
Lempel-Ziv

Thinking back over the lecture on Lempel Ziv, I realize that there was
no real need for me to introduce Markov chains, and the next time I teach
the class, I’ll change the lecture. The definition of Markov chains is indeed
part of the remarkable theorem that Lempel Ziv gives asymptotically op-
timal compression ratios for sequences, but you can explain the proof of
the theorem perfectly well (better, maybe) just using sequences where each
letter is chosen independently from some fixed probability distribution. So
here are the notes for the lecture I should have given.

We did Huffman coding last time. Huffman coding works pretty well, in
that it comes within one bit per block of the bound that Shannon gives for
encoding sequences of blocks with a given set frequencies. There are some
disadvantages to it. For one thing, it requires two passes through the data
you wish to encode. The first pass is used for computing the frequencies
of all the blocks, and the second pass for actually encoding the data. If
you don’t want to look at the data twice; for instance, if you’re getting the
data you want to encode from some kind of program, and you don’t want
to take the time to store it all before sending it on, this can be a problem.
The Lempel Ziv algorithm constructs its dictionary on the fly, only going
through the data once. This might be a problem if, for example, the first
half of some document is in English and the second half is in Chinese. In
this case, the dictionary constructed for the first half will be suboptimal
when used on the second half. On the other hand, if you’re doing Huffman
coding for this document, it would also be more efficient to break it up into
the two halves and use separate Huffman codes for the English half and the
Chinese half.

There are many variations of Lempel Ziv around, but they all follow the
same basic idea. We’ll just concentrate on one of the simplest to explain and
analyze, although in other versions will work somewhat better in practice.
The idea is to parse the sequence into distinct phrases. The version we
analyze does this greedily. Suppose, for example, we have the string

AABABBBABAABABBBABBABB

We start with the shortest phrase on the left that we haven’t seen before.
This will always be a single letter, in this case A:

A|ABABBBABAABABBBABBABB

We now take the next phrase we haven’t seen. We’ve already seen A, so we
take AB:

A|AB|ABBBABAABABBBABBABB

1

The next phrase we haven’t seen is ABB, as we’ve already seen AB. Con-
tinuing, we get B after that:

A|AB|ABB|B|ABAABABBBABBABB

and you can check that the rest of the string parses into

A|AB|ABB|B|ABA|ABAB|BB|ABBA|BB

Because we’ve run out of letters, the last phrase on the end is a repeated
one. That’s O.K.

Now, how do we encode this? For each phrase we see, we stick it in
a dictionary. The next time we want to send it, we don’t send the entire
phrase, but just the number of this phrase. Consider the following table

1 2 3 4 5 6 7 8 9
A AB ABB B ABA ABAB BB ABBA BB
∅A 1B 2B ∅B 2A 5B 4B 3A 7

The second row gives the phrases, and the third row their encodings. That
is, when we’re encoding the ABAB from the sixth phrase, we encode it as
5B. This maps to ABAB since the fifth phrase was ABA, and we add B to it.
Here, the empty set ∅ should be considered as the 0’th phrase and encoded
by 0. last piece into binary might give (without the dividers and commas,
that I’ve inserted to make it more comprehensible)

, 0|1, 1|10, 1|00, 1|010, 0|101, 1|100, 1|011, 0|0111

We have taken the third row of the previous array, expressed all the numbers
in binary (before the comma) and the letters in binary (after the comma)
Note that I’ve mapped A to 0 and B to 1. If you had a larger alphabet, you
would encode the letters by more than one bit. (In fact, you could even use
a Huffman code to encode the letters if you know the frequencies of your
letters.) Note also that as soon as a reference to a phrase might conceivably
involve k bits (starting with the 2k + 1 dictionary element), I’ve actually
used k bits, so the number of bits used before the comma keeps increasing.
This ensures that the decoding algorithm knows where to put the commas
and dividers. You might notice that in this case, the compression algorithm
actually makes the sequence longer. This is the case for one of two reasons.
Either this original sequence was too random to be compressed much, or
it was too short for the asymptotic efficiency of Lempel-Ziv to start being
noticeable.

2

How well have we encoded the string? Suppose we have broken it up
into c(n) phrases, where n is the length of the string. Each phrase is broken
up into a reference to a previous phrase and a letter of our alphabet. The
previous phrase can be represented by at most log2 c(n) bits, since there are
c(n) phrases, and the letter can be represented by at most log2 α bits, where
α is the size of the alphabet (in the above example, it is 2). We have thus
used at most

c(n)(log2 c(n) + log2 α)

bits total in our encoding.
In practice, you don’t want to use to much memory for your dictionary.

Thus, most implementation of Lempel-Ziv type algorithms have some max-
imum size for the dictionary. When it gets full, they will drop a little-used
word from the dictionary and replace it by the current word. This also helps
the algorithm adapt to encode messages with changing characteristics. You
need to use some deterministic algorithm for which word to drop, so that
both the sender and the receiver will drop the same word.

So how well does the Lempel-Ziv algorithm work? In these notes, we’ll
calculate two quantities. First, how well it works in the worst case, and
second, how well it works in the random case where each letter of the message
is chosen uniformly and independently from a probability distribution, where
the ith letter appears with probability pi. In both cases, the compression
is asymptotically optimal. That is, in the worst case, the length of the
encoded string of bits is n + o(n). Since there is no way to compress all
length-n strings to fewer than n bits, this can be counted as asymptotically
optimal. In the second case, the source is compressed to length

H(p1, p2, . . . , pα)n + o(n) = n
α

∑

i=1

(−pi log2 pi) + o(n),

which is to first order the Shannon bound. The Lempel-Ziv algorithm ac-
tually works for more general cases, including the case where the letters are
produced by a random Markov chain, which I discussed in class.

Let’s do the worst case analysis first. Suppose we are compressing a
binary alphabet. We ask the question: what is the maximum number of
distinct phrases that a string of length n can be parsed into. There are
some strings which are clearly worst case strings. These are the ones in
which the phrases are all possible strings of length at most k. For example,
for k = 1, one of these strings is

0|1

3

with length 2. For k = 2, one of them is

0|1|00|01|10|11

with length 10; and for k = 3, one of them is

0|1|00|01|10|11|000|001|010|011|100|101|110|111

with length 34. In general, the length of such a string is

nk =
k

∑

j=1

j2j

since it contains 2j phrases of length j. It is easy to check that

nk = (k − 1)2k+1 + 2

by showing that in both expressions above for nk, we have nk − nk−1 = k2k

and n1 = 2. [This should be an exercise.] If we let c(nk) be the number of
distinct phrases in this string of length nk, we get that

c(nk) =
k

∑

i=1

2i = 2k+1 − 2

For nk, we thus have

c(nk) = 2k+1 − 2 ≤
(k − 1)2k+1

k − 1
≤

nk

k − 1

Now, for an arbitrary length n, we can write n = nk + ∆. To get the
case where c(n) is largest, the first nk bits can be parsed into c(nk) distinct
phrases, containing all phrases of length at most k, and the remaining ∆
bits can be parsed into into phrases of length k +1. This is clearly the most
distinct phrases a string of length n can be parsed into, so we have that for
a general string of length n, the number of phrases is at most total is

c(n) ≤
nk

k − 1
+

∆

k + 1
≤

nk + ∆

k − 1
=

n

k − 1
≤

n

log2 c(n) − 3

Now, we have that a general bit string is compressed to around c(n) log2 c(n)+
c(n) bits, and if we subsitute

c(n) ≤
n

log2 c(n) − 3

4

we get

c(n) log2 c(n) + c(n) ≤ n + 4c(n) = n + O(
n

log2 n
)

So asymptotically, we don’t use much more than n bits for compressing any
string of length n. This is good: it means that the Lempel-Ziv algorithm
doesn’t expand any string very much. We can’t hope for anything more from
a general compression algorithm, as it is impossible to compress all strings
of length n into fewer than n bits. So if a lossless compression algorithm
compresses some strings to fewer than n bits, it will have to expand other
strings to more than n bits. [Lossless here means the uncompressed string
is exactly the original message.]

We now need to show that in the case of random strings, the Lempel Ziv
algorithm’s compression rate asymptotically approaches the entropy. Let us
assume that we construct our sequence by, at each position, independently
choosing letter αi with probability pi. This gives us a sequence

x = αx(1)αx(2)αx(3) · · ·αx(n)

We define Q(x) to be the probability of seeing this sequence. That is,

Q(x) =
n

∏

i=1

px(i).

Now, suppose x is broken into distinct phrases

x = y1y2y3 . . . yc(n).

It is not hard to see that

Q(x) =

c(n)
∏

i=1

Q(yi) (1)

Now, let’s let cl be the number of phrases yi of length l. These are (by
definition of Lempel-Ziv) all distinct. We can now prove a version of Ziv’s
inequality. This inequality says

− log Q(x) ≥
∑

l

cl log cl

We start by rewriting Eq. 1 above

Q(x) =
∏

l

∏

|yi|=l

Q(yi)

5

Now, let’s look at the inner product. We know that, since the yi with length
l are all distinct, they are mutually independent events, so the probabilities
Q(yi) sum to at most 1.

∑

|yi|

Q(yi) ≤ 1

Now, there is an inequality that says that to maximize a product of k terms,
given a fixed sum of these terms, the best thing to do is make all of these
terms equal. There are cl terms Q(yi) with |yi| = l. Setting them all equal,
we see that

∏

|yi|=l

Q(yi) ≤

(

1

cl

)c(l)

Taking logs, and adding over all phrase lengths l, we get Ziv’s inequality

− log Q(x) ≥
∑

l

cl log cl

Suppose we have mi occurences of letter αi in our string x. Then,

Q(x) =
∏

i

pmi

i

By the law of large numbers, there are approximately npi occurences of
letter αi in our string x. Taking logs, we get

log Q(x) ≈ npi log pi = nH(p1, p2, . . . , pα)

This is the entropy, which we saw earlier was the optimal compression ratio
for this probability distribution. Recall that the compression ratio of the
Lempel-Ziv algorithm was approximately c(n) log c(n). Thus, all we need to
do is show

∑

l

cl log cl ≈ c(n) log c(n).

Let’s abbreviate c(n) by c. We have
∑

l cl = c. This gives us the equation

∑

cl log cl = c log c + c
∑

l

cl

c
log

cl

c

The last term is −c times
−

∑

l

cl

c
log

cl

c

6

Now, this is the entropy of the probability distribution πl = cl

c
. The l are

positive integers, and the expected value of l is

∑

l

l
cl

c
=

n

c

Now, the maximum possible of entropy for a probability distribution πl on
positive integers whose expected value is n

c
is O(log n

c
) [This should be an

exercise with hints, maybe I’ll do it later. But it isn’t hard to see why it
should be true intuitively. If the expected value is n/c, then most of the
weight must be in the first O(n/c) integers, and if a distribution is spread
out over a sample space of size O(n/c), the entropy is at most O(log(n/c)).]
So we get that

− log Q(x) ≥ c(n) log c(n) − O(log
n

c(n)
)

which shows that the compression (the right side) is approximately n times
the entropy (the left side), and so is optimal.

The Lempel-Ziv algorithm also works for messages that are generated
by probabilistic processes with limited memory. This means that the prob-
ability of seeing a given letter may depend on the previous letters, but it
can only depend on letters that are close to it. The spirit of the proof is the
same, although the details get more complicated. This kind of process seems
to reflect real-world sequences pretty well, in that the Lempel-Ziv family of
algorithms works very well on a lot of real-world sequences.

All the compression algorithms I’ve talked about so far are lossless com-
pression algorithms. This means that the reconstructed message is exactly
the same as the original message. For many real-world processes, lossy com-
pression algorithms are adequate, and these can often achieve much better
compression ratios than lossless algorithms. For example, if you want to
send video or music, it’s generally not worth it to retain distinctions which
are invisible or inaudible to our senses. Lossy compression thus gets much
more complicated, because in addition to the mathematics, you have to fig-
ure out what kinds of differences can be distinguished by human eyes or
ears, and then find an algorithm which ignores those kinds of differences,
but doesn’t lose significant differences. (And it may even be useful to have
compression algorithms that reduce the quality of the signal.)

7

