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problem setup
 Set of underlying systems 

 On the same query
 User feedback
 Goal

 Find relevant documents
 Produce metasearch lists
 Do partial system evaluation (distinction)

 We are looking for an adaptive approach
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 this talk

 Hedge algorithm
 The new model
 Loss function
 Pooling
 System evaluation
 Metasearch
 Experiments
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 LOOP for episode t=1,2,…,T
 Choose allocation    

 Receive loss vector

 Suffer loss  

 Update weights

online allocation - hedge algorithm

 Hedge loss
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pooling - howto

 Naturally “want” top ranks
 If NON RELEVANT, then a NR in top ranks of the 

system lists
 If RELEVANT, bingo.

pooling value(d)
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“total” precizion

 Average the precision at ALL ranks
 Normalize so ideal system gets TP=1

 math is more simple
 we still work on it though

 Bad with “long tails”
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pooling - comparison with Cormack
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[partial] system evaluation – howto

 Before the next episode
 Assume all docs not judged (so many ?) to be NR
 Compute AvegPrecision for every system

 For comparison with depth-pooling we use 
average number of pools (over queries)

 Two situations
 One (or few) very good systems – use small β
 No singles  
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metasearch – howto
 Before the next episode

 Compute “pooling value” 
for each doc

 Instead of “select the top doc” for pooling
do “select the top 1000 doc” for metasearch

 In fact almost 1000 – docs already pooled are 
automatically in top of metasearch list
 Fair both ways
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experiments
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 ~100 systems
 50 queries each competition

 Use TREC qrels as user feedback
  incomplete feedback

 Goal
 Find relevant documents
 Produce metasearch lists
 Do partial system evaluation (distinction)
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metasearch - no feedback (yet)

no relevant
judgements
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conclusion
 A powerful machine learning approach

 Hedge = AdaBoost core
 Works [usually] better than anything else we’ve 

seen
 True, it uses feedback

 But without feedback there are provable limitations

 It is missing a rigorous analysis
 We are not very far away with that
 Need a model assumption
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KEY:
FIND RELEVANT

DOCS

the big picture

USER
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RELEVANT FOUND

better 
relevant rate 


