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Vector Space Model for Documents 

• Represent each document by a high-dimensional 

vector in the space of words 



The Corpora Matrix 

t 

N 

t is the size of the vocabulary (~50,000) 

N is the number of documents 
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Problems 

• Looks for literal term matches 
– Terms in queries (esp short ones) don’t always capture 

user’s information need well 

• Problems: 
– Synonymy: other words with the same meaning 

• Car and automobile 

  

 

 

– Polysemy: the same word having other meanings 
• Apple (fruit and company) 

 

0)cos()'x,x(  simIf x’ and x do not share words  

If x’ and x share the word with different meaning: 

   
ksim )'x,x( is high. 



Latent Semantic Indexing (LSI) 

• Uses statistically derived conceptual indices 
instead of individual words for retrieval 

• Assumes that there is some underlying or latent 
structure in word usage that is obscured by 
variability in word choice 

• Key idea: instead of representing documents and 
queries as vectors in a t-dim space of terms 
– Represent them (and terms themselves) as vectors in 

a lower-dimensional space whose axes are concepts 
that effectively group together similar words 

– These axes are the Principal Components from PCA 

 



Example 

• Suppose we have keywords 
– Car, automobile, driver, elephant 

• We want queries on car to also get docs about drivers 
and automobiles, but not about elephants 
– What if we could discover that the car, automobile and driver 

directions are strongly correlated, but elephant is not 

– How? Via correlations observed through documents 

– If docs A & B don’t share any words with each other, but both 
share lots of words with doc C, then A & B will be considered 
similar 

– E.g A has cars and drivers, B has automobiles and drivers 

• When you scrunch down dimensions, small differences 
(noise) gets glossed over, and you get desired behavior 
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Take the vector representation in the original term 
space and transform it to new space. 

original representation 

of the document 



Singular Value Decomposition 



Example 

 

 
term  ch2 ch3  ch4  ch5  ch6  ch7  ch8  ch9 

controllability  1  1 0  0  1 0 0 1 

observability  1  0  0  0 1  1 0 1 

realization  1  0 1  0  1  0 1 0 

feedback  0     1 0     0  0     1 0 0 

controller  0     1  0     0  1    1 0 0 

observer  0     1  1     0  1    1 0 0 

transfer 

function 
0  0     0  0     1  1 0    0 

polynomial  0     0  0    0  1    0 1 0 

matrices  0     0  0     0  1    0 1 1 

 

U (9x7) =  

    0.3996   -0.1037    0.5606   -0.3717   -0.3919   -0.3482    0.1029  

    0.4180   -0.0641    0.4878    0.1566    0.5771    0.1981   -0.1094  

    0.3464   -0.4422   -0.3997   -0.5142    0.2787    0.0102   -0.2857  

    0.1888    0.4615    0.0049   -0.0279   -0.2087    0.4193   -0.6629  

    0.3602    0.3776   -0.0914    0.1596   -0.2045   -0.3701   -0.1023  

    0.4075    0.3622   -0.3657   -0.2684   -0.0174    0.2711    0.5676  

    0.2750    0.1667   -0.1303    0.4376    0.3844   -0.3066    0.1230  

    0.2259   -0.3096   -0.3579    0.3127   -0.2406   -0.3122   -0.2611  

    0.2958   -0.4232    0.0277    0.4305   -0.3800    0.5114    0.2010 

 

S (7x7) =  

    3.9901         0         0         0         0         0         0  

         0    2.2813         0         0         0         0         0  

         0         0    1.6705         0         0         0         0  

         0         0         0    1.3522         0         0         0  

         0         0         0         0    1.1818         0         0  

         0         0         0         0         0    0.6623         0  

         0         0         0         0         0         0    0.6487 

 

V (7x8) =  

    0.2917   -0.2674    0.3883   -0.5393    0.3926   -0.2112   -0.4505  

    0.3399    0.4811    0.0649   -0.3760   -0.6959   -0.0421   -0.1462  

    0.1889   -0.0351   -0.4582   -0.5788    0.2211    0.4247    0.4346  

   -0.0000   -0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000  

    0.6838   -0.1913   -0.1609    0.2535    0.0050   -0.5229    0.3636  

    0.4134    0.5716   -0.0566    0.3383    0.4493    0.3198   -0.2839  

    0.2176   -0.5151   -0.4369    0.1694   -0.2893    0.3161   -0.5330  

    0.2791   -0.2591    0.6442    0.1593   -0.1648    0.5455    0.2998 

 

 

 

This happens to be a rank-7 matrix 

 -so only 7 dimensions required 

Singular values = Sqrt of Eigen values of AAT 

T 



Dimension Reduction in LSI 

• The key idea is to map documents and queries into 

a lower dimensional space (i.e., composed of higher 

level concepts which are in fewer number than the 

index terms)  

 

• Retrieval in this reduced concept space might be 

superior to retrieval in the space of index terms 

 



Dimension Reduction in LSI 

• In matrix ∑, select only k  largest values 

• Keep corresponding columns in U and VT  

• Matrix Ak is given by 

                 Ak = Uk ∑k V
T

k 
    

where  k, (k < r) is the dimensionality of the concept space 

• The parameter  k  should be 

– large enough to allow fitting the characteristics of the data 

– small enough to filter out the non-relevant 

representational detail 



PCs can be viewed as Topics 

In the sense of having to find quantities that are not observable directly 



LSI: Satisfying a query 

• Take the vector representation of the query in the 
original term space and transform it to concept 
space 

 
    places the query pseudo-doc at the centroid of its 

corresponding terms’ locations in the new space 

 

 

• The document vector (in the concept space)that is 
nearest in direction to      is the best match.  
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Following the Example 

 

 
term  ch2 ch3  ch4  ch5  ch6  ch7  ch8  ch9 

controllability  1  1 0  0  1 0 0 1 

observability  1  0  0  0 1  1 0 1 

realization  1  0 1  0  1  0 1 0 

feedback  0     1 0     0  0     1 0 0 

controller  0     1  0     0  1    1 0 0 

observer  0     1  1     0  1    1 0 0 

transfer 

function 
0  0     0  0     1  1 0    0 

polynomial  0     0  0    0  1    0 1 0 

matrices  0     0  0     0  1    0 1 1 

 

U (9x7) =  

    0.3996   -0.1037    0.5606   -0.3717   -0.3919   -0.3482    0.1029  

    0.4180   -0.0641    0.4878    0.1566    0.5771    0.1981   -0.1094  

    0.3464   -0.4422   -0.3997   -0.5142    0.2787    0.0102   -0.2857  

    0.1888    0.4615    0.0049   -0.0279   -0.2087    0.4193   -0.6629  

    0.3602    0.3776   -0.0914    0.1596   -0.2045   -0.3701   -0.1023  

    0.4075    0.3622   -0.3657   -0.2684   -0.0174    0.2711    0.5676  

    0.2750    0.1667   -0.1303    0.4376    0.3844   -0.3066    0.1230  

    0.2259   -0.3096   -0.3579    0.3127   -0.2406   -0.3122   -0.2611  

    0.2958   -0.4232    0.0277    0.4305   -0.3800    0.5114    0.2010 

 

S (7x7) =  

    3.9901         0         0         0         0         0         0  

         0    2.2813         0         0         0         0         0  

         0         0    1.6705         0         0         0         0  

         0         0         0    1.3522         0         0         0  

         0         0         0         0    1.1818         0         0  

         0         0         0         0         0    0.6623         0  

         0         0         0         0         0         0    0.6487 

 

V (7x8) =  

    0.2917   -0.2674    0.3883   -0.5393    0.3926   -0.2112   -0.4505  

    0.3399    0.4811    0.0649   -0.3760   -0.6959   -0.0421   -0.1462  

    0.1889   -0.0351   -0.4582   -0.5788    0.2211    0.4247    0.4346  

   -0.0000   -0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000  

    0.6838   -0.1913   -0.1609    0.2535    0.0050   -0.5229    0.3636  

    0.4134    0.5716   -0.0566    0.3383    0.4493    0.3198   -0.2839  

    0.2176   -0.5151   -0.4369    0.1694   -0.2893    0.3161   -0.5330  

    0.2791   -0.2591    0.6442    0.1593   -0.1648    0.5455    0.2998 

 

 

 

This happens to be a rank-7 matrix 

 -so only 7 dimensions required 

Singular values = Sqrt of Eigen values of AAT 

T 



 

U2 (9x2) =  

    0.3996   -0.1037  

    0.4180   -0.0641  

    0.3464   -0.4422  

    0.1888    0.4615  

    0.3602    0.3776  

    0.4075    0.3622  

    0.2750    0.1667  

    0.2259   -0.3096  

    0.2958   -0.4232 

 

S2 (2x2) =  

    3.9901         0  

         0    2.2813 

 

V2 (8x2) =  

    0.2917   -0.2674  

    0.3399    0.4811  

    0.1889   -0.0351  

   -0.0000   -0.0000  

    0.6838   -0.1913  

    0.4134    0.5716  

    0.2176   -0.5151  

    0.2791   -0.2591 

 

 

U (9x7) =  

    0.3996   -0.1037    0.5606   -0.3717   -0.3919   -0.3482    0.1029  

    0.4180   -0.0641    0.4878    0.1566    0.5771    0.1981   -0.1094  

    0.3464   -0.4422   -0.3997   -0.5142    0.2787    0.0102   -0.2857  

    0.1888    0.4615    0.0049   -0.0279   -0.2087    0.4193   -0.6629  

    0.3602    0.3776   -0.0914    0.1596   -0.2045   -0.3701   -0.1023  

    0.4075    0.3622   -0.3657   -0.2684   -0.0174    0.2711    0.5676  

    0.2750    0.1667   -0.1303    0.4376    0.3844   -0.3066    0.1230  

    0.2259   -0.3096   -0.3579    0.3127   -0.2406   -0.3122   -0.2611  

    0.2958   -0.4232    0.0277    0.4305   -0.3800    0.5114    0.2010 

S (7x7) =  

    3.9901         0         0         0         0         0         0  

         0    2.2813         0         0         0         0         0  

         0         0    1.6705         0         0         0         0  

         0         0         0    1.3522         0         0         0  

         0         0         0         0    1.1818         0         0  

         0         0         0         0         0    0.6623         0  

         0         0         0         0         0         0    0.6487 

V (7x8) =  

    0.2917   -0.2674    0.3883   -0.5393    0.3926   -0.2112   -0.4505  

    0.3399    0.4811    0.0649   -0.3760   -0.6959   -0.0421   -0.1462  

    0.1889   -0.0351   -0.4582   -0.5788    0.2211    0.4247    0.4346  

   -0.0000   -0.0000   -0.0000   -0.0000    0.0000   -0.0000    0.0000  

    0.6838   -0.1913   -0.1609    0.2535    0.0050   -0.5229    0.3636  

    0.4134    0.5716   -0.0566    0.3383    0.4493    0.3198   -0.2839  

    0.2176   -0.5151   -0.4369    0.1694   -0.2893    0.3161   -0.5330  

    0.2791   -0.2591    0.6442    0.1593   -0.1648    0.5455    0.2998 

 

 

 U2*S2*V2 will be a 9x8 matrix 

That approximates original matrix 

T 

Formally, this will be the rank-k (2) 

matrix that is closest to X in the  

matrix norm sense 



Querying  
 

To query for feedback controller, the query vector would 

be  

q = [0     0     0     1     1     0     0     0     0]'  (' indicates 

transpose), 

 

Let q be the query vector.  Then the document-space vector 

corresponding to q is given by:  

                       q'*U2*inv(S2) = Dq 

Point at the centroid of the query terms’ poisitions in the 

new space. 

For the feedback controller query vector, the result is:  

                      Dq = 0.1376    0.3678 

 

To find the best document match, we compare the Dq 

vector against all the document vectors in the 2-

dimensional V2 space.  The document vector that is nearest 

in direction to Dq is the best match.    The cosine values 

for the eight document vectors and the query vector are:  

   -0.3747    0.9671    0.1735   -0.9413    0.0851    0.9642   -0.7265   -0.3805 

 

    

  

term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

controllability 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0

transfer 

function
0 0 0 0 1 1 0 0

polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

term ch2 ch3 ch4 ch5 ch6 ch7 ch8 ch9

controllability 1 1 0 0 1 0 0 1

observability 1 0 0 0 1 1 0 1

realization 1 0 1 0 1 0 1 0

feedback 0 1 0 0 0 1 0 0

controller 0 1 0 0 1 1 0 0

observer 0 1 1 0 1 1 0 0

transfer 

function
0 0 0 0 1 1 0 0

polynomial 0 0 0 0 1 0 1 0

matrices 0 0 0 0 1 0 1 1

termterm ch2ch2 ch3ch3 ch4ch4 ch5ch5 ch6ch6 ch7ch7 ch8ch8 ch9ch9

controllabilitycontrollability 11 11 00 00 11 00 00 11

observabilityobservability 11 00 00 00 11 11 00 11

realizationrealization 11 00 11 00 11 00 11 00

feedbackfeedback 00 11 00 00 00 11 00 00

controllercontroller 00 11 00 00 11 11 00 00

observerobserver 00 11 11 00 11 11 00 00

transfer 

function

transfer 

function
00 00 00 00 11 11 00 00

polynomialpolynomial 00 00 00 00 11 00 11 00

matricesmatrices 00 00 00 00 11 00 11 11

                     -0.37    0.967    0.173    -0.94     0.08        0.96    -0.72    -0.38 

U2 (9x2) = 

0.3996 -0.1037 

0.4180 -0.0641 

0.3464 -0.4422 

0.1888 0.4615 

0.3602 0.3776 

0.4075 0.3622 

0.2750 0.1667 

0.2259 -0.3096 

0.2958 -0.4232

S2 (2x2) = 

3.9901 0 

0 2.2813

V2 (8x2) = 

0.2917 -0.2674 

0.3399 0.4811 

0.1889 -0.0351 

-0.0000 -0.0000 

0.6838 -0.1913 

0.4134 0.5716 

0.2176 -0.5151 

0.2791 -0.2591



What LSI can do 

• LSI effectively does 

– Dimensionality reduction 

– Noise reduction 

– Exploitation of redundant data 

– Correlation analysis and Query expansion (with related words) 

• Some of the individual effects can be achieved with 

simpler techniques (e.g. thesaurus construction). LSI 

does them together. 

• LSI handles synonymy well, not so much polysemy 

• Challenge: SVD is complex to compute (O(n3)) 
– Needs to be updated as new documents are found/updated 



LSI Conclusions 

–  SVD defined basis provide improvements over term 
matching 

•  Interpretation difficult 

•  Optimal dimension – open question 

•  Variable performance on LARGE collections 

•  Supercomputing muscle required  

 

–  Probabilistic approaches provide improvements over SVD 
•  Clear interpretation of decomposition 

•  Optimal dimension – open question 

•  High variability of results due to nonlinear optimisation over HUGE 
parameter space 

–  Improvements marginal in relation to cost 

 

    


