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language models 
for retrieval
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• Model is an idealization or abstraction of an actual process
• Mathematical models are used to study the properties of the 
process, draw conclusions, make predictions
• Conclusions derived from a model depend on whether the 
model is a good approximation of the actual situation
• Statistical models represent repetitive processes, make 
predictions about frequencies of interesting events
• Retrieval models can describe the computational
process
 – e.g. how documents are ranked
 – Note that how documents or indexes are stored is implementation
• Retrieval models can attempt to describe the human
process

 – e.g. the information need, interaction
 – Few do so meaningfully

• Retrieval models have an explicit or implicit definition of 
relevance

what is a retrieval model?
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today

retrieval models

• boolean
• vector space
• latent semnatic indexing
• statistical language
• inference network
• hyperlink based
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outline

• review: probabilities
• language model
• similarity, ranking in LM
• probability estimation
• smoothing methods
• examples
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probabilities

• sample space
• probability
• independent events
• cond. probability
• Bayes theorem
• distributions
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information theory,
coding

• entropy
• joint entropy
• cond. entropy
• relative entropy
• convexity, Jensen ineq.
• optimal coding
• Fano’s ineq.
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outline

• review: probabilities
• language model
• similarity, ranking in LM
• probability estimation
• smoothing methods
• examples
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• Probability distribution over strings of text
– how likely is a given string (observation) in a given “language”
– for example, consider probability for the following four strings

p1 = P(“a quick brown dog”)
p2 = P(“dog quick a brown”)
p3 = P(“быстрая brown dog”)
p4 = P(“быстрая собака”)

– English: p1 > p2 > p3 > p4

• … depends on what “language” we are modeling
– In most of IR, assume that p1 == p2

what is a language model ?
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• Every document in a collection defines a “language”
– consider all possible sentences (strings) that author could have 
written down when creating some given document
– some are perhaps more likely to occur than others

• subject to topic, writing style, language …
– P(s|MD) = probability that author would write down string “s”

• think of writing a billion variations of a document 
and counting how many time we get “s”

• Now suppose “Q” is the user’s query
– what is the probability that author would write down “q” ?

• Rank documents D in the collection by P(Q|MD) 
– probability of observing “Q” during random sampling from the 
language model of document D

lang modeling for IR
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language models

• estimate probabilities of certain ”events” 
in the text 

• based on these probabilities, use 
likelihood as similarity 

• language model based on 
– letters? 
– words? 
– phrases?
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statistical text generation
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• What kind of language model should 
we use?

– Unigram or higher-order models?
– Multinomial or multiple-Bernoulli?

• How can we estimate model 
parameters?

– Basic models
– Translation models
– Aspect models
– non-parametric models

• How can we use the model for 
ranking?

– Query-likelihood
– Document-likelihood
– Likelihood Ratio
– Divergence of query and document models

LM choices
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unigram LM

• words are sampled independently, with 
replacement 

• order of the words is lost (no phrases)
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higher-order LM
• Unigram model assumes word independence

– cannot capture surface form: P(“brown dog”) == P(“dog 
brown”)

• Higher-order models
– n-gram: condition on preceding words

– cache: condition on a window (cache)

– grammar: condition on parse tree

• Are they useful?
– no improvements from n-gram, grammar-based models
– some research on cache-like models (proximity, passages, etc.)
– parameter estimation is prohibitively expensive
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outline

• review: probabilities
• language model
• similarity, ranking in LM
• probability estimation
• smoothing methods
• examples
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• Predominant model 

• Fundamental event: 
what is the identity of the i’th query token?

• observation is a sequence of events, one for 
each query token

multinomial similarity

18



19

• Original model 

• fundamental event: does the word w occur in the query?

• observation is a vector of binary events, one for each 
possible word

multiple-Bernoulli similarity
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•what is the probability to generate the given 
query, given a language model?

•what is the probability to generate the given 
document, given a language model?

•how ”close” are 2 statistical models?

score, ranking in LM
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• Standard approach: query-likelihood
– estimate a language model MD for every document D in the 
collection
– rank docs by the probability of “generating” the query

• Drawbacks:
– no notion of relevance in the model: everything is random sampling
– user feedback / query expansion not part of the model
-examples of relevant documents cannot help us improve the language 
model MD
– does not directly allow weighted or structured queries

score: query likelihood
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• Flip the direction of the query-likelihood approach
– estimate a language model MQ for the query Q
– rank docs D by the likelihood of being a random sample from MQ
– MQ expected to “predict” a typical relevant document

• Problems:
– different doc lengths, probabilities not comparable
– favors documents that contain frequent (low content) words

score: document likelihood
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• Try to fix document likelihood:
– Bayes’ likelihood that Mq was the source, given that we 
observed D
– related to Probability Ranking Principle: P(D|R) / P (D|N)
– allows relevance feedback, query expansion, etc.
– can benefit from complex estimation of the query model MQ

score: likelihood ratio
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• Combine advantages of two ranking methods
– estimate a model of both the query MQ and the document MD
– directly compare similarity of the two models
– natural measure of similarity is cross-entropy (others exist):

– number of bits we would need to “encode” MQ using MD
– equivalent to Kullback-Leibler divergence
– equivalent to query-likelihood if MQ is simply counts of words in Q

• Cross-entropy is not symmetric: use H (MQ || MD)
– reverse works consistently worse, favors different document 
– use reverse if ranking multiple queries w.r.t. one document

score: model comparison
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Models of Text Generation

Query Model Query

Doc Model Doc

Searcher

Writer

Is this the same model?
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Retrieval with Language Models

Query ModelQuery

Doc ModelDoc

Retrieval:  Query likelihood (1)
  Document likelihood (2)  
  Model comparison (3)

1

2

3
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• Use Unigram models
– no consistent benefit from using higher order models
– estimation is much more complex (e.g. bi-gram from a 3-word
query)

• Use Multinomial models
– well-studied, consistent with other fields that use LMs
– extend multiple-Bernoulli model to non-binary events?

• Use Model Comparison for ranking
– allows feedback, expansion, etc. through estimation of MQ and MD
– use KL(MQ || MD) for ranking multiple documents against a query

• Estimation of MQ and MD is a crucial step
– very significant impact on performance (more than other choices)
– key to cross-language, cross-media and other applications

LM: popular choices
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Translation model (Berger 
and Lafferty)

• Basic LMs do not address issues of synonymy.
– Or any deviation in expression of information need 

from language of documents

• A translation model lets you generate query 
words not in document via “translation” to 
synonyms etc.
– Or to do cross-language IR, or multimedia IR

                                      Basic LM  Translation

– Need to learn a translation model (using a dictionary or 
via statistical machine translation)
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outline

• review: probabilities
• language model
• similarity, ranking in LM
• probability estimation
• smoothing methods
• examples
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• Want to estimate MQ and/or MD from Q and/or D

• General problem:
– given a string of text S (= Q or D), estimate its language model MS
– S is commonly assumed to be an i.i.d. random sample from MS

• Independent and identically distributed

• Basic Language Models
– maximum-likelihood estimator and the zero frequency problem
– discounting, interpolation techniques
– Bayesian estimation

estimation
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• count relative frequencies of words in S
• maximum-likelihood property:

– assigns highest possible likelihood to the observation
• unbiased estimator:

– if we repeat estimation an infinite number of times with
different starting points S, we will get correct probabilities (on
average)
– this is not very useful…

maximum likelihood
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• Suppose some event not in our observation S
– Model will assign zero probability to that event
– And to any set of events involving the unseen event

• Happens very frequently with language

• It is incorrect to infer zero probabilities
– especially when creating a model from short samples

zero-frequency problem
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Laplace smoothing
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discounting methods

• Laplace smoothing

• Lindstone correction
– add  εto all count, 

renormalize

• absolute discounting
– substract ε, redistribute 

probab mass
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• Held-out estimation
– Divide data into training and held-out sections
– In training data, count Nr, the number of words occurring r times
– In held-out data, count Tr, the number of times those words occur
– r* = Tr/Nr is adjusted count (equals r if training matches held-out)
– Use r*/N as estimate for words that occur r times

• Deleted estimation (cross-validation)
– Same idea, but break data into K sections
- Use each in turn as held-out data, to calculate Tr(k) and Nr(k)
– Estimate for words that occur r times is average of each

• Good-Turing estimation
– From previous, P(w|M) = r* / N if word w occurs r times in sample
– In Good-Turing, steal total probability mass from next most frequent 
word
– Provides probability mass for words that occur r=0 times
- Take what’s leftover from r>0 to ensure adds to one

discounting methods
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• Problem with all discounting methods:
– discounting treats unseen words equally (add or subtract ε)
– some words are more frequent than others

• Idea: use background probabilities
– “interpolate” ML estimates with General English expectations
(computed as relative frequency of a word in a large collection)
– reflects expected frequency of events

interpolation methods

ML estimate background probability

final estimate = 
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• Correctly setting λ is very important

• Start simple
– set λ to be a constant, independent of document, query

• Tune to optimize retrieval performance
– optimal value of λ varies with different databases, query 
sets, etc.

Jelinek Mercer smoothing
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• Problem with Jelinek-Mercer:
– longer documents provide better estimates
– could get by with less smoothing

• Make smoothing depend on sample size

• N is length of sample = document length
• µ is a constant

Dirichlet smoothing
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• A step further:
– condition smoothing on “redundancy” of the example
– long, redundant example requires little smoothing
– short, sparse example requires a lot of smoothing

• Derived by considering the proportion of new events
as we walk through example

– N is total number of events = document length
– V is number of unique events = number of unique terms in doc

Witten-Bell smoothing
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• Two possible approaches to smoothing

• Interpolation:
– Adjust probabilities for all events, both seen and 
unseen

• Back-off:
– Adjust probabilities only for unseen events
– Leave non-zero probabilities as they are
– Rescale everything to sum to one: rescales “seen” 
probabilities by a constant

• Interpolation tends to work better
 – And has a cleaner probabilistic interpretation

interpolation vs back-off
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Two-stage smoothing

Query  = “the    algorithms     for      data       mining”

d1:                0.04        0.001             0.02        0.002        0.003       
d2:                0.02        0.001             0.01        0.003        0.004
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Two-stage smoothing

Query  = “the    algorithms     for      data       mining”

d1:                0.04        0.001             0.02        0.002        0.003       
d2:                0.02        0.001             0.01        0.003        0.004

p( “algorithms”|d1)  = p(“algorithm”|d2)
p( “data”|d1)  < p(“data”|d2)

p( “mining”|d1)  < p(“mining”|d2)

But    p(q|d1)>p(q|d2)!
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Two-stage smoothing

Query  = “the    algorithms     for      data       mining”

d1:                0.04        0.001             0.02        0.002        0.003       
d2:                0.02        0.001             0.01        0.003        0.004

p( “algorithms”|d1)  = p(“algorithm”|d2)
p( “data”|d1)  < p(“data”|d2)

p( “mining”|d1)  < p(“mining”|d2)

But    p(q|d1)>p(q|d2)!

We should make p(“the”) and p(“for”) less different for all docs.
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c(w,d)

|d|
P(w|d) =

Two-stage smoothing
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c(w,d)

|d|
P(w|d) =

+µp(w|C)

+µ

Stage-1 

-Explain unseen words
-Dirichlet prior(Bayesian)

µ

Two-stage smoothing
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c(w,d)

|d|
P(w|d) =

+µp(w|C)

+µ

Stage-1 

-Explain unseen words
-Dirichlet prior(Bayesian)

µ

(1-λ) + λp(w|U)

Stage-2 

-Explain noise in query
-2-component mixture

λ

Two-stage smoothing
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• How do we determine if a given model is a LM?
• LM is generative

– at some level, a language model can be used to generate text
– explicitly computes probability of observing a string of text
– Ex: probability of observing a query string from a document model
probability of observing an answer from a question model
– model an entire population

• Discriminative approaches
– model just the decision boundary
– Ex: is this document relevant?
does it belong to class X or Y

– have a lot of advantages, 
- but these are not generative approaches

LM are generative techniques

43



44

• Goal: estimate a model M from a sample text S

• Use maximum-likelihood estimator
– count the number of times each word occurs in S, divide by length

• Smoothing to avoid zero frequencies
– discounting methods: add or subtract a constant, redistribute mass
– better: interpolate with background probability of a word
– smoothing has a role similar to IDF in classical models

• Smoothing parameters very important
– Dirichlet works well for short queries (need to tune the parameter)
– Jelinek-Mercer works well for longer queries (also needs tuning)
– Lots of other ideas being worked on

LM: summary
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Language models: pro & con

• Novel way of looking at the problem of text 
retrieval based on probabilistic language 
modeling

• Conceptually simple and explanatory
• Formal mathematical model
• Natural use of collection statistics, not heuristics 

(almost⋯)

• LMs provide effective retrieval and can be 
improved to the extent that the following 
conditions can be met

• Our language models are accurate representations 
of the data.

• Users have some sense of term distribution.

45



46

Comparison With Vector Space

• There’s some relation to traditional tf.idf 
models:
– (unscaled) term frequency is directly in model

– the probabilities do length normalization of term 
frequencies

– the effect of doing a mixture with overall collection 
frequencies is a little like idf: terms rare in the general 
collection but common in some documents will have a 
greater influence on the ranking
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• Similar in some ways
– Term weights based on frequency

– Terms often used as if they were independent

– Inverse document/collection frequency used

– Some form of length normalization useful

• Different in others
– Based on probability rather than similarity

• Intuitions are probabilistic rather than geometric

– Details of use of document length and term, document, 
and collection frequency differ

Comparison With Vector Space
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