let A denote the vector corresponding to the i"® document, i.e. the i row of A. Similarly
B denotes the i*" row of the unperturbed matrix B. For any pair of documents i, j we will show
that

AP A = Bl B = o(d B |BY) (1)



Recall that for any i, ' )
AY = AOw7 and  BY = BOW,

Thus
|A§f) _ B,(:)| = 1ADW] — BOw,|
— AW Wk)—l—(A(” BOYW,|
< |A(2)(Wk—Wk)|‘|‘|( BO)W;
< |A<Z>|u<wk—wk>uz+|A — BOJ| Wil

o<e><|A |+ Wil
0(cA"))
O A)
(@)

Note that the conclusion above remains true with Bj

in place of Ag).

Now for a pair 1, 7,

AP A~ BB = 10— B0) a4 B4 - )

= 0(B114)

- O<e|B£”||B,i”|>
For a pair 7, 7 from the same topic, B,(:) . |B ||B | and for i, j from different topics,
B,(j) -B,(j) = 0. Using (1) this implies that the rank—k LSI is O(e)-skewed. o

If an e-separable corpus model C satisfies the additional conditions in Theorem 2 and moreover
is such that the length of each document is large enough, then a corpus generated from C satisfies
the condition of Theorem 3 and therefore is O(¢)-skewed.

Experiments

Even though Theorems 2 and 3 give asymptotic results and only claim that the probability ap-
proaches 1 as the size parameters grow, the phenomenon they indicate can be observed in corpora
of modest sizes, as is seen in the following experiment. We generated 1000 documents (each 50
to 100 terms long) from a corpus model with 2000 terms and 20 topics. Each topic is assigned
a disjoint set of 100 terms as its primary set. The probability distribution for each topic is such
that 0.95 of its probability density is equally distributed among terms from the primary set, and
the remaining 0.05 is equally distributed among all the 2000 terms. Thus this corpus model is
0.05-separable. We measured the angle (not some function of the angle such as the cosine) between
all pairs of documents in the original space and in the rank 20 LSI space. The following is a typical
result; similar results are obtained from repeated trials. Call a pair of documents intra-topic if the
two documents are generated from the same topic and inter-topic otherwise.



intra-topic
min  max average std
original space | 0.801  1.39 1.09  0.079
LSI space 0 0.312 0.0177 0.0374
inter-topic
min  max average std
original space | 1.49 1.57 1.57 0.00791
LSI space | 0.101  1.57 1.55 0.153

Here, angles are measured in radians. It can be seen that the angles of intra-topic pairs are
dramatically reduced in the LSI space. Although the minimum inter-topic angle is rather small,
indicating that some inter-topic pairs can be close enough to be confused, the average and the
standard deviation show that such pairs are extremely rare. Results from experiments with different

size-parameters are also similar in spirit. In this and the other experiments reported here, we used
SVDPACKC [2] for singular value decomposition.

Synonymy

We end this section with a brief discussion of synonymy in the context of LSI. Let us consider a
simple model in which two terms have identical co-occurrences (this generalizes synonymy, as it
also applies to pairs of terms such as supply-demand and war-peace). Furthermore, these two terms
have each a small occurrence probability. Then, in the term-term autocorrelation matrix AAT, the
two rows and columns corresponding to these terms will be nearly identical. Therefore, there is
a very small eigenvalue corresponding to this pair — presumably the smallest eigenvalue of AAT.
The corresponding eigenvector will be a vector with 1 and —1 at these terms — that is to say,
the difference of these terms. Intuitively then, this version of LSI will “project out” a very weak
eigenvector that corresponds to the presumably insignificant semantic differences between the two
synonymous terms. This is exactly what one would expect from a method that claims to bring out
the hidden semantics of the corpus.

5 LSI by random projection

A result by Johnson and Lindenstrauss [12, 20] states that if points in a vector space are projected
to a random subspace of suitably high dimension, then the distances between the points are ap-
proximately preserved. Although such a random projection can be used to reduce the dimension of
the document space, it does not bring together semantically related documents. LSI on the other
hand seems to achieve the latter, but its computation time is a bottleneck. This naturally suggests
the following two-step approach:

1. Apply a random projection to the initial corpus to [ dimensions, for some small [ > &, to
obtain, with high probability, a much smaller representation, which is still very close (in terms
of distances and angles) to the original corpus.

2. Apply rank O(k) LSI (because of the random projection, the number of singular values kept
may have to be increased a little).



In this section we establish that the above approach works, in the sense that the final repre-
sentation is very close to what we would get by directly applying LSI. Another way to view this
result is that random projection gives us a fast way to approzimate the eigenspace (eigenvalues,
eigenvectors) of a matrix.

We first state the Johnson-Lindenstrauss lemma.

Lemma 2 (Johnson and Lindenstrauss, see [12, 20].) Let v € R"™ be a unit vector, let H be
a random [-dimensional subspace through the origin, and let the random wvariable X denote the
square of the length of the projection of v onto H. Suppose 0 < € < %, and 24logn < 1 < /n.
Then, E[X] = {/n, and

Pr(|X —1/n| > ¢€/n) < 2/le~ (=D /4,

Using the above result, we can infer that with high probability, all pairwise Euclidean distances
are approximately malntalned under projection to a random subspace. By choosing l to be Q(logm)

in Lemma 2, with high probability the projected vectors, after scaling by a factor \/n/l, {v}}, satisfy
[Joi = vjll2(1 =€) < [Jvj = vjlla < [lvi = vill2(1 +€).

Similarly inner products are also preserved approximately: 2v; - v; = v? + UJZ — (v; — vj)% So the
projected vectors satisfy

2000} < (02 4+ 02) (14 ) — (v = ) (1= 0

Therefore, v} - v} < v; - v;(1 — €) + €(v? 4 v). In particular, if the v;’s are all of length at most 1,
then any inner product v; - v; changes by at most 2e.

Consider again the term-document matrix A generated by our corpus model. Let R be a random
column-orthonormal matrix with n rows and [ columns, used to project A down to an /[-dimensional

space. Let B = \/?RTA be the matrix after random projection and scaling, where,

r t
A= Zaiuw?, B= Z /\iaibiT
are the SVD’s of A and B respectively.

logn

Lemma 3 Let ¢ be an arbitrary positive constant. If [ > ¢
then, forp=1,.

for a sufficiently large constant ¢

k
1 2 2

E [(1—¢) ZUZ—Z/\]

>/

The proof of this lemma is given in the appendix. As a corollary we have:

Corollary 4

ZAQ (1= )l Axll-

10



Now our rank 2k approximation to the original matrix as
2k

Bap =AY bib]
=1

. From this we get the main result of this section:

Theorem 5

14 = BaxllF < |4 = Akl[Fo + 2¢[|Al[7

The measure ||A — Ag||r tells us how much of the original matrix is recovered by direct LSI.
So, in other words, the theorem says that the matrix obtained via random projection followed by
LSI (expanded to twice the rank) recovers almost as much as the matrix obtained by direct LSI.

Proof of theorem 5. We have,

n k
T T
A= g ouv; ,  Ap = g O Ui V;

And also,
l 2k
B=> XNaibl, Bay=A> bib]
Since by, ..., b, are an orthonormal set of vectors,

1A= Ballf = Y 1(A = Bay)bil?
=1
But, for i =1,..., 2k,
(A — Bag)b; = Ab; — Ab; =0
And fore=2k+1,...,n
(A = Bag)b; = Ab;

Hence,
n

n 2k
JA = Ba|lF= D [Ab> =D Ab* = D |Ab|?
=1 =1

1=2k+1
2k

= [JAllF = > |Abi]?
=1

On the other hand,

n
1A= Al = > of = [1AIE — [l Adl7
i=k+1

11



Hence

2k
14 = BallF = 114 = AllE = [144lF = 3 [Ab[?
That is,

2k
1A = Bawllf = [1A = AxllE+ (1 ARllE = D [Ab:])

=1

Next, we will show that

2k 2k
(L)Y [Ab* > Y A7

We have

2k
S = S
=1

- fRTAb

Now from lemma 2 we have that for [ large enough, i.e., [ = Q(—g—) with high probability,
(1= 9lAbf* < TIRT(Ab)” < (1+ )] Abif?

for each 2. Therefore with high probability,
2k 2k
Z M < (146 Z | Ab;|?
=1 =1

From corollary 4

Z/\2 (1 —o)]|Axl)?

1—c¢
2_1—|—e

1AkIE > (1= 20)[| Akl

2k
Z | Ab;|? >
=1
Substituting this above, we have,
1A = Bogllf < [JA — Ax||F+ 2¢| A4 7

Hence

14 = Barllf < 1A = AxllF + 2€||All7

12



What are the computational savings achieved by the two-step method? Let A be an n x m
matrix. The time to compute LSI is O(mnc) if A is sparse with about ¢ non-zero entries per column
(i.e., ¢ is the average number of terms in a document). The time needed to compute the random
projection to [ dimensions is O(mecl). After the projection, the time to compute LSI is O(mi?). So
the total time is O(ml(l+ ¢)). To obtain an ¢ approximation we need [ to be O(IOE#). Thus the
running time of the two-step method is asymptotically superior: O(m(log? n 4 clogn)) compared
to O(mnc).

In [13], Frieze, Kannan and Vempala propose an alternative way to speed up LSI. They give
fast algorithms for finding low rank approximations to an m X n matrix A. They compute an
approximate Singular Value Decomposition from a randomly chosen submatrix of A. For any given
k, e, 0, their Monte Carlo algorithm finds the description of a matrix D of rank at most &k so that

|A = Dl[r < ||A = Apllr + €[|All

holds with probability at least 1 — §. (||A||% is the sum of squares of all the entries of the matrix,
and Ay is the best rank & approximation with this measure.) The algorithm takes time polynomial
in k,1/€,log(1/8) only, i.e. independent of m,n. In [7] it is shown how to find such a low-rank
approximation explicitly constructed in O(mk?) time.

6 Conclusion and further work

Our corpus model is, from a practical standpoint, rather weak; what would it take to establish
theorems for “more realistic” models? Our present work has relied on studying the spectra of the
perturbations of block matrices; more generally, we require tools to study the eigenvectors of the
linear superposition of several matrices (under some assumptions about the individual matrices).
Alternatively, we may think of the spectral properties of random graphs with (a small set of)
varying edge probabilities. This appears be the technical bottleneck to furthering our results.

A theoretician’s first reaction to an unexpected (positive or negative) empirical phenomenon is
to understand it in terms of mathematical models and rigorously proved theorems; this is precisely
what we have tried to do, with substantial if partial success. What we have been able to prove
should be seen as a mere indication of what might hold; we expect the true positive properties of
LSI to go far beyond the theorems we are proving here.

There are several specific technical issues to be pursued. Can Theorem 2 be extended to a
model where documents could belong to several topics, or to one where term occurrences are not
independent? Also, does LSI address polysemy (as spectral techniques of slightly different kind to,
see [19])7 We have seen some evidence that it does handle synonymy.

Theory should ideally go beyond the ex post facto justification of methods and explanation of
positive phenomena, it should point the way to new ways of exploiting them and improving them.
Section 5, in which we propose a random projection technique as a way of speeding up LSI (and
possibly as an alternative to it), is an attempt in this direction.

Another important role of theory is to unify and generalize. Spectral techniques are not con-
fined to the vector-space model, neither to the strict context of information retrieval. Furthermore,
spectral analysis of a similar graph-theoretic model of the world-wide web has been shown exper-
imentally to succeed in identifying topics and to substantially increase precision and recall in web
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searches [19], as well as in databases of law decisions, service logs and patents [4]. Finally, it is
becoming clear that spectral techniques and their theoretical analysis may prove to be key method-
ologies in many other domains of current interest, such as data mining (using spectral techniques
to discover correlations in relational databases [15]) and collaborative filtering (personalizing sub-
scriber preferences and interests) [4]. The rows and columns of A could in general be, instead of
terms and documents, consumers and products, viewers and movies, or components and systems.

We conclude this section with a brief description of a promising alternative, graph-theoretic,
corpus model. Suppose that documents are nodes in a graph, and weights on the edges capture
conceptual proximity of two documents (for example, this distance matrix could be derived from, or
in fact coincide with, AAT). Then a topic is defined implicitly as a subgraph with high conductance
[21], a concept of connectivity which seems very appropriate in this context. We can prove that,
under an assumption similar to e-separability, spectral analysis of the graph can identify the topics
in this model as well (proof omitted from this abstract):

Theorem 6 If the corpus consists of k disjoint subgraphs with high conductance, and joined with
edges with total weight bounded from above by an € fraction of the distance matriz, then rank-k LST
will discover the subgraphs.
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7 Appendix: Proofs of Lemmas

In the following version of Lemma 1, we take some specific values for some constants to facilitate
the proof.

Lemma 4 Let A be an n X m matriz of rank r with singular value decomposition
A=UDVT,

where D = diag(oy,...,0.). Suppose that, for some k, 1 <k <r, 21/20> 01 > ...> 0, > 19/20
and 1/20 > op41 > ... > 0,. Let F be an arbitrary n X m matriz with ||[F||; < ¢ < 1/20. Let
A=A+ F and let U'D'V'T be its singular-value decomposition. Let Uy, and U! be n X k matrices
consisting of the first k columns of U and U’ respectively. Then, U, = UyR + G for some k x k
orthonormal matriz R and some n X k matriz G with |G| < 9e.

The proof of this lemma relies on a theorem of Stewart [17] about perturbing a symmetric
matrix.

Theorem 7 Suppose B and B + E are n X n symmetric matrices and

Q =1 Q@ Q2 ]
k' n-—Fk

is an n X n orthogonal matriz such that range(Q1) is an invariant subspace for B. Partition the
matrices QT BQ and QTEQ as follows, where Byy and Fyy are k X k matrices:

s[5 g, |

T Fiu Fip ]
FO =

@ EQ [ Ex E

If
0= Amzn — Mmaz — HEIIHZ - HE22H2 > 07
where Ay, is the smallest eigenvalue of Byy and fuy,qz is the largest eigenvalue of Bag, and || F1zllz <
8/2 then there exists an (n — k) X k real matriz P such that
2
102 < 51221l

and the columns of Q) = (Q1+ Q2P)(I + PTP)_l/2 form an orthonormal basis for a subspace that
is invariant for B + F.

Proof of Lemma 4. We apply Theorem 7 to B = AAT, F = A’(A’)T — B. We choose the
block-diagonalizing matrix €) in the theorem to be U followed by n — r zero-columns. Thus, when
we write Q = [Q1Q2], @1 = Uy, the first & columns of U, and @2 consists of remaining columns of
U followed by zero-columns. Since UT BU is a diagonal matrix, Q7 BQ is also a diagonal matrix.
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Let QT EQ be decomposed into blocks E;;, 1 <4,57 <2, asin Theorem 7. To apply the theorem,
we need to bound ||E; ;||2. We do this simply by bounding ||£|]z. Since E = (A+ F)(A+ F)T —
AAT = AFT 4 FAT + FFT, we have ||E|ly < 2||Al|2]|Fll2 + [|F]]2? < 2(21/20)e + €2 < (43/20)e.
Therefore, || Fi;ll2 < (43/20)¢, 1 < 4,7 < 2. The non-zero eigenvalues of B are of,...,02. Of these,
of,...,0% > 361/400 and Uz+1,...,a,2, < 1/400. Hence § = Apin — flmaz — [|[E11ll2 = || E22||2 is
positive: 6 > 361/400 — 1/400 — (43/10)¢e > 137/200. Also we have || E}3]|2 < (43/20)¢ < 43/400 <
0/2 and all the assumptions of Theorem 7 are satisfied. It follows that there exists an ((n — k) x k

matrix P satisfying ||P||z < 2||Ea1]]2 < Te such that

Q1 = (@1 +Q2P)(I + PTP)~'/2 (2)

forms an orthonormal basis for a subspace that is invariant for B + F. This invariant subspace
corresponds to the k largest singular values of A + F. Therefore, the column vectors of U, (the
first k eigenvectors of B + F) span the same invariant subspace as that spanned by the column
vectors of (). In other words, there is a k x k orthonormal matrix R such that U] = Q| R.

Since [|@1]]2 < 1, ||@Q1]]2 < 1, and
|IP|l2 < Te, it follows from (2) that Q] = @1 + H for some H with ||H||; < 9¢. Therefore,
U, =UiyR+ HR, with |HR||z < 9¢, as claimed. N

Proof of Lemma 3: The pth eigenvalue of B can be written as

p—1 p—1
/\Z = max|v|:1vT[B — Z ajbjT]T[B — Z ajb]«T]v
i=1 i=1

Consider the above expression for vy, ..., vy, the first k eigenvectors of A. For the i eigenvector
v; it can be reduced to

p—1
vl (BTB =" X3bb1 v,
7=1
p—1
vl BT Bu; — Z A2(bj - vi)?
7=1
p—1
aflul BIP =Y A3 (b; - vi)?
j=1
p—1
> (1—€)af = > A(b;-v)?
7=1

Summing this up for ¢t =1,..., k,

k k p—1 k
ZUZTBTBUZ' > (1—¢) ZU? — Z A2 Z(bf v;)?
=1 =1 7=1 =1
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Since the v;’s are orthogonal and the b;’s are unit vectors,

k p—1
> (1—6)20’?—2/\?
=1 7=1
Hence
k p—1
2 TnT 2
A, = maz,v; BT Bo; > —[(1 - €) ZO‘Z — Z
=1 7=1
[ |
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