• A family of data compression algorithms presented in

[LZ77] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inform.Theory, vol. IT-23, pp. 337 – 343, May 1977

[LZ78] J. Ziv and A. Lempel, Compression of individual sequences via variable rate coding, IEEE Trans. Inform. Theory, vol. IT-24, pp. 530 – 536, Sept. 1978.

- Many desirable features, the conjunction of which was unprecedented
	- simple and elegant
	- universal for individual sequences in the class of finite-state encoders
	- convergence to the entropy rate
	- string matching and dictionaries, no explicit probability model
- very practical, with fast and effective implementations applicable to ^a wide range of data types

```
EE477, Autumn 04-05, Lec. III 1
```
Incremental Parsing and the LZ78

• Parse the input sequence into phrases, each new phrase being the shortest substring that has not appeared so far in the parsing. E.g., for the string $x^n = 1011010100010$

1, 0, 11, 01, 010, 00, 10,

- Each new phrase is of the form **^w**b, where **^w** is ^a previous phrase, b [∈] ${0, 1}$
	- **a** new phrase can be described as (i, b) , where $i = \text{index}(\mathbf{w})$
	- in the example: $(0, 1), (0, 0), (1, 1), (2, 1), (4, 0), (2, 0), (1, 0)$
- let $c(n) =$ number of phrases in x^n
- **a** phrase description takes $\leq 1 + \log c(n)$ bits
- **here describing 13 bits took us 28 but gets better as** $n \to \infty$
- another small overhead to indicate how many bits per description of phrase (in practice use increasing length codes)
- So, all in all, bounding generously, the compression ratio attained is $\leq \frac{c(n)(\log c(n)+2)+\log n}{n}$

[LZ77] and [LZ78] present different algorithms with common elements

- **The main mechanism in both schemes is pattern matching: find** string patterns that have occurred in the past, and compress them by encoding ^a reference to the previous occurrence
- Both schemes are in wide practical use
	- many variations exist on each of the major schemes
	- we focus on LZ78, which admits ^a simpler analysis with ^a stronger result. Our proof follows [CT91]. It differs from the original proof in [LZ78]
	- we will also describe the [LZ77], and see ^a fundamental result of [Wyner&Ziv] providing insight into its workings
	- \blacksquare the scheme is based on the notion of incremental parsing

EE477, Autumn 04-05, Lec. III 2

Performance Analysis

Lemma 1. The number of phrases ^c(n) in ^a distinct parsing of ^a binary sequence satisfies

$$
c(n) \le \frac{n}{(1 - \epsilon_n) \log n},\tag{1}
$$

where $\epsilon_n \to 0$ as $n \to \infty.$

Proof Idea: Letting n_k denote the sum of lengths of all distinct strings of length $\leq k$ and $k(n)$ denote the distinct value of k such that $n_k \leq n \leq n_{k+1}$, we show that for any distinct parsing

1.
$$
c(n) \leq n/(k(n) - 1)
$$
.

2. $k(n) = (1 \pm \epsilon_n)(\log n).$

Ziv's Inequality

For fixed k let $P(\cdot|\cdot)$ be an arbitrary conditional distribution of X_0 given $X_{-k}^{-1}.$ Define the probability distribution Q_k on X^n conditioned on $X^0_{-(k-1)}$ by

$$
Q_k(x^n | x_{-(k-1)}^0) = \prod_{j=1}^n P(x_j | x_{j-k}^{j-1}).
$$
\n(2)

Suppose now that x^n is parsed into c distinct phrases y_1, y_2, \ldots, y_c

Let ν_i be the index of the start of the i -th phrase, i.e., $y_i = x_{\nu_i}^{\nu_{i+1}-1}$

For each
$$
i = 1, 2, ..., c
$$
, define $s_i = x_{\nu_i - k}^{\nu_i - 1}$

Thus s_i is the k bits of x preceding y_i

Let c_{ls} be the number of phrases y_i with length l and preceding state $s_i = s$ for $l=1,2,\ldots$ and $s\in\mathcal{X}^{k}.$ So

$$
\sum_{l,s} c_{ls} = c \quad \text{and} \quad \sum_{l,s} lc_{ls} = n. \tag{3}
$$

EE477, Autumn 04-05, Lec. III 5

Maximum-Entropy Lemma

Lemma 3. Let Z be ^a positive integer valued random variable with mean μ . Then

$$
H(Z) \le (\mu + 1) \log(\mu + 1) - \mu \log \mu.
$$
 (4)

Proof: The maximum-entropy distribution over the positive integers under a constraint on the mean is the geometric one. The right hand side of (4) is readily checked to be the entropy of the geometric distribution with mean μ . \Box

Lemma 2. [Ziv's inequality] For any distinct parsing of the string x^n

$$
\log Q_k(x^n|s_1) \leq -\sum_{l,s} c_{ls} \log c_{ls}.
$$

Note right side does not depend on $P(\cdot|\cdot)$ through which Q_k was defined. Proof:

$$
\log Q_k(x^n | x_{-(k-1)}^0) = \sum_{i=1}^c \log Q_k(y_i | s_i)
$$

=
$$
\sum_{l,s} \sum_{i: |y_i| = l, s_i = s} \log Q_k(y_i | s_i)
$$

=
$$
\sum_{l,s} c_{ls} \sum_{i: |y_i| = l, s_i = s} \frac{1}{c_{ls}} \log Q_k(y_i | s_i)
$$

$$
\leq \sum_{l,s} c_{ls} \log \left(\sum_{i: |y_i| = l, s_i = s} \frac{1}{c_{ls}} Q_k(y_i | s_i) \right) . \square
$$

EE477, Autumn 04-05, Lec. III 6

Ziv's Inequality (another one)

Lemma 4. [Ziv's lnequality] For all $x \in \{0, 1\}^\infty$

$$
\frac{c(n)\log c(n)}{n} \le -\frac{1}{n}\log\max_{P\in\mathcal{P}_k} Q_k(x^n|x_{-(k-1)}^0) + \epsilon_k(n),
$$

where $\epsilon_k(n) \to 0$ as $n \to \infty$ (uniformly in $\mathbf{x} \in \{0,1\}^\infty$).

Proof: Fix $P \in \mathcal{P}_k$ through which $Q_k(x^n|x^0_{-(k-1)})$ is defined. By Ziv's inequality

$$
\log Q_k(x^n | x_{-(k-1)}^0) \leq -\sum_{l,s} c_{ls} \log \frac{c_{ls}c}{c} \tag{5}
$$

$$
= -c \log c - c \sum_{l,s} \frac{c_{ls}}{c} \log \frac{c_{ls}}{c}.
$$
 (6)

Denoting $\pi_{ls} = \frac{c_{ls}}{c}$, we have

$$
\sum_{l,s} \pi_{ls} = 1, \ \sum_{l,s} l \pi_{ls} = \frac{n}{c}.
$$
 (7)

Thus, defining the random variables U, V such that

$$
\Pr(U = l, V = s) = \pi_{ls} \tag{8}
$$

we have

$$
EU = \frac{n}{c} \tag{9}
$$

and, by (6),

$$
-\frac{1}{n}\log Q_k(x^n|x_{-(k-1)}^0) \ge \frac{c}{n}\log c - \frac{c}{n}H(U,V).
$$
 (10)

Now

$$
H(U) \le (EU + 1)\log(EU + 1) - EU\log EU \tag{11}
$$

EE477, Autumn 04-05, Lec. III 9

Note, in particular, that

$$
\epsilon_k(n) = O\left(\frac{\log \log n}{\log n}\right),\tag{20}
$$

independently of x^n and $P \in \mathcal{P}_k$. The proof is completed by combining (10) with (17) and the arbitrariness of $P \in \mathcal{P}_k$. \Box

$$
= \left(\frac{n}{c} + 1\right) \log\left(\frac{n}{c} + 1\right) - \frac{n}{c} \log\frac{n}{c}
$$
 (12)

$$
= \log \frac{n}{c} + \left(\frac{n}{c} + 1\right) \log \left(\frac{c}{n} + 1\right). \tag{13}
$$

Thus

$$
\frac{c}{n}H(U,V) \tag{14}
$$

$$
\leq \frac{c}{n}(H(U) + H(V)) \tag{15}
$$

$$
\leq \frac{c}{n}\log\frac{n}{c} + \left(\frac{c}{n} + 1\right)\log\left(\frac{c}{n} + 1\right) + \frac{c}{n}k\tag{16}
$$

$$
\leq \epsilon_k(n), \tag{17}
$$

where (17) follows from Lemma 1 upon denoting

$$
\epsilon_k(n) = -\frac{1}{(1 - \epsilon_n) \log n} \log \frac{1}{(1 - \epsilon_n) \log n}
$$
 (18)

$$
+\left(\frac{1}{(1-\epsilon_n)\log n}+1\right)\log\left(\frac{1}{(1-\epsilon_n)\log n}+1\right)+\frac{k}{(1-\epsilon_n)\log n}.\tag{19}
$$

EE477, Autumn 04-05, Lec. III 10

The Key Result

Theorem 1. Let $l(x^n)$ denote the Ziv-Lempel codeword length associated with $x^n.$ Then, for all $\mathbf{x} \in \{0,1\}^\infty$,

$$
\limsup_{n \to \infty} \frac{1}{n} l(x^n) \le \lim_{k \to \infty} \limsup_{n \to \infty} \left[-\frac{1}{n} \log \max_{P \in \mathcal{P}_k} Q_k(x^n | x_{-(k-1)}^0) \right].
$$
 (21)

Proof: The result is a direct consequence of the fact that $l(x^n) \leq c(n)(\log c(n) + 2) + \log n$, combined with Lemma 1 and Lemma 4. \Box

Equipped with Theorem 1, the universality result in the stochastic setting is but ^a simple corollary:

Corollary 1. Let $X = \{X_i\}$ be a stationary ergodic source. Then the Lempel-Ziv code satisfies

$$
\lim_{n \to \infty} \frac{1}{n} l(X^n) = \overline{H}(\mathbf{X}) \quad a.s.
$$
 (22)

Proof: For P denoting the true distribution of X_0 conditioned on X_{-k}^{-1} we have, with probability one,

$$
\limsup_{n \to \infty} \frac{1}{n} l(X^n) \leq \limsup_{n \to \infty} \left[-\frac{1}{n} \log \max_{P \in \mathcal{P}_k} Q_k(X^n | X^0_{-(k-1)}) \right]
$$
(23)

$$
\leq \limsup_{n \to \infty} \left[-\frac{1}{n} \sum_{i=1}^n \log P(X_i | X^{i-1}_{i-k}) \right]
$$
(24)

$$
= H(X_0 | X^{-1}_{-k}),
$$
(25)

EE477, Autumn 04-05, Lec. III 13

Universality for Individual Sequences

Another easy consequence of Theorem 1 is universality in the individual sequence setting. Define the finite-memory compressibility:

$$
FM_k(x^n) = \inf_{P \in \mathcal{P}_k, s_1} \left[-\frac{1}{n} \log Q_k(x^n|s_1) \right]
$$

$$
FM_k(\mathbf{x}) = \limsup_{n \to \infty} FM_k(x^n)
$$

$$
FM(\mathbf{x}) = \lim_{k \to \infty} FM_k(\mathbf{x})
$$

Corollary 2. For all $x \in \{0, 1\}^{\infty}$, the LZ codeword lengths satisfy

$$
\limsup_{n \to \infty} \frac{1}{n} l(x^n) \le FM(\mathbf{x}).\tag{27}
$$

[LZ78] introduces a stronger notion of finite-state compressibility and shows that the LZ scheme attains that as well.

where the first inequality follows from Theorem 1, and the equality by ergodicity. The arbitrariness of k implies

$$
\limsup_{n \to \infty} \frac{1}{n} l(X^n) \le \overline{H}(\mathbf{X}) \quad a.s.,
$$
\n(26)

which, combined with exercise 2 of HW sheet 2, completes the proof. \Box

The Parsing Tree

many (many many) tricks and hacks exist in practical implementations

Analysis of LZ77

Think of X^{-1}_{-n} as a database. Then look into "positive time" at X_0, X_1, \ldots and continue until the L -string X_0^{L-1} is *not* a substring of the extended database $X_{-n}^{L-2}.$ Denote that L by $L_n(\mathbf{X}).$

In the [LZ77], if we set time to zero at the beginning of ^a new phrase after the algorithm has finished encoding the first n source symbols then the length of the new phrase will be $\stackrel{d}{\approx} L_n$, where the approximate (and not precise) relationship is due to the randomness in the time-shift.

Thus, the compression ratio on the new block is \leq

$$
\frac{1}{L_n} \left(\log n + \log L_n + O(\log \log L_n) + \log(|\mathcal{A}| - 1) \right).
$$

Fundamental Result in Analysis of LZ77

Wyner and Ziv, "Some asymptotic properties of the entropy of ^a stationary ergodic data source with applications to data compression", IEEE Trans. Info. Theory, vol. IT-35, pp. 1250 – 1258, November 1989.

Theorem 2. [WZ89] For stationary ergodic **X**

$$
\frac{\log n}{L_n} \to \overline{H}(\mathbf{X}) \quad \text{in probability.} \tag{28}
$$

Almost sure convergence in (28) was later established by:

Ornstein and Weiss, "Entropy and data compression schemes", IEEE Trans. Info. Theory, vol. IT-39, pp. 78 – 83, January 1993.

Analysis of LZ77 (cont.)

Theorem 2 can be restated in terms of waiting times as

Theorem 3. [WZ89] Let **X** be stationary ergodic and define the random variable N_l as the smallest $N>0$ such that

$$
X_0^{l-1} = X_{-N}^{-N+l-1}.
$$

Then

$$
\frac{1}{l}\log N_l \to \overline{H}(\mathbf{X}) \quad \text{in probability.} \tag{29}
$$

Equivalence of theorems derives from the equivalence of events

$$
\{N_l > n\} = \{L_n \leq l\}.
$$

Intuition can be gained via Kac's lemma. For stationary ergodic **Y**, $Y_i \in \mathcal{B}$, $|\mathcal{B}| < \infty$ let

$$
Q_k(b) = \Pr(Y_k = b; Y_j \neq b, 1 \le j \le k - 1 | Y_0 = b)
$$

and let

$$
\mu(b) = \sum_{k=1}^{\infty} k Q_k(b)
$$

denote the expected recurrence time for the symbol $b \in \mathcal{B}$.

Lemma 5. [Kac]

$$
\mu(b) = 1/\Pr\{Y_0 = b\}.
$$

Applied to our case Kac's lemma implies

$$
E[N_l|X_0^{l-1}=x_0^{l-1}]\approx 2^{l(\overline{H}(\mathbf{X})\pm\epsilon)}
$$

EE477, Autumn 04-05, Lec. III 21

or

$$
\frac{\log E[N_l|X_0^{l-1} = x_0^{l-1}]}{l} \approx \overline{H}(\mathbf{X}) \pm \epsilon
$$

for all typical x_0^{l-1} , which resembles (29).

See also

[A. Dembo and I. Kontoyiannis. "The asymptotics of waiting times between stationary processes, allowing distortion," Ann. Appl. Probab., 9, pp. 413-429, May 1999]

and references therein for analogues of Theorem 3 when distortion is allowed.

EE477, Autumn 04-05, Lec. III 22