
CS6200: Information Retrieval
Slides by: Jesse Anderton

Language Models

Vector Space Models work reasonably well, but have a few problems:

• They are based on bag-of-words, so they ignore grammatical
context and suffer from term mismatch.

• They don’t adapt to the user or collection, but ideal term weights are
user- and domain-specific.

• They are heuristic-based, and don’t have much explanatory power.

What’s wrong with VSMs?

We can address these problems by moving to probabilistic models,
such as language models:

• We can take grammatical context into account, and trade off
between using more context and performing faster inference.

• The model can be trained from a particular collection, or conditioned
based on user- and domain-specific features.

• The model is interpretable, and makes concrete predictions about
query and document relevance.

Probabilistic Modeling

1. Ranking as a probabilistic classification task

2. Some specific probabilistic models for classification

3. Smoothing: estimating model parameters from sparse data

4. A probabilistic approach to pseudo-relevance feedback

In this Module…

Imagine we have a function that gives us the probability that a document D is
relevant to a query Q, P(R=1|D, Q). We call this function a probabilistic model,
and can rank documents by decreasing probability of relevance.

There are many useful models, which differ by things like:

• Sensitivity to different document properties, like grammatical context

• Amount of training data needed to train the model parameters

• Ability to handle noise in document data or relevance labels

For simplicity here, we will hold the query constant and consider P(R=1|D).

Ranking with Probabilistic Models

Suppose we have documents and
relevance labels, and we want to
empirically measure P(R=1|D).

Each document has only one
relevance label, so every probability is
either 0 or 1. Worse, there is no way to
generalize to new documents.

Instead, we estimate the probability of
documents given relevance labels,
P(D|R=1).

The Flaw in our Plan
D=1
R=1

D=3
R=0

D=4
R=0

D=5
R=0

2(4 = �|&) = �

D=1 D=2 D=3 D=4 D=5

P(D|R=1) 1/2 1/2 0 0 0

P(D|R=0) 0 0 1/3 1/3 1/3

D=2
R=1

2(4 = �|&) = �

We can estimate P(D|R=1), not P(R=1|D),
so we apply Bayes’ Rule to estimate
document relevance.

• P(D|R=1) gives the probability that a
relevant document would have the
properties encoded by the random
variable D.

• P(R=1) is the probability that a
randomly-selected document is
relevant.

Bayes’ Rule

2(4 = �|&) =
2(&|4 = �)2(4 = �)

2(&)

=
2(&|4 = �)2(4 = �)�
T 2(&|4 = T)2(4 = T)

Starting from Bayes’ Rule, we can easily build a classifier to tell us whether documents
are relevant. We will say a document is relevant if:

!

!

!

!

We can estimate P(D|R=1) and P(D|R=0) using a language model, and P(R=0) and P(R=1)
based on the query, or using a constant. Note that for large web collections, P(R=1) is
very small for virtually any query.

Bayesian Classification

2(4 = �|&) > 2(4 = �|&)

=� 2(&|4 = �)2(4 = �)
2(&)

>
2(&|4 = �)2(4 = �)

2(&)

=� 2(&|4 = �)
2(&|4 = �)

>
2(4 = �)
2(4 = �)

In order to put this together, we need a language model to estimate
P(D|R).

Let’s start with a model based on the bag-of-words assumption. We’ll
represent a document as a collection of independent words
(“unigrams”).

Unigram Language Model

& = (Y�,Y�, . . . ,YP)
2(&|4) = 2(Y�,Y�, . . . ,YP|4)

= 2(Y�|4)2(Y�|4,Y�)2(Y�|4,Y�,Y�) . . .2(YP|4,Y�, . . . ,YP��)

= 2(Y�|4)2(Y�|4) . . .2(YP|4)

=
P�

K=�

2(YK|4)

Let’s consider querying a collection of five short documents with a
simplified vocabulary: the only words are apple, baker, and crab.

Example

Document Rel? apple? baker? crab?

apple apple crab! 1 1 0 1

crab baker crab 0 0 1 1

apple baker baker 1 1 1 0

crab crab apple 0 1 0 1

baker baker crab 0 0 1 1

2(4 = �) = �/�

2(4 = �) = �/�

Term # Rel # Non Rel P(w|R=1) P(w|R=0)

apple 2 1 2/2 1/3

baker 1 2 1/2 2/3

crab 1 3 1/2 3/3

Is “apple baker crab” relevant?

Example

Term P(w|R=1) P(w|R=0)

apple 1 1/3

baker 1/2 2/3

crab 1/2 1

2(4 = �) = �/�

2(4 = �) = �/�

2(&|4 = �)
2(&|4 = �)

?
>

2(4 = �)
2(4 = �)�

K 2(YK|4 = �)�
K 2(YK|4 = �)

?
>

2(4 = �)
2(4 = �)

2(CRRNG = �|4 = �)2(DCMGT = �|4 = �)2(ETCD = �|4 = �)
2(CRRNG = �|4 = �)2(DCMGT = �|4 = �)2(ETCD = �|4 = �)

?
>

�.�
�.�

� · �.� · �.�
�.�̄ · �.�̄ · �

?
>

�.�
�.�

�.��� < �.�

So far, we’ve focused on language models like P(D = w1, w2, …, wn). Where’s the query?

Remember the key insight from vector space models: we want to represent queries and
documents in the same way. The query is just a “short document:” a sequence of
words. There are three obvious approaches we can use for ranking:

1. Query likelihood: Train a language model on a document, and estimate the query’s
probability.

2. Document likelihood: Train a language model on the query, and estimate the
document’s probability.

3. Model divergence: Train language models on the document and the query, and
compare them.

Retrieval With Language Models

Suppose that the query specifies a
topic. We want to know the probability
of a document being generated from
that topic, or P(D|Q).

However, the query is very small, and
documents are long: document
language models have less variance.

In the Query Likelihood Model, we use
Bayes' Rule to rank documents based
on the probability of generating the
query from the documents’ language
models.

Query Likelihood Retrieval

Assuming uniform prior

Naive Bayes unigram model

2(&|3)
TCPM
= 2(3|&)2(&)

= 2(3|&)

=
�

Y�3

2(Y|&)

TCPM
=

�

Y�3

log 2(Y|&) Numerically stable version

Example: Query Likelihood
Wikipedia: WWI

World War I (WWI or WW1 or World War One),
also known as the First World War or the
Great War, was a global war centred in Europe
that began on 28 July 1914 and lasted until 11
November 1918. More than 9 million
combatants and 7 million civilians died as a
result of the war, a casualty rate exacerbated
by the belligerents' technological and industrial
sophistication, and tactical stalemate. It was
one of the deadliest conflicts in history, paving
the way for major political changes, including
revolutions in many of the nations involved.

Query: “deadliest war in history”
Term P(w|D) log P(w|D)

deadliest 1/94 = 0.011 -1.973
war 6/94 = 0.063 -1.195
in 3/94 = 0.032 -1.496

history 1/94 = 0.011 -1.973

Π = 2.30e-7 Σ = -6.637

http://en.wikipedia.org/wiki/World_war
http://en.wikipedia.org/wiki/Combatants
http://en.wikipedia.org/wiki/Civilian
http://en.wikipedia.org/wiki/World_War_I_casualties
http://en.wikipedia.org/wiki/List_of_wars_and_anthropogenic_disasters_by_death_toll

Example: Query Likelihood

Wikipedia: Taiping Rebellion

The Taiping Rebellion was a massive civil
war in southern China from 1850 to 1864,
against the ruling Manchu Qing dynasty. It
was a millenarian movement led by Hong
Xiuquan, who announced that he had
received visions, in which he learned that he
was the younger brother of Jesus. At least 20
million people died, mainly civilians, in one of
the deadliest military conflicts in history.

Query: “deadliest war in history”
Term P(w|D) log P(w|D)

deadliest 1/56 = 0.017 -1.748
war 1/56 = 0.017 -1.748
in 2/56 = 0.035 -1.447

history 1/56 = 0.017 -1.748

Π = 2.56e-8 Σ = −6.691

http://en.wikipedia.org/wiki/Civil_war
http://en.wikipedia.org/wiki/Southern_China
http://en.wikipedia.org/wiki/Manchu_people
http://en.wikipedia.org/wiki/Qing_dynasty
http://en.wikipedia.org/wiki/Millenarian
http://en.wikipedia.org/wiki/Hong_Xiuquan
http://en.wikipedia.org/wiki/Jesus
http://en.wikipedia.org/wiki/List_of_wars_and_anthropogenic_disasters_by_death_toll

There are many ways to move beyond this basic model.

• Use n-gram or skip-gram probabilities, instead of unigrams.

• Model document probabilities P(D) based on length, authority, genre,
etc. instead of assuming a uniform probability.

• Use the tools from the VSM slides: stemming, stopping, etc.

Next, we’ll see how to fix a major issue with our probability estimates:
what happens if a query term doesn’t appear in the document?

Summary: Language Model

There are three obvious ways to perform retrieval using language models:

1. Query Likelihood Retrieval trains a model on the document and
estimates the query’s likelihood. We’ve focused on these so far.

2. Document Likelihood Retrieval trains a model on the query and
estimates the document’s likelihood. Queries are very short, so these
seem less promising.

3. Model Divergence Retrieval trains models on both the document and
the query, and compares them.

Retrieval With Language Models

The most common way to compare
probability distributions is with
Kullback-Liebler (“KL”) Divergence.

This is a measure from Information
Theory which can be interpreted as
the expected number of bits you
would waste if you compressed data
distributed along p as if it was
distributed along q.

If p = q, DKL(p||q) = 0.

Comparing Distributions

&-.(R�S) =
�

G

R(G) log
R(G)
S(G)

Model Divergence Retrieval works as
follows:

1. Choose a language model for the
query, p(w|q).

2. Choose a language model for the
document, p(w|d).

3. Rank by –DKL(p(w|q) || p(w|d)) – more
divergence means a worse match.

This can be simplified to a cross-entropy
calculation, as shown to the right.

Divergence-based Retrieval

&-.(R(Y|S)�R(Y|F))

=
�

Y

R(Y|S) log
R(Y|S)
R(Y|F)

=
�

Y

R(Y|S) log R(Y|S) �
�

Y

R(Y|S) log R(Y|F)

TCPM
= �

�

Y

R(Y|S) log R(Y|F)

Model Divergence Retrieval
generalizes the Query and Document
Likelihood models, and is the most
flexible of the three.

Any language model can be used for
the query or document. They don’t
have to be the same. It can help to
smooth or normalize them differently.

If you pick the maximum likelihood
model for the query, this is equivalent
to the query likelihood model.

Retrieval Flexibility

Equivalence to Query Likelihood Model

4MGO R(Y|S) :=
VHY,S

|S| =
�
|S|

&-.(R(Y|S)�R(Y|F)) TCPM
= �

�

Y

R(Y|S) log R(Y|F)

= �
�

Y

�
|S| log R(Y|F)

We make the following model choices:

• p(w|q) is Dirichlet-smoothed with a
background of words used in
historical queries.

• p(w|d) is Dirichlet-smoothed with a
background of words used in
documents from the corpus.

• Σw qfw = 500,000

• Σw cfw = 1,000,000,000

Example: Model Divergence Retrieval

0IX SHY := EQWPV([SVH Y MR UYIV] PSK)

R(Y|S, ɑ = �) =
VHY,S + � � SHY�

Y SHY

|S| + �

R(Y|F, ɑ = ����) =
VHY,F + �, ��� � EHY�

Y EHY

|F| + �, ���

&-.(R(Y|S)�R(Y|F)) TCPM
= �

�

Y

R(Y|S) log R(Y|F)

= �
�

Y

VHY,S + � � SHY�
Y SHY

|S| + �
log

VHY,F + �, ��� � EHY�
Y EHY

|F| + �, ���

Ranking by (negative) KL-Divergence provides a very flexible and theoretically-sound retrieval system.

Example: Model Divergence Retrieval

Wikipedia: WWI
World War I (WWI or WW1 or World War
One), also known as the First World War or
the Great War, was a global war centred in
Europe that began on 28 July 1914 and
lasted until 11 November 1918. More than
9 million combatants and 7 million civilians
died as a result of the war, a casualty rate
exacerbated by the belligerents'
technological and industrial sophistication,
and tactical stalemate. It was one of the

Query: “world war one”

qf cf p(w|q) p(w|d) Score

world 2,500 90,000 0.202 0.002 -1.891

war 2,000 35,000 0.202 0.003 -1.700

one 6,000 5E+07 0.205 0.049 -0.893

-4.484

�

Y

VHY,S + � � SHY�
Y SHY

|S| + �
log

VHY,F + �, ��� � EHY�
Y EHY

|F| + �, ���

http://en.wikipedia.org/wiki/World_war
http://en.wikipedia.org/wiki/Combatants
http://en.wikipedia.org/wiki/Civilian
http://en.wikipedia.org/wiki/World_War_I_casualties
http://en.wikipedia.org/wiki/List_of_wars_and_anthropogenic_disasters_by_death_toll

Example: Model Divergence Retrieval

Wikipedia: Taiping Rebellion
The Taiping Rebellion was a massive civil
war in southern China from 1850 to 1864,
against the ruling Manchu Qing dynasty. It
was a millenarian movement led by Hong

Xiuquan, who announced that he had
received visions, in which he learned that he
was the younger brother of Jesus. At least 20
million people died, mainly civilians, in one of

Query: “world war one”

qf cf p(w|q) p(w|d) Score

world 2,500 90,000 0.202 8.75E-05 -2.723

war 2,000 35,000 0.202 0.001 -2.199

one 6,000 5E+07 0.205 0.049 -0.890

-5.812

�

Y

VHY,S + � � SHY�
Y SHY

|S| + �
log

VHY,F + �, ��� � EHY�
Y EHY

|F| + �, ���

http://en.wikipedia.org/wiki/Civil_war
http://en.wikipedia.org/wiki/Southern_China
http://en.wikipedia.org/wiki/Manchu_people
http://en.wikipedia.org/wiki/Qing_dynasty
http://en.wikipedia.org/wiki/Millenarian
http://en.wikipedia.org/wiki/Hong_Xiuquan
http://en.wikipedia.org/wiki/Jesus

Although the bag of words model works very well for text classification, it is intuitively
unsatisfying – it assumes the words in a document are independent, given the relevance
label, and nobody believes this.

What could we replace it with?

• A “bag of paragraphs” wouldn’t work – too many paragraphs are unique in the
collection, so we can’t do meaningful statistics without subdividing them.

• A “bag of sentences” is better, but not much – many sentences are unique, and two
documents expressing the same thought are unlikely to choose exactly the same
sentence. We need similar documents to have similar features.

• We’ll use sets of words, called n-grams, and consider sets of different sizes to balance
between good probability estimates (for small n) and semantic nuance (for large n).

Modeling Language

Maximum likelihood probability
estimates assign zero probability to
terms missing from the training data.

This is catastrophic for a Naive Bayes
retrieval model: any document that
doesn’t contain all query terms will get
a matching score of zero.

Many other probabilistic models have
similar problems. Only truly impossible
events should have zero probability.

Probability Estimation

Query Likelihood Model

Query: “world war one”

0

0.013

0.025

0.038

0.05

P(world | D) P(war | D) P(one | D)

0.00

0.05

0.03

2(&|3)
TCPM
=

�

Y�3

2(Y|&)

= �.�� · �.�� · �

The solution is to adjust our probability estimates by taking some probability away from the
most-likely events, and moving it to the less-likely events.

!

!

!

!

!

This makes the probability distribution less spiky, or “smoother.” The probabilities all move
just a little toward the mean.

Smoothing

Maximum Likelihood Estimate

0

0.013

0.025

0.038

0.05

P(world | D) P(war | D) P(one | D)

0.00

0.05

0.03

Smoothed Estimate

0

0.013

0.025

0.038

0.05

P(world | D) P(war | D) P(one | D)
0.0010

0.0495

0.0295

Smoothing is important for many reasons.

• Assigning zero probability to possible events is incorrect.

• Maximum likelihood estimates from your data don’t generalize perfectly
to new data, so a Bayesian update from some kind of prior works better.

However, uniform smoothing doesn’t work very well for language
modeling. Next, we’ll see why that is, and how we can do better.

Chengxiang Zhai and John Lafferty. 2004. A study of smoothing methods for language models applied to
information retrieval.

Smoothing

Laplace Smoothing, aka “add-one
smoothing,” smooths maximum likelihood
estimates by adding one count to each
event.

!

!

!

!

This is equivalent to a Bayesian posterior
with a uniform prior, as we'll see.

Laplace Smoothing

Pierre-Simon Laplace (1745-1827)
Image from Wikipedia

2(G) =
EQWPV(G) + ��

G�GXGPVU (EQWPV(G) + �)

2(Y|F) =
VHY,F + �
|F| + |8|

If we assume nothing about a
document’s vocabulary distribution,
we will use uniform probabilities for all
terms.

When we observe the terms in a
document, the Bayesian update of
these probabilities yields Laplace
smoothing.

This Bayesian posterior is our
smoothed estimate of the vocabulary
distribution for the document’s topic.

Deriving Laplace Smoothing
2(ř|Ɇ) MW &KTKEJNGV(ř|Ɇ�, . . . , Ɇ8) �

8�

K=�

řɆK��
K

2(F|ř) MW /WNVKPQOKCN(ř) �
8�

K=�

řVHK,F
K

2(Y|F) � 2(F|ř)2(ř|Ɇ) =
8�

K=�

řVHK,F+ɆK��
K

MW &KTKEJNGV(ř|Ɇ� + VH�,F, . . . , Ɇ8 + VH8,F)

E[2(Y|F)|Ɇ = �] =
VH�,F + �
|F| + 8

Laplace smoothing can be
generalized from add-one smoothing
to add-� smoothing, for � ∈ (0, 1].

This lets you tune the amount of
smoothing you want to use: smaller
values of � are closer to the maximum
likelihood estimate.

Add-� Smoothing

2(G) =
EQWPV(G) + Ɇ�

G�GXGPVU (EQWPV(G) + Ɇ)

2(Y|F) =
VHY,F + Ɇ

|F| + Ɇ|8|

Uniform smoothing assigns the same probability to all unseen words,
which isn’t realistic. This is easiest to see for n-gram models:

!

We strongly believe that “house” is more likely to follow “the white”
than “effortless” is, even if neither trigram appears in our training data.

Our bigram counts should help: “white house” probably appears more
often than “white effortless.” We can use bigram probabilities as a
background distribution to help smooth our trigram probabilities.

Limits of Uniform Smoothing

2(JQWUG|VJG,YJKVG) > 2(GHHQTVNGUU|VJG,YJKVG)

One way to combine foreground and background distributions is to take their
linear combination. This is the simplest form of Jelinek-Mercer Smoothing.

!

For instance, you can smooth n-grams with (n-1)-gram probabilities.

!

You can also smooth document estimates with corpus-wide estimates.

Jelinek-Mercer Smoothing

R̂(G) = ɐRHI(G) + (� � ɐ)RDI(G), � < ɐ < �

R̂(YP|Y�, . . . ,YP��) = ɐR(YP|Y�, . . . ,YP��) + (� � ɐ)R(YP|Y�, . . . ,YP��)

R̂(Y|F) = ɐ
VHY,F

|F| + (� � ɐ)
EHY�
Y EHY

Most smoothing techniques amount to
finding a particular value for λ in
Jelinek-Mercer smoothing.

For instance, add-one smoothing is
Jelinek-Mercer smoothing with a
uniform background distribution and a
particular value of λ.

Relationship to Laplace Smoothing

4MGO ɐ =
|F|

|F| + |8|

R̂(Y|F) = ɐ
VHY,F

|F| + (� � ɐ)
�

|8|

=

�
|F|

|F| + |8|

�
VHY,F

|F| +

�
|8|

|F| + |8|

�
�

|8|

=
VHY,F

|F| + |8| +
�

|F| + |8|

=
VHY,F + �
|F| + |8|

TF-IDF is also closely related to
Jelinek-Mercer smoothing.

If you smooth the query likelihood
model with a corpus-wide background
probability, the resulting scoring
function is proportional to TF and
inversely proportional to DF.

Relationship to TF-IDF

log 2(S|F) =
�

Y�S

log

�
ɐ
VHY,F

|F| + (� � ɐ)
FHY
|E|

�

=
�

Y�S:VHY,F>�

log

�
ɐ
VHY,F

|F| + (� � ɐ)
FHY
|E|

�
+

�

Y�S:VHY,F=�

log(� � ɐ)
FHY
|E|

=
�

Y�S:VHY,F>�

log

�
ɐ VHY,F

|F| + (� � ɐ) FHY
|E|

(� � ɐ) FHY
|E|

�
+

�

Y�S

log(� � ɐ)
FHY
|E|

TCPM
=

�

Y�S:VHY,F>�

log

�
ɐ VHY,F

|F|

(� � ɐ) FHY
|E|

+ �

�

Dirichlet Smoothing is the same as
Jelinek-Mercer smoothing, picking λ
based on document length and a
parameter μ – an estimate of the
average doc length.

!

The scoring function to the right is the
Bayesian posterior using a Dirichlet
prior with parameters:

Dirichlet Smoothing

ɐ = � � ɑ
|F| + ɑ

�
ɑ

EHY��
Y EHY

, . . . , ɑ
EHYP�
Y EHY

�

R̂(Y|F) =
VHY,F + ɑ EHY�

Y EHY

|F| + ɑ

log R(S|F) =
�

Y�S

log
VHY,F + ɑ EHY�

Y EHY

|F| + ɑ

Example: Dirichlet Smoothing
Query: “president lincoln”

tf 15

cf 160,000

tf 25

cf 2,400

|d| 1,800

Σ 10

μ 2,000

log R(S|F) =
�

Y�S

log
VHY,F + ɑ EHY�

Y EHY

|F| + ɑ

= log
�� + �, ��� � (���, ���/���)

�, ��� + �, ���

+ log
�� + �, ��� � (�, ���/���)

�, ��� + �, ���
= log(��.��/�, ���) + log(��.���/�, ���)
= � �.�� + ��.��
= � ��.��

Dirichlet Smoothing is a good choice for
many IR tasks.

• As with all smoothing techniques, it never
assigns zero probability to a term.

• It is a Bayesian posterior which considers
how the document differs from the corpus.

• It normalizes by document length, so
estimates from short documents and long
documents are comparable.

• It runs quickly, compared to many more
exotic smoothing techniques.

Effect of Dirichlet Smoothing

tf tf ML Score Smoothed
Score

15 25 -3.937 -10.53

15 1 -5.334 -13.75

15 0 N/A -19.05

1 25 -5.113 -12.99

0 25 N/A -14.4

Dirichlet Smoothing is the same as
Jelinek-Mercer smoothing, picking λ
based on

 * doc length |d|

 * doc vocabulary |V| (number of
unique terms in document)

!

Witten-Bell Smoothing

� =
|d|

|d|+ |V |

An n-gram is an ordered set of n
contiguous words, usually found within
a single sentence. Special cases are n
= 1 (unigrams), n = 2 (bigrams), and n =
3 (trigrams).

Skip-grams are more “relaxed” – they
can appear in any order, and need not
be adjacent. They are an unordered
set of n words that appear within a
fixed window of k words.

N-grams and Skip-grams

The quick brown fox jumped over the lazy dog.
Sentence

Trigrams (n = 3)
the quick brown
quick brown fox

brown fox jumped
…

Skip-grams (n = 3, k = 5)
quick brown fox

fox jumped quick
lazy dog jumped

…

We typically construct a generative
model of n-grams using Markov chains
– what is the probability distribution over
the next word in the n-gram, given the n
– 1 words we’ve seen so far?

P(wn|w1, w2, …, wn-1)

This assumes that words are
independent, given the relevance label
and the preceding n – 1 words.

We use a special token, like $, for words
“before” the beginning of the sentence.

Markov Chains

The quick brown fox jumped over the lazy dog.
Sentence

Trigram Sentence Probability
2(VJG|$, $) · 2(SWKEM|$, VJG) · 2(DTQYP|VJG, SWKEM)
·2(HQZ|SWKEM, DTQYP) · 2(LWORGF|DTQYP, HQZ)
·2(QXGT|HQZ, LWORGF) · 2(VJG|LWORGF, QXGT)
·2(NC\[|QXGT, VJG) · 2(FQI|VJG, NC\[)

How many n-grams do we expect to see, as a
function of the vocabulary size v and n-gram
size n?

• At first glance, you’d expect to see

!

• However, most possible n-grams will never
appear (like “correct horse battery
staple?”), and n-grams are limited by
typical sentence lengths.

• As n increases, the number of distinct
observed n-grams peaks around n = 4 and
then decreases.

Number of n-grams in a Corpus

�
X
P

�
= 1(XP)

Web 1T 5-gram Corpus

0M

350M

700M

1,050M

1,400M

n=1 n=2 n=3 n=4 n=5

1.18E+09

1.31E+09

9.77E+08

3.15E+08

1.36E+07

Total tokens: 1,024,908,267,229
Vocabulary size: 13,588,391

The best n-gram size to use depends on a variance-bias tradeoff:

• Smaller values of n have more training data: infrequent n-grams will
appear more often, reducing the variance of your probability estimates.

• Larger values of n take more context into account: they have more
semantic information, reducing the bias of your probability estimates.

The best n-gram size is the largest value your data will support. Common
choices are n = 3 for millions of words, or n = 2 for smaller corpora.

Choosing n-gram Size

Using n-grams and skip-grams allows us to include some linguistic
context in our retrieval models. This helps disambiguate word senses
and improve retrieval performance.

Larger values of n are beneficial, if you have the data to support them.
The number of n-grams does not grow exponentially in n, so the index
size can be manageable.

Next, we’ll see how to use an n-gram language model for retrieval.

Wrapping Up

