Lecture lll: The Lempel-Ziv Algorithms Two Main Variants

. . laorith :
* Afamily of data compression algorithms presented in [LZ77] and [LZ78] present different algorithms with common elements
[LZ77] J. Ziv and A. Lempel, A universal algorithm for sequential data

compression, |IEEE Trans. Inform.Theory, vol. IT-23, pp. 337 — 343, May = The main mechanism in both schemes is pattern matching: find
1977 string patterns that have occurred in the past, and compress them by

encoding a reference to the previous occurrence

[LZ78] J. Ziv and A. Lempel, Compression of individual sequences via
variable rate coding, IEEE Trans. Inform. Theory, vol. IT-24, pp. 530 — « Both schemes are in wide practical use
536, Sept. 1978.

® many variations exist on each of the major schemes

e Many desirable features, the conjunction of which was unprecedented = we focus on LZ78, which admits a simpler analysis with a stronger
, result. Our proof follows [CT91]. It differs from the original proof in
m simple and elegant [LZ78]
m universal for individual sequences in the class of finite-state encoders = we will also describe the [LZ77], and see a fundamental result of
= convergence to the entrqpy rgte . . [Wyner&Ziv] providing insight into its workings
m string matching and dictionaries, no explicit probability model = the scheme is based on the notion of incremental parsing
| |

very practical, with fast and effective implementations applicable to a
wide range of data types
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Incremental Parsing and the LZ78 Performance Analysis

e Parse the input sequence into phrases, each new phrase being the Lemma 1. The number of phrases c¢(n) in a distinct parsing of a binary
shortest substring that has not appeared so far in the parsing. E.g., for sequence satisfies
the string z” = 1011010100010 e(n) < n , (1)

1,0,11,01,010, 00, 10, " (I —en)logn
where ¢, — 0 as n — oc.

o Each new phrase is of the form wb, where w is a previous phrase, b € Proof Idea: Letting n;, denote the sum of lengths of all distinct strings of
{0,1} length < k and k(n) denote the distinct value of k such that n, < n < ng1,
= a new phrase can be described as (i, b), where i = index(w) we show that for any distinct parsing
= in the example: (0,1), (0,0),(1,1),(2,1), (4,0),(2,0),(1,0)

m let ¢(n) = number of phrases in 2" 1. ¢(n) <n/(k(n) —1).

m a phrase description takes < 1 + log ¢(n) bits

= here describing 13 bits took us 28 but gets better as n — oo 2. k(n) = (1 £ €,)(logn).
| |

another small overhead to indicate how many bits per description of
phrase (in practice use increasing length codes)

= So, all in all, bounding generously, the compression ratio attained is
< c(n)(log c(n)+2)+logn
- n
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Ziv’s Inequality

For fixed k let P(-|-) be an arbitrary conditional distribution of X, given X ;.
Define the probability distribution @, on X™ conditioned on X° , ,, by

Qu("|2° o_y)) = [] P(xjl2lZ). (2)
j=1

Suppose now that 2™ is parsed into ¢ distinct phrases y1, yo, - - -, Ye

Let v; be the index of the start of the i-th phrase, i.e., y; = 21t "

Foreachi=1,2,...,c, define s; = 2)'_,
Thus s; is the k& bits of x preceding y;

Let ¢;5 be the number of phrases y; with length [ and preceding state s; = s
forl=1,2,...and s € X*. So

chs =c¢ and Zlcls =n. (3)
l,s l,s
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Maximum-Entropy Lemma

Lemma 3. Let Z be a positive integer valued random variable with mean
w. Then

H(Z) < (p+1)log(p+ 1) — plog pu. (4)

Proof: The maximum-entropy distribution over the positive integers under a
constraint on the mean is the geometric one. The right hand side of (4) is
readily checked to be the entropy of the geometric distribution with mean .
O
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Lemma 2. [Ziv’s inequality] For any distinct parsing of the string x™

log Qr(x"]s1) < — ZCZS log ¢i5.

l,s

Note right side does not depend on P(:|-) through which @, was defined.
Proof:

log Qi(a"z° 1)) = Y _log Qu(yils:)
=1

= Y. >, logQuluils:)

l,s i:|y;|=l,s;=s

= Ya Y CilOng(yﬂsi)
l,s

. S
itlyi|=l,si=s

I
O

> clog > CiQk(yiLSi)

. ls
Ls ity;|=1,s;=s
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Ziv’s Inequality (another one)

Lemma 4. [Ziv’s Inequality] Forallx € {0,1}>

c(n)loge(n) 1 0
NS TTOe TN < __1 . n : ) -

” s Ogll}le?%@k(f |22 (k—1)) + €x(n),
where €;.(n) — 0 as n — oo (uniformly inx € {0,1}*).

Proof: Fix P € Py, through which Qk(x”|x(i(k71)) is defined. By Ziv’s
inequality

CisC

1 n|,.0 < _ 51
og Qr(x \957(1%1)) = lz;Cl 08—

—clogc—c E %log%. (6)
c c
l,s
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Denoting m;, = <=, we have
n
=1, Imps = —. 7
ZZ'/TZS lz s c ( )

Thus, defining the random variables U, V' such that

Pr(U=1V =s)=ms (8)
we have n
EU = — (9)
C
and, by (6),
1 )20 > & ‘H 10
—Elong(x \ﬁ_(k_m) =, 08¢, (U, V). (10)
Now
H(U) < (EU+1)log(FU+1)— EUlog EU (11)
EE477, Autumn 04-05, Lec. Il
Note, in particular, that
loglogn
€x(n) =0 ; (20)
logn

independently of ™ and P € P,. The proof is completed by combining (10)
with (17) and the arbitrariness of P € P,. O
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- 10g—+(—+1)log<—+1> (13)
Thus
EH(U, V) (14)
< %(H(U) +H(V)) (15)
< Clogn+ (S 1)log (D4 1) + S (16)
< ex(n), (17)

where (17) follows from Lemma 1 upon denoting

1 | 1
o
1—¢€,)logn &

ek(n) = —(

(1 —€,)logn

1 1 k
* ((1 —€p)logn * 1) log <(1 —€p)logn * 1> * (1 —¢€,)logn’ (19)
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The Key Result

Theorem 1. Leti(x2") denote the Ziv-Lempel codeword length associated
with 2™. Then, for all x € {0,1}°°,

: 1 n : : 1 n
hrILILSolipEl(x ) < kllnéoh,lfl_,siip —Elog}glggi Qr(z |$9(k71)) : (21)

Proof: The result is a direct consequence of the fact that
[(z™) < ¢(n)(log c(n) + 2) + log n, combined with Lemma 1 and Lemma 4.
O

Equipped with Theorem 1, the universality result in the stochastic setting is
but a simple corollary:
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Pointwise Universality of the LZ scheme

Corollary 1. Let X = {X;} be a stationary ergodic source. Then the
Lempel-Ziv code satisfies

lim ll(X”) =H(X) a.s. (22)

n—oo n,

Proof: For P denoting the true distribution of X conditioned on X:,i we
have, with probability one,

1 1
li XM < N —=1 X" x° 23
lﬂsipn( ) < lern_)Solip{ - oggg;iQk( | (kl))] (23)
1 < .
< 1 —=Y log P(X;| X7} 24
< lﬁsolipl n; og P(X;] z—k)‘| (24)
= H(Xo|X7}), (25)
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Universality for Individual Sequences

Another easy consequence of Theorem 1 is universality in the individual
sequence setting. Define the finite-memory compressibility :

. 1 n
FMy(a") = ,inf | ——logQu(z"|s1)

FMj(x) = limsup FM(z"™)

n—oo

FM(x) = klim F M (x)

Corollary 2. For allx € {0,1}°°, the LZ codeword lengths satisfy

lim sup ll(:z:") < FM(x). (27)

n—oo

[LZ78] introduces a stronger notion of finite-state compressibility and
shows that the LZ scheme attains that as well.
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where the first inequality follows from Theorem 1, and the equality by
ergodicity. The arbitrariness of k implies

lim sup lZ(X") <H(X) a.s., (26)

n—oo n

which, combined with exercise 2 of HW sheet 2, completes the proof. O
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The Parsing Tree

x,"=1,011,01,010,00,10,...

code phrase
0 o
0,1
0,0
1,1
2,1
4,0
2,0
1,0
[ coding could be made more efficient by “recycling” O O

codes of nodes that have a complete set of children
(e.g., 1, 2 above)

Owill not affect asymptotics

Omany (many many) tricks and hacks exist in practical
implementations

o
@

NOoO abh WON -

dictionary
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The LZ Probability Assignment

[0 Slightly different tree evolution
anticipatory parsing
0 A weight is kept at every node

0 number of times the node was
traversed through + 1

[J A node act as a conditioning state,
assigning to its children
probabilities proportional to their
weight

0 Example: string s=101101010

P(O|s) = 4/7
P(1]s0) = 3/4
P(1]s01) = 1/3
P(011]s) = (4/7)*(3/4)*(1/3) = 1/7
Notice “telescoping’
O P(s011) = 1/7!

x,"=1,011,01,010, ...

[ In general,

PO B oy

Olog P O ¢(n)loge(n) Dole(n)loge(n)] LZ code length!

every lossless compression algorithm defines

a prob. assignment, even if it wasn’t meant to!

EE477, Autumn 04-05, Lec. IlI 17

Analysis of LZ77

Think of X~} as a database. Then look into “positive time” at X;, X1, . ..
and continue until the L-string X/~ is not a substring of the extended
database X2. Denote that L by L,(X).

In the [LZ77], if we set time to zero at the beginning of a new phrase after
the algorithm has finished encoding the first n source symbols then the

length of the new phrase will be 9 L,,, where the approximate (and not
precise) relationship is due to the randomness in the time-shift.

Thus, the compression ratio on the new block is <

1
7~ (logn +log Ly, + O(loglog Ly) + log(|A| —1)).
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LZ77

[0 Exhaustive parsing as opposed to incremental
(] a new phrase is formed by the longest match anywhere in a finite past
window, plus the new symbol
[0 a pointer to the location of the match, its length, and the new symbol
are sent
[J Has a weaker proof of universality, but actually works better in
practice

1,011010100010101,11011...
2,1) (32) 42) (6.5) (14,5)

offset back match length
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Fundamental Result in Analysis of LZ77

Wyner and Ziv, “Some asymptotic properties of the entropy of a stationary
ergodic data source with applications to data compression”, IEEE Trans.
Info. Theory, vol. IT-35, pp. 1250 — 1258, November 1989.

Theorem 2. [WZ89] For stationary ergodic X

logn

T — H(X) in probability. (28)

Almost sure convergence in (28) was later established by:

Ornstein and Weiss, “Entropy and data compression schemes”, IEEE
Trans. Info. Theory, vol. IT-39, pp. 78 — 83, January 1993.
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Analysis of LZ77 (cont.)

Theorem 2 can be restated in terms of waiting times as

Theorem 3. [WZ89] Let X be stationary ergodic and define the random
variable N, as the smallest N > 0 such that

lel _ X7N+lfl
0 - —N .
Then

%log N; — H(X) in probability. (29)

Equivalence of theorems derives from the equivalence of events

(N >n}={L, <1I}.
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or
log E[N)| X5t = 21

l
for all typical =, which resembles (29).

~ H(X)+e

See also

[ A. Dembo and I. Kontoyiannis. “The asymptotics of waiting times between
stationary processes, allowing distortion,” Ann. Appl. Probab., 9, pp.
413-429, May 1999 ]

and references therein for analogues of Theorem 3 when distortion is
allowed.
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23

Intuition behind Theorem 3

Intuition can be gained via Kac’s lemma. For stationary ergodic Y, Y; € B,
|B| < oo let

and let -
p() = kQi(b)
k=1
denote the expected recurrence time for the symbol b € 5.

Lemma 5. [Kac]
wu(b) = 1/ Pr{Yy = b}.

Applied to our case Kac’s lemma implies

E[NZ|X(Z)71 — xéﬁl] ~ QZ(ﬁ(X)iE)
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