
Lecture III: The Lempel-Ziv Algorithms

• A family of data compression algorithms presented in

[LZ77] J. Ziv and A. Lempel, A universal algorithm for sequential data
compression, IEEE Trans. Inform.Theory, vol. IT-23, pp. 337 – 343, May
1977

[LZ78] J. Ziv and A. Lempel, Compression of individual sequences via
variable rate coding, IEEE Trans. Inform. Theory, vol. IT-24, pp. 530 –
536, Sept. 1978.

• Many desirable features, the conjunction of which was unprecedented

simple and elegant
universal for individual sequences in the class of finite-state encoders
convergence to the entropy rate
string matching and dictionaries, no explicit probability model
very practical, with fast and effective implementations applicable to a
wide range of data types
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Two Main Variants

[LZ77] and [LZ78] present different algorithms with common elements

The main mechanism in both schemes is pattern matching: find
string patterns that have occurred in the past, and compress them by
encoding a reference to the previous occurrence

• Both schemes are in wide practical use

many variations exist on each of the major schemes
we focus on LZ78, which admits a simpler analysis with a stronger
result. Our proof follows [CT91]. It differs from the original proof in
[LZ78]
we will also describe the [LZ77], and see a fundamental result of
[Wyner&Ziv] providing insight into its workings
the scheme is based on the notion of incremental parsing
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Incremental Parsing and the LZ78

• Parse the input sequence into phrases, each new phrase being the
shortest substring that has not appeared so far in the parsing. E.g., for
the string xn = 1011010100010

1, 0, 11, 01, 010, 00, 10,

• Each new phrase is of the form wb, where w is a previous phrase, b ∈
{0, 1}

a new phrase can be described as (i, b), where i = index(w)
in the example: (0, 1), (0, 0), (1, 1), (2, 1), (4, 0), (2, 0), (1, 0)
let c(n) = number of phrases in xn

a phrase description takes ≤ 1 + log c(n) bits
here describing 13 bits took us 28 but gets better as n → ∞
another small overhead to indicate how many bits per description of
phrase (in practice use increasing length codes)
So, all in all, bounding generously, the compression ratio attained is
≤ c(n)(log c(n)+2)+log n

n
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Performance Analysis

Lemma 1. The number of phrases c(n) in a distinct parsing of a binary
sequence satisfies

c(n) ≤ n

(1 − εn) log n
, (1)

where εn → 0 as n → ∞.

Proof Idea: Letting nk denote the sum of lengths of all distinct strings of
length ≤ k and k(n) denote the distinct value of k such that nk ≤ n < nk+1,
we show that for any distinct parsing

1. c(n) ≤ n/(k(n) − 1).

2. k(n) = (1 ± εn)(log n).
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Ziv’s Inequality

For fixed k let P (·|·) be an arbitrary conditional distribution of X0 given X−1
−k.

Define the probability distribution Qk on Xn conditioned on X0
−(k−1) by

Qk(xn|x0
−(k−1)) =

n∏
j=1

P (xj|xj−1
j−k). (2)

Suppose now that xn is parsed into c distinct phrases y1, y2, . . . , yc

Let νi be the index of the start of the i-th phrase, i.e., yi = x
νi+1−1
νi

For each i = 1, 2, . . . , c, define si = xνi−1
νi−k

Thus si is the k bits of x preceding yi

Let cls be the number of phrases yi with length l and preceding state si = s
for l = 1, 2, . . . and s ∈ X k. So∑

l,s

cls = c and
∑
l,s

lcls = n. (3)
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Lemma 2. [Ziv’s inequality] For any distinct parsing of the string xn

log Qk(xn|s1) ≤ −
∑
l,s

cls log cls.

Note right side does not depend on P (·|·) through which Qk was defined.
Proof:

log Qk(xn|x0
−(k−1)) =

c∑
i=1

log Qk(yi|si)

=
∑
l,s

∑
i:|yi|=l,si=s

log Qk(yi|si)

=
∑
l,s

cls

∑
i:|yi|=l,si=s

1
cls

log Qk(yi|si)

≤
∑
l,s

cls log


 ∑

i:|yi|=l,si=s

1
cls

Qk(yi|si)


 .�
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Maximum-Entropy Lemma

Lemma 3. Let Z be a positive integer valued random variable with mean
µ. Then

H(Z) ≤ (µ + 1) log(µ + 1) − µ log µ. (4)

Proof: The maximum-entropy distribution over the positive integers under a
constraint on the mean is the geometric one. The right hand side of (4) is
readily checked to be the entropy of the geometric distribution with mean µ.
�
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Ziv’s Inequality (another one)

Lemma 4. [Ziv’s Inequality] For all x ∈ {0, 1}∞

c(n) log c(n)
n

≤ −1
n

log max
P∈Pk

Qk(xn|x0
−(k−1)) + εk(n),

where εk(n) → 0 as n → ∞ (uniformly in x ∈ {0, 1}∞).

Proof: Fix P ∈ Pk through which Qk(xn|x0
−(k−1)) is defined. By Ziv’s

inequality

log Qk(xn|x0
−(k−1)) ≤ −

∑
l,s

cls log
clsc

c
(5)

= −c log c − c
∑
l,s

cls

c
log

cls

c
. (6)
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Denoting πls = cls
c , we have

∑
l,s

πls = 1,
∑
l,s

lπls =
n

c
. (7)

Thus, defining the random variables U, V such that

Pr(U = l, V = s) = πls (8)

we have
EU =

n

c
(9)

and, by (6),

−1
n

log Qk(xn|x0
−(k−1)) ≥

c

n
log c − c

n
H(U, V ). (10)

Now

H(U) ≤ (EU + 1) log(EU + 1) − EU log EU (11)

EE477, Autumn 04-05, Lec. III 9

=
(n

c
+ 1

)
log

(n

c
+ 1

)
− n

c
log

n

c
(12)

= log
n

c
+

(n

c
+ 1

)
log

( c

n
+ 1

)
. (13)

Thus

c

n
H(U, V ) (14)

≤ c

n
(H(U) + H(V )) (15)

≤ c

n
log

n

c
+

( c

n
+ 1

)
log

( c

n
+ 1

)
+

c

n
k (16)

≤ εk(n), (17)

where (17) follows from Lemma 1 upon denoting

εk(n) = − 1
(1 − εn) log n

log
1

(1 − εn) log n
(18)

+
(

1
(1 − εn) log n

+ 1
)

log
(

1
(1 − εn) log n

+ 1
)

+
k

(1 − εn) log n
. (19)
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Note, in particular, that

εk(n) = O

(
log log n

log n

)
, (20)

independently of xn and P ∈ Pk. The proof is completed by combining (10)
with (17) and the arbitrariness of P ∈ Pk. �
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The Key Result

Theorem 1. Let l(xn) denote the Ziv-Lempel codeword length associated
with xn. Then, for all x ∈ {0, 1}∞,

lim sup
n→∞

1
n
l(xn) ≤ lim

k→∞
lim sup

n→∞

[
−1

n
log max

P∈Pk

Qk(xn|x0
−(k−1))

]
. (21)

Proof: The result is a direct consequence of the fact that
l(xn) ≤ c(n)(log c(n) + 2) + log n, combined with Lemma 1 and Lemma 4.
�

Equipped with Theorem 1, the universality result in the stochastic setting is
but a simple corollary:
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Pointwise Universality of the LZ scheme

Corollary 1. Let X = {Xi} be a stationary ergodic source. Then the
Lempel-Ziv code satisfies

lim
n→∞

1
n
l(Xn) = H(X) a.s. (22)

Proof: For P denoting the true distribution of X0 conditioned on X−1
−k we

have, with probability one,

lim sup
n→∞

1
n
l(Xn) ≤ lim sup

n→∞

[
−1

n
log max

P∈Pk

Qk(Xn|X0
−(k−1))

]
(23)

≤ lim sup
n→∞

[
−1

n

n∑
i=1

log P (Xi|Xi−1
i−k)

]
(24)

= H(X0|X−1
−k), (25)
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where the first inequality follows from Theorem 1, and the equality by
ergodicity. The arbitrariness of k implies

lim sup
n→∞

1
n
l(Xn) ≤ H(X) a.s., (26)

which, combined with exercise 2 of HW sheet 2, completes the proof. �
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Universality for Individual Sequences

Another easy consequence of Theorem 1 is universality in the individual
sequence setting. Define the finite-memory compressibility :

FMk(xn) = inf
P∈Pk,s1

[
−1

n
log Qk(xn|s1)

]

FMk(x) = lim sup
n→∞

FMk(xn)

FM(x) = lim
k→∞

FMk(x)

Corollary 2. For all x ∈ {0, 1}∞, the LZ codeword lengths satisfy

lim sup
n→∞

1
n
l(xn) ≤ FM(x). (27)

[LZ78] introduces a stronger notion of finite-state compressibility and
shows that the LZ scheme attains that as well.
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4

,
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4 2,1

,

0

5
5 4,0

6

,

0

6 2,0

dictionary

,

0

7

7 1,0
coding could be made more efficient by �recycling�
codes of nodes that have a complete set of children
(e.g., 1, 2 above)
will not affect asymptotics
many (many many) tricks and hacks exist in practical
implementations

x1n = 1 0 1 1 0 1 0 1 0 0 0 1 0 ...

The Parsing Tree
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Slightly different tree evolution
anticipatory parsing
A weight is kept at every node

number of times the node was
traversed through + 1

A node act as a conditioning state,
assigning to its children
probabilities proportional to their
weight
Example: string s=101101010
P(0|s) = 4/7
P(1|s0) = 3/4
P(1|s01) = 1/3
P(011|s) = (4/7)*(3/4)*(1/3) = 1/7

Notice `telescoping�
P(s011) = 1/7!
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In general,

every lossless compression algorithm defines
a prob. assignment, even if it wasn�t meant to!

The LZ Probability Assignment LZ77
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Exhaustive parsing as opposed to incremental
a new phrase is formed by the longest match anywhere in a finite past
window, plus the new symbol
a pointer to the location of the match, its length, and the new symbol
are sent

Has a weaker proof of universality, but actually works better in
practice

1,0,1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 ...

offset back match length

,
(2,1)

,
(3,2)

,
(4,2)

,
(6,5)

,
(14,5)

Analysis of LZ77

Think of X−1
−n as a database. Then look into “positive time” at X0, X1, . . .

and continue until the L-string XL−1
0 is not a substring of the extended

database XL−2
−n . Denote that L by Ln(X).

In the [LZ77], if we set time to zero at the beginning of a new phrase after
the algorithm has finished encoding the first n source symbols then the
length of the new phrase will be

d≈ Ln, where the approximate (and not
precise) relationship is due to the randomness in the time-shift.

Thus, the compression ratio on the new block is ≤
1

Ln
(log n + log Ln + O(log log Ln) + log(|A| − 1)) .
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Fundamental Result in Analysis of LZ77

Wyner and Ziv, “Some asymptotic properties of the entropy of a stationary
ergodic data source with applications to data compression”, IEEE Trans.
Info. Theory, vol. IT-35, pp. 1250 – 1258, November 1989.

Theorem 2. [WZ89] For stationary ergodic X

log n

Ln
→ H(X) in probability. (28)

Almost sure convergence in (28) was later established by:

Ornstein and Weiss, “Entropy and data compression schemes”, IEEE
Trans. Info. Theory, vol. IT-39, pp. 78 – 83, January 1993.
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Analysis of LZ77 (cont.)

Theorem 2 can be restated in terms of waiting times as

Theorem 3. [WZ89] Let X be stationary ergodic and define the random
variable Nl as the smallest N > 0 such that

X l−1
0 = X−N+l−1

−N .

Then
1
l
log Nl → H(X) in probability. (29)

Equivalence of theorems derives from the equivalence of events

{Nl > n} = {Ln ≤ l}.
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Intuition behind Theorem 3

Intuition can be gained via Kac’s lemma. For stationary ergodic Y, Yi ∈ B,
|B| < ∞ let

Qk(b) = Pr(Yk = b;Yj 6= b, 1 ≤ j ≤ k − 1|Y0 = b)

and let

µ(b) =
∞∑

k=1

kQk(b)

denote the expected recurrence time for the symbol b ∈ B.

Lemma 5. [Kac]
µ(b) = 1/Pr{Y0 = b}.

Applied to our case Kac’s lemma implies

E[Nl|X l−1
0 = xl−1

0 ] ≈ 2l(H(X)±ε)
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or
log E[Nl|X l−1

0 = xl−1
0 ]

l
≈ H(X) ± ε

for all typical xl−1
0 , which resembles (29).

See also

[ A. Dembo and I. Kontoyiannis. “The asymptotics of waiting times between
stationary processes, allowing distortion,” Ann. Appl. Probab., 9, pp.
413-429, May 1999 ]

and references therein for analogues of Theorem 3 when distortion is
allowed.
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