
A Study of Smoothing Methods for Language Models
Applied to Ad Hoc Information Retrieval

Chengxiang Zhai
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

John Lafferty
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT
Language modeling approaches to information retrieval are
attractive and promising because they connect the problem
of retrieval with that of language model estimation, which
has been studied extensively in other application areas such
as speech recognition. The basic idea of these approaches is
to estimate a language model for each document, and then
rank documents by the likelihood of the query according to
the estimated language model. A core problem in language
model estimation is smoothing , which adjusts the maximum
likelihood estimator so as to correct the inaccuracy due to
data sparseness. In this paper, we study the problem of lan-
guage model smoothing and its influence on retrieval perfor-
mance. We examine the sensitivity of retrieval performance
to the smoothing parameters and compare several popular
smoothing methods on different test collections.

1. INTRODUCTION
The study of information retrieval models has a long his-

tory. Over the decades, many different types of retrieval
models have been proposed and tested [21]. There has been
a great diversity of approaches and methodology developed,
rather than a single unified retrieval model that has proven
to be most effective; however, the field has progressed in two
different ways. On the one hand, theoretical studies of an
underlying model have been developed; this direction is, for
example, represented by the various kinds of logic models
and probabilistic models (e.g., [14, 3, 15, 22]). On the other
hand, there have been many empirical studies of models, in-
cluding many variants of the vector space model (e.g., [17,
18, 19]). In some cases, there have been theoretically moti-
vated models that also perform well empirically; for exam-
ple, the BM25 retrieval function, motivated by the 2-Poisson
probabilistic retrieval model, has proven to be quite effective
in practice [16].

Recently, a new approach based on language modeling
has been successfully applied to the problem of ad hoc re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’01, September 9-12, 2001, New Orleans, Louisiana, USA
Copyright 2001 ACM 1-58113-331-6/01/0009 ...$5.00.

trieval [13, 1, 10, 5]. The basic idea behind the new ap-
proach is extremely simple—estimate a language model for
each document, and rank documents by the likelihood of
the query according to the language model. Yet this new
framework is very promising, because of its foundations in
statistical theory, the great deal of complementary work on
language modeling in speech recognition and natural lan-
guage processing, and the fact that very simple language
modeling retrieval methods have performed quite well em-
pirically.

The term smoothing refers to the adjustment of the maxi-
mum likelihood estimator of a language model so that it will
be more accurate. At the very least, it is required to not as-
sign a zero probability to unseen words. When estimating
a language model based on a limited amount of text, such
as a single document, smoothing of the maximum likelihood
model is extremely important. Indeed, many language mod-
eling techniques are centered around the issue of smoothing.
In the language modeling approach to retrieval, the accuracy
of smoothing is directly related to the retrieval performance.
Yet most existing research work has assumed one method
or another for smoothing, and the smoothing effect tends to
be mixed with that of other heuristic techniques. There has
been no direct evaluation of different smoothing methods,
and it is unclear how the retrieval performance is affected
by the choice of a smoothing method and its parameters.

In this paper, we study the problem of language model
smoothing in the context of ad hoc retrieval, focusing on
the smoothing of document language models. The research
questions that motivate this work are (1) how sensitive is
retrieval performance to the smoothing of a document lan-
guage model? (2) how should a smoothing method be se-
lected, and how should its parameters be chosen? We com-
pare several of the most popular smoothing methods that
have been developed in speech and language processing, and
study the behavior of each method.

Our study leads to several interesting and unanticipated
conclusions. We find that the retrieval performance is highly
sensitive to the setting of smoothing parameters. In some
sense, smoothing is as important to this new family of re-
trieval models as term weighting is to the traditional models.
Interestingly, the effect of smoothing is very sensitive to the
type of queries, which suggests that smoothing plays two
different roles in the query-likelihood ranking method: One
role is to improve the accuracy of the estimated document
language model, while the other is to accommodate gen-
eration of common and non-informative words in a query.
Different smoothing methods have behaved somehow differ-

343334

ently. Some methods tend to perform better for concise title
queries while others tend to perform better for long verbose
queries. And some methods are more stable than others,
in the sense that their performance is less sensitive to the
choice of parameters.

2. THE LANGUAGEMODELING
APPROACH

The basic idea of the language modeling approach to in-
formation retrieval can be described as follows. We assume
that a query q is “generated” by a probabilistic model based
on an document d. Given a query q = q1q2...qn and a doc-
ument d = d1d2...dm, we are interested in estimating the
conditional probability p(d | q), i.e., the probability that d
generates the observed q. After applying the Bayes’ formula
and dropping a document-independent constant (since we
are only interested in ranking documents), we have

p(d | q) ∝ p(q | d)p(d)

As discussed in [1], the righthand side of the above equation
has an interesting interpretation, where, p(d) is our prior
belief that d is relevant to any query and p(q | d) is the query
likelihood given the document, which captures how well the
document “fits” the particular query q.

In the simplest case, p(d) is assumed to be uniform, and
so does not affect document ranking. This assumption has
been taken in most existing work [1, 13, 12, 5, 20]. In other
cases, p(d) can be used to capture non-textual information,
e.g., the length of a document or links in a web page, as well
as other format/style features of a document. In our study,
we assume a uniform p(d) in order to focus on the effect
of smoothing. See [10] for an empirical study that exploits
simple alternative priors.

With a uniform prior, the retrieval model reduces to the
calculation of p(q | d), where language modeling comes in.
The language model used in most previous work is the uni-
gram model.1 This is the multinomial model which assigns
the probability

p(q | d) =
i

p(qi | d)

Clearly, the retrieval problem is now essentially reduced to
a unigram language model estimation problem. In this pa-
per we focus on unigram models only; see [10, 20] for some
explorations of bigram and trigram models.

On the surface, the use of language models appears fun-
damentally different from vector space models with TF-IDF
weighting schemes, because the unigram language model
only explicitly encodes term frequency—there appears to
be no use of inverse document frequency weighting in the
model. However, there is an interesting connection between
the language model approach and the heuristics used in the
traditional models. This connection has much to do with
smoothing, and an appreciation of it helps to gain insight
into the language modeling approach.

Most smoothing methods make use of two distributions,
a model ps(w | d) used for “seen” words that occur in the
document, and a model pu(w | d) for “unseen” words that
do not. The probability of a query q can be written in terms

1The work of Ponte and Croft [13] adopts something similar to,
but slightly different from the standard unigram model.

of these models as follows, where c(w; d) denotes the count
of word w in d.

log p(q | d) =
i

log p(qi | d)

=
i:c(qi;d)>0

log ps(qi | d) +
i:c(qi;d)=0

log pu(qi | d)

=
i:c(qi;d)>0

log
ps(qi | d)
pu(qi | d)

+
i

log pu(qi | d)

The probability of an unseen word is typically taken as
being proportional to the general frequency of the word,
e.g., as computed using the document collection. So, let us
assume that pu(qi | d) = αd p(qi | C), where αd is a document-
dependent constant and p(qi | C) is the collection language
model. Now we have

log p(q | d) =
i:c(qi;d)>0

log
ps(qi | d)

αd p(qi | C)
+ n log αd +

i

log p(qi | C)

where n is the length of the query. Note that the last term
on the righthand side is independent of the document d, and
thus can be ignored in ranking.

Now we can see that the retrieval function can actually be
decomposed into two parts. The first part involves a weight
for each term common between the query and document
(i.e., matched terms) and the second part only involves a
document-dependent constant that is related to how much
probability mass will be allocated to unseen words, accord-
ing to the particular smoothing method used. The weight
of a matched term qi can be identified as the logarithm of

ps(qi | d)
αd p(qi | C) , which is directly proportional to the document
term frequency, but inversely proportional to the collection
frequency.

Thus, the use of p(qi | C) as a reference smoothing distri-
bution has turned out to play a role very similar to the well-
known IDF. The other component in the formula is just the
product of a document-dependent constant and the query
length. We can think of it as playing the role of document
length normalization, which is another important technique
to improve performance in traditional models. Indeed, αd

should be closely related to the document length, since one
would expect that a longer document needs less smoothing
and thus a smaller αd; thus a long document incurs a greater
penalty than a short one because of this term.

The connection just derived shows that the use of the
collection language model as a reference model for smooth-
ing document language models implies a retrieval formula
that implements TF-IDF weighting heuristics and document
length normalization. This suggests that smoothing plays a
key role in the language modeling approaches to retrieval.
A more restrictive derivation of the connection was given
in [5].

3. SMOOTHINGMETHODS
As described above, our goal is to estimate p(w | d), a

unigram language model based on a given document d. The
simplest method is the maximum likelihood estimate, simply
given by relative counts

pml(w | d) =
c(w; d)

w c(w; d)

344335

Method ps(w | d) αd Parameter

Jelinek-Mercer (1 − λ) pml(w | d) + λ p(w | C) λ λ

Dirichlet
c(w; d) + µ p(w | C)

w c(w; d) + µ
µ

w c(w; d) + µ
µ

Absolute discount
max(c(w; d) − δ, 0)

w c(w; d)
+

δ |d|u
|d| p(w | C)

δ|d|u
|d| δ

Table 1: Summary of the three primary smoothing methods compared in this paper.

However, the maximum likelihood estimator will generally
under-estimate the probability of any word unseen in the
document, and so the main purpose of smoothing is to assign
a non-zero probability to the unseen words and improve the
accuracy of word probability estimation in general.

There are many smoothing methods that have been pro-
posed, mostly in the context of speech recognition tasks [2].
In general, all smoothing methods are trying to discount
the probabilities of the words seen in the text, and to then
assign the extra probability mass to the unseen words ac-
cording to some “fallback” model. For information retrieval,
it makes much sense, and is very common, to exploit the col-
lection language model as the fallback model. Following [2],
we assume the general form of a smoothed model to be the
following:

p(w | d) =
ps(w | d) if word w is seen
αd p(w | C) otherwise

where ps(w | d) is the smoothed probability of a word seen in
the document, p(w | C) is the collection language model, and
αd is a coefficient controlling the probability mass assigned
to unseen words, so that all probabilities sum to one. In
general, αd may depend on d. Indeed, if ps(w | d) is given,
we must have

αd =
1 − w:c(w;d)>0 ps(w | d)

1 − w:c(w;d)>0 p(w | C)

Thus, individual smoothing methods essentially differ in their
choice of ps(w | d).

A smoothing method may be as simple as adding an extra
count to every word (called additive, or Laplace smoothing),
or more sophisticated as in Katz smoothing, where words of
different count are treated differently. However, because a
retrieval task typically requires efficient computations over
a large collection of documents, our study is constrained by
the efficiency of the smoothing method. We selected three
representative methods that are popular and relatively effi-
cient to implement. We excluded some well-known methods,
such as Katz smoothing [7] and Good-Turing estimation [4],
because of the efficiency constraint2. Although the methods
we evaluated are simple, the issues that they bring to light
are relevant to more advanced methods. The three methods
are described below.

The Jelinek-Mercer method. This method involves a lin-
ear interpolation of the maximum likelihood model with the
collection model, using a coefficient λ to control the influ-
ence of each model.

pλ(w | d) = (1 − λ) pml(w | d) + λ p(w | C) (1)

2They involve the count of words with the same frequency in a
document, which is expensive to compute.

Thus, this is a simple mixture model (but we preserve the
name of the more general Jelinek-Mercer method which in-
volves deleted-interpolation estimation of linearly interpo-
lated n-gram models).

Bayesian smoothing using Dirichlet priors. A language
model is a multinomial distribution, for which the conju-
gate prior for Bayesian analysis is the Dirichlet distribution
with parameters

(µp(w1 | C), µp(w2 | C), . . . , µp(wn | C))

Thus, the model is given by

pµ(w | d) =
c(w; d) + µ p(w | C)

w c(w; d) + µ
(2)

The Laplace method is a special case of this technique.
Absolute discounting. The idea of the absolute discount-

ing method is to lower the probability of seen words by sub-
tracting a constant from their counts [11]. It is similar to
the Jelinek-Mercer method, but differs in that it discounts
the seen word probability by subtracting a constant instead
of multiplying it by (1-λ). The model is given by

pδ(w | d) =
max(c(w; d) − δ, 0)

w c(w; d)
+ σp(w | C) (3)

where δ ∈ [0, 1] is a discount constant and σ = δ |d|u/|d|, so
that all probabilities sum to one. Here |d|u is the number
of unique terms in document d, and |d| is the total count of
words in the document, so that |d| = w c(w; d).

The three methods are summarized in Table 1 in terms of
ps(w | d) and αd in the general form. It is easy to see that a
larger parameter value means more smoothing in all cases.

Retrieval using any of the three methods can be imple-
mented very efficiently, when the smoothing parameter is
given in advance. The α’s can be pre-computed for all doc-
uments at index time. The weight of a matched term w can
be computed easily based on the collection language model
p(w | C), the query term frequency c(w; q), the document
term frequency c(w; d), and the smoothing parameters. In-
deed, the scoring complexity for a query q is O(k |q |), where
|q | is the query length, and k is the average number of doc-
uments in which a query term occurs. It is as efficient as
scoring using a TF-IDF model.

4. EXPERIMENTAL SETUP
Our goal is to study the behavior of individual smooth-

ing methods as well as to compare different methods. As
is well-known, the performance of a retrieval algorithm may
vary significantly according to the testing collection used.
It is generally desirable to have larger collections and more
queries. We use the following five databases from TREC, in-
cluding three of the largest testing collections for ad hoc re-
trieval, i.e., the official TREC7 ad hoc, TREC8 ad hoc, and

345336

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

lambda

Precision of Jelinek-Mercer (Small Collections)

fbis7T
fbis8T

ft7T
ft8T
la7T
la8T

fbis7L
fbis8L

ft7L
ft8L
la7L
la8L

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

re
ca

ll

lambda

Recall of Jelinek-Mercer (Small Collections)

fbis7T
fbis8T

ft7T
ft8T
la7T
la8T

fbis7L
fbis8L

ft7L
ft8L
la7L
la8L

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

lambda

Precision of Jelinek-Mercer (Large Collections)

trec7T
trec8T
web8T
trec7L
trec8L
web8L

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

re
ca

ll

lambda

Recall of Jelinek-Mercer (Large Collections)

trec7T
trec8T
web8T
trec7L
trec8L
web8L

Figure 1: Performance of Jelinek-Mercer smoothing.

Document Queries
collection 351-400 (Trec7) 401-450 (Trec8)

Title Long Title Long
FBIS fbis7T fbis7L fbis8T fbis8L
FT ft7T ft7L ft8T ft8L
LA la7T la7L la8T la8L

TREC7&8 trec7T trec7L trec8T trec8L
WEB N/A web8T web8L

Table 2: Labels used for test collections.

TREC8 web track testing collections: (1) Financial Times
on disk 4, (2) FBIS on disk 5, (3) Los Angeles Times on disk
5, (4) Disk 4 and disk 5 minus CR, used for the TREC7 and
TREC8 ad hoc tasks, and (5) the TREC8 Web data.

The queries we use are topics 351–400 (used for the TREC7
ad hoc task), and topics 401–450 (used for the TREC8 ad
hoc and web tasks). In order to study the possible interac-
tion of smoothing and query length/type, we use two differ-
ent versions of each set of queries: (1) title only, (2) long
version (title + description + narrative). The title queries
are mostly two or three key words, whereas the long queries
have whole sentences and are much more verbose.

In all our experiments, the only tokenization applied is
stemming with a Porter stemmer. We deliberately indexed
all the words in the language, since we do not want to be bi-
ased by any artificial choice of stop words and we believe that
the effects of stop word removal should be better achieved
by exploiting language modeling techniques.

In Table 2 we give the labels used for all possible retrieval
testing collections, based on the databases and queries de-
scribed above.

For each smoothing method and on each testing collec-

tion, we experiment with a wide range of parameter values.
In each run, the smoothing parameter is set to the same
value across all queries and documents. (While it is cer-
tainly possible to set the parameters differently for individ-
ual queries and documents through some kind of training
procedure, this is out of the scope of the present paper.)
For the purpose of studying the behavior of an individual
smoothing method, we select a set of representative parame-
ter values and examine the sensitivity of precision and recall
to the variation in these values. For the purpose of compar-
ing smoothing methods, we first optimize the performance of
each method using the non-interpolated average precision as
the optimization criterion, and then compare the best runs
from each method. The optimal parameter is determined by
searching over the entire parameter space.3

5. BEHAVIOROFINDIVIDUALMETHODS
In this section, we study the behavior of each smooth-

ing method. We first derive the expected influence of the
smoothing parameter on the term weighting and document
length normalization implied by the corresponding retrieval
function. Then, we examine the sensitivity of retrieval per-
formance by plotting the non-interpolated precision and re-
call at 1,000 documents against the different values of the
smoothing parameter.

Jelinek-Mercer smoothing. When using the Jelinek-Mercer
smoothing method with a fixed λ, we see that the parameter
αd in our ranking function (see Section 2) is the same for

3The search is performed in an iterative way, such that each iter-
ation is more focused than the previous one. We stop searching
when the improvement in average precision is less than 1%.

346337

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

la
m

bd
a

query

Optimal Lambda and Range in Jelinek-Mercer for trec8T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

la
m

bd
a

query

Optimal Lambda and Range in Jelinek-Mercer for trec8L

Figure 2: Optimal λ range for trec8t (left) and trec8l (right) in Jelinek-Mercer smoothing. The line shows
the optimal value of λ and the bars are the optimal ranges.

all documents, so the length normalization term is a con-
stant. This means that the score can be interpreted as a
sum of weights over each matched term. The term weight
is log(1 + (1 − λ)pml(qi|d)/(λp(qi | C))). Thus, a small λ
means more emphasis on relative term weighting. Indeed, if
λ approaches one, then all term weights tend to zero, and
the scoring formula approaches coordination level matching,
which is simply the count of matched terms.

The plots in Figure 1 show the average precision and recall
for different settings of λ, for both large and small collec-
tions. It is evident that both precision and recall are much
more sensitive to λ for long queries than for title queries.
The web collection, however, is an exception, where perfor-
mance is very sensitive to smoothing even for title queries.
For title queries, the retrieval performance tends to be opti-
mized when λ is small (around 0.1), whereas for long queries,
the optimal point is generally higher, and usually around
0.7. The difference in the optimal λ value suggests that long
queries need more smoothing, and less emphasis is placed on
the relative weighting of terms. The right end of the curve
(when λ is very close to one) should be close to the perfor-
mance of coordination level matching.

Such sensitivity and trend can be seen more clearly from
the per-topic plot of the optimal range of λ shown in Fig-
ure 2. The optimal range is defined as the maximum range
of λ values that deviate from the optimal average precision
by no more than 0.01.

Dirichlet priors. When using the Dirichlet prior for smooth-
ing, we see that the αd in the retrieval formula is document-
dependent. It is smaller for long documents, so can be inter-
preted as a length normalization component that penalizes
long documents. The weight for a matched term is now
log(1 + c(qi; d)/(µp(qi | C))). Note that in the Jelinek Mer-
cer method, the term weight has a document length nor-
malization implicit in ps(qi | d), but here the term weight is
affected by only the raw counts of a term, not the length
of the document. After rewriting the weight as log(1 +
|d|pml(qi | d)/(µp(qi | C))) we see that |d|/µ is playing the
same role as (1 − λ)/λ, but differs in that it is document-
dependent. The relative weighting of terms is emphasized
when we use a smaller µ. As µ gets large, αd tends to 1,
and all term weights tend to zero. Thus, the scoring formula
tends to, again, that of coordination level matching.

The plots in Figure 3 show the average precision and recall
for different settings of the prior sample size µ. It is again
clear that both precision and recall are much more sensitive

to µ for long queries than for title queries, especially when µ
is small. However, the optimal value of µ does not seem to
be much different for title queries and long queries. While it
still tends to be slightly larger for long queries, the difference
is not as large as in Jelinek-Mercer. The optimal prior µ
seems to vary from collection to collection, though in most
cases, it is around 2,000. The tail of the curves is generally
flat, as it tends to the performance of coordination level
matching.

Absolute discounting. The term weighting behavior of the
absolute discounting method is a little more complicated.
Obviously, here αd is also document sensitive. It is larger
for a document with a flatter distribution of words, i.e., when
the count of unique terms is relatively large. Thus, it penal-
izes documents with a word distribution highly concentrated
on a small number of words. The weight of a matched term
is log(1+(c(qi; d)−δ)/(δ|d|up(qi | C))). The influence of δ on
relative term weighting depends on |d|u and p(· | C), in the
following way. If |d|u p(w | C) > 1, a larger δ will make term
weights flatter, but otherwise, it will actually make the term
weight more skewed according to the count of the term in
the document. Thus, a larger δ will amplify the weight dif-
ference for rare words, but flatten the difference for common
words, where the “rarity” threshold is p(w | C) < 1/|d|u.

The plots in Figure 4 show the average precision and re-
call for different settings of the discount constant δ. Once
again it is clear that both precision and recall are much more
sensitive to δ for long queries than for title queries. Similar
to Bayesian smoothing, but different from Jelinek-Mercer
smoothing, the optimal value of δ does not seem to be much
different for title queries and long queries. Indeed, the op-
timal value of δ tends to be around 0.7. This is true not
only for both title queries and long queries, but also across
all testing collections.

The behavior of each smoothing method indicates that, in
general, the performance of longer queries is much more sen-
sitive to the choice of the smoothing parameters than that
of title queries. This suggests that smoothing plays a more
important role for long verbose queries than for title queries
that are extremely concise. One interesting observation is
that the web collection has behaved quite differently than
other databases for Jelinek-Mercer and Dirichlet smooth-
ing, but not for absolute discounting. In particular, the title
queries performed much better than the long queries on the
web collection for Dirichlet prior. Further analysis and eval-
uation are needed to understand this observation.

347338

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

pr
ec

is
io

n

prior

Precision of Dirichlet Prior (Small Collections)

fbis7T
fbis8T

ft7T
ft8T
la7T
la8T

fbis7L
fbis8L

ft7L
ft8L
la7L
la8L

0.4

0.5

0.6

0.7

0.8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

re
ca

ll

prior

Recall of Dirichlet Prior (Small Collections)

fbis7T
fbis8T

ft7T
ft8T
la7T
la8T

fbis7L
fbis8L

ft7L
ft8L
la7L
la8L

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 2000 4000 6000 8000 10000

pr
ec

is
io

n

prior

Precision of Dirichlet Prior (Large Collections)

trec7T
trec8T
web8T
trec7L
trec8L
web8L

0.3

0.4

0.5

0.6

0.7

0.8

0 2000 4000 6000 8000 10000

re
ca

ll

prior

Recall of Dirichlet Prior (Large Collections)

trec7T
trec8T
web8T
trec7L
trec8L
web8L

Figure 3: Performance of Dirichlet smoothing.

6. COMPARISON OFMETHODS
To compare the three smoothing methods, we select a best

run (in terms of non-interpolated average precision) for each
method on each testing collection and compare the non-
interpolated average precision, precision at 10 documents,
and precision at 20 documents of the selected runs. The
results are shown in Table 3 for both titles and long queries.

For title queries, there seems to be a clear order among
the three methods in terms of all three precision measures:
Dirichlet prior is better than absolute discounting, which is
better than Jelinek-Mercer. Indeed, Dirichlet prior has the
best average precision in all cases but one. In particular,
it performed extremely well on the Web collection, signifi-
cantly better than the other two. The good performance is
relatively insensitive to the choice of µ. Indeed, many non-
optimal Dirichlet runs are also significantly better than the
optimal runs for Jelinek-Mercer and absolute discounting.

For long queries, there is also a partial order. On av-
erage, Jelinek-Mercer is better than Dirichlet and absolute
discounting by all three precision measures, though its av-
erage precision is almost identical to that of Dirichlet. Both
Jelinek-Mercer and Dirichlet clearly have a better average
precision than absolute discounting.

When comparing each method’s performance on differ-
ent types of queries, we see that the three methods all per-
form better on long queries than on title queries (except
that Dirichlet prior performs worse on long queries than ti-
tle queries on the web collection), but the increase of per-
formance is most significant for Jelinek-Mercer. Indeed,
Jelinek-Mercer is the worst for title queries, but the best
for long queries. It appears that Jelinek-Mercer is much
more effective when queries are more verbose.

Since the Trec7&8 database differs from the combined set
of FT, FBIS, LA by only the Federal Register database, we
can also compare the performance of a method on the three
smaller databases with that on the large one. We find that
the non-interpolated average precision on the large database
is generally much worse than that on the smaller ones, and
is often similar to the worst one among all the three small
databases. However, the precision at 10 (or 20) documents
on large collections is all significantly better than that on
small collections. This is not surprising, since a given pre-
cision at a cutoff point of 10 documents would correspond
to a much lower level of recall for a large collection than
for a small collection. This is exactly the same reason as
why one can expect a higher precision at 10 documents
when a query has many more relevant documents. For both
title queries and long queries, the relative performance of
each method tends to remain the same when we merge the
databases. Interestingly, that the optimal setting for the
smoothing parameters seems to stay within a similar range
when databases are merged.

The strong correlation between the effect of smoothing
and the type of queries is somehow unexpected. If the pur-
pose of smoothing is only to improve the accuracy in es-
timating a unigram language model based on a document,
then, the effect of smoothing should be more affected by the
characteristics of documents and the collection, and should
be relatively insensitive to the type of queries. But the re-
sults above suggest that this is not the case. One possible
explanation is that smoothing actually plays two different
roles in the query likelihood retrieval method. One role is to
improve the accuracy of the estimated documents language
model, and can be referred to as the estimation role. The

348339

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

delta

Precision of Absolute Discounting (Small Collections)

fbis7T
fbis8T

ft7T
ft8T
la7T
la8T

fbis7L
fbis8L

ft7L
ft8L
la7L
la8L

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

re
ca

ll

delta

Recall of Absolute Discounting (Small Collections)

fbis7T
fbis8T

ft7T
ft8T
la7T
la8T

fbis7L
fbis8L

ft7L
ft8L
la7L
la8L

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

delta

Precision of Absolute Discounting (Large Collections)

trec7T
trec8T
web8T
trec7L
trec8L
web8L

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

re
ca

ll

delta

Recall of Absolute Discounting (Large Collections)

trec7T
trec8T
web8T
trec7L
trec8L
web8L

Figure 4: Performance of absolute discounting.

other is to “explain” the common and non-informative words
in a query, and can be referred to as the role of query model-
ing. Indeed, this second role is explicitly implemented with
a two-state HMM in [10]. This role is also well-supported by
the connection of smoothing and IDF weighting derived in
Section 2. Intuitively, more smoothing would decrease the
“discrimination power” of common words in the query, be-
cause all documents will rely more on the collection language
model to generate the common words.

The effect of smoothing that we observed is generally
a mixed effect of both roles of smoothing. But, for title
queries, the effect is more dominated by the estimation role,
since in our experiments the title queries have few or no
non-informative common words, whereas for long queries,
the effect is more influenced by the role of query modeling
for they often have many non-informative common words.
Thus, the fact that the Dirichlet prior method performs the
best on title queries suggests that it is good for the esti-
mation role, and the fact that Jelinek-Mercer performs the
worst for title queries, but the best for long queries suggests
that Jelinek-Mercer is good for the role of query modeling.
Intuitively this also makes sense, as Dirichlet prior adapts
to the length of documents naturally, which is desirable for
the estimation role, while in Jelinek-Mercer, we set a fixed
smoothing parameter across all documents, which is neces-
sary for query modeling.

7. INTERPOLATION VS. BACKOFF
The three methods that we have described and tested so

far belong to the category of interpolation-based methods,
in which we discount the counts of the seen words and the

extra counts are shared by both the seen words and unseen
words. One problem of this approach is that a high count
word may actually end up with more than its actual count
in the document, if it is frequent in the fallback model. An
alternative smoothing strategy is “backoff.” Here the main
idea is to trust the maximum likelihood estimate for high
count words, and to discount and redistribute mass only
for the less common terms. As a result, it differs from the
interpolation strategy in that the extra counts are primarily
used for unseen words. The Katz smoothing method is a
well-known backoff method [7]. The backoff strategy is very
popular in speech recognition tasks.

Following [2], we implemented a backoff version of all the
three interpolation-based methods, which is derived as fol-
lows. Recall that in all three methods, ps(w) is written as
the sum of two parts: (1) a discounted maximum likelihood
estimate, which we denote by pdml(w); (2) a collection lan-
guage model term, i.e., αd p(w | C). If we use only the first
term for ps(w) and renormalize the probabilities, we will
have a smoothing method that follows the backoff strategy.
It is not hard to show that if an interpolation-based smooth-
ing method is characterized by ps(w) = pdml(w)+αd p(w | C)
and pu(w) = αd p(w | C), then the backoff version is given by

p
′
s(w) = pdml(w) and p

′
u(w) = αd p(w | C)

1− i:c(wi;d)>0 p(wi | C) . The

form of the ranking formula and the smoothing parameters
remain the same. It is easy to see that the αd in the back-
off version differs from that in the interpolation version by
a document-dependent term which further penalizes long
documents. The weight of a matched term due to backoff
smoothing has a much wider range of values ((−∞,+∞))
than that for interpolation ((0, +∞)). Thus, analytically,

349340

Collection Jelinek-Mercer Dirichlet Prior Absolute Discounting
avgpr, pr@10d, pr@20d (λ) avgpr, pr@10d, pr@20d (µ) avgpr, pr@10d, pr@20d (δ)

fbis7T 0.172, 0.284, 0.220 (0.05) 0.197, 0.282, 0.238 (2000) 0.177, 0.284, 0.233 (0.8)
ft7T 0.199, 0.263, 0.195 (0.5) 0.236,0.283, 0.213 (4000) 0.215, 0.271, 0.196 (0.8)
la7T 0.179, 0.238, 0.205 (0.4) 0.220, 0.294, 0.233 (2000) 0.194, 0.268, 0.216 (0.8)
fbis8T 0.306, 0.344, 0.282 (0.01) 0.334, 0.367, 0.292 (500) 0.319 , 0.363, 0.288(0.5)
ft8T 0.310, 0.359, 0.283 (0.3) 0.324, 0.367, 0.297 (800) 0.326, 0.367, 0.296 (0.7)
la8T 0.231, 0.264, 0.211 (0.2) 0.258, 0.271, 0.216 (500) 0.238, 0.282, 0.224 (0.8)
trec7T 0.167, 0.366, 0.315 (0.3) 0.186, 0.412, 0.342 (2000) 0.172, 0.382, 0.333 (0.7)
trec8T 0.239, 0.438, 0.378 (0.2) 0.256, 0.448, 0.398 (800) 0.245, 0.466, 0.406 (0.6)
web8T 0.243, 0.348, 0.293 (0.01) 0.294, 0.448, 0.374 (3000) 0.242, 0.370, 0.323 (0.7)
Avg. 0.227, 0.323, 0.265 0.256, 0.352, 0.289 0.236, 0.339, 0.279

Collection Jelinek-Mercer Dirichlet Prior Absolute Discounting
avgpr, pr@10d, pr@20d (λ) avgpr, pr@10d, pr@20d (µ) avgpr, pr@10d, pr@20d (δ)

fbis7L 0.224, 0.339, 0.279 (0.7) 0.232, 0.313, 0.249 (5000) 0.185,0.321, 0.259 (0.6)
ft7L 0.279, 0.331, 0.244 (0.7) 0.281, 0.329, 0.248 (2000) 0.249, 0.317, 0.236 (0.8)
la7L 0.264, 0.350, 0.286 (0.7) 0.265, 0.354, 0.285 (2000) 0.251, 0.340, 0.279 (0.7)
fbis8L 0.341, 0.349, 0.283 (0.5) 0.347, 0.349, 0.290 (2000) 0.343, 0.356, 0.274 (0.7)
ft8L 0.375, 0.427, 0.320(0.8) 0.347, 0.380, 0.297 (2000) 0.351, 0.398, 0.309 (0.8)
la8L 0.290,0.296, 0.238 (0.7) 0.277, 0.282, 0.231 (500) 0.267, 0.287, 0.222 (0.6)
trec7L 0.222, 0.476, 0.401 (0.8) 0.224, 0.456, 0.383 (3000) 0.204, 0.460, 0.396 (0.7)
trec8L 0.265, 0.504, 0.434 (0.8) 0.260, 0.484, 0.4 (2000) 0.248, 0.518, 0.428 (0.8)
web8L 0.259, 0.422, 0.348 (0.5) 0.275, 0.410, 0.343 (10000) 0.253, 0.414, 0.333 (0.6)
Avg. 0.280, 0.388, 0.315 0.279, 0.373, 0.303 0.261, 0.379, 0.304

Table 3: Comparison of smoothing methods on title queries (top) and long queries (bottom). The three
numbers in each cell are average precision, precision at 10 documents, and precision at 20 documents. The
parameter chosen for each data set and method is shown in parentheses.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

lambda

Precision of Interpolation vs. Backoff (Jelinek-Mercer)

fbis8T
fbis8T-bk

fbis8L
fbis8L-bk

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

pr
ec

is
io

n

prior

Precision of Interpolation vs. Backoff (Dirichlet prior)

fbis8T
fbis8T-bk

fbis8L
fbis8L-bk

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.2 0.4 0.6 0.8 1

pr
ec

is
io

n

delta

Precision of Interpolation vs. Backoff (Absolute Discounting)

fbis8T
fbis8T-bk

fbis8L
fbis8L-bk

Figure 5: Interpolation versus backoff for Jelinek-Mercer (top), Dirichlet smoothing (middle), and absolute
discounting (bottom).

the backoff version tends to do term weighting and docu-
ment length normalization more aggressively than the cor-
responding interpolated version.

The backoff strategy and the interpolation strategy are
compared for all three methods using the FBIS database
and topics 401-450 (i.e., fbis8T and fbis8L). The results are
shown in Figure 5. We find that the backoff performance is
more sensitive to the smoothing parameter than that of in-
terpolation, especially in Jelinek-Mercer and Dirichlet prior.
The difference is clearly less significant in the absolute dis-
counting method, and this may be due to its lower upper
bound (|d|u

|d|) for the original αd, which restricts the aggres-
siveness in penalizing long documents. In general, the back-
off strategy gives worse performance than the interpolation
strategy, and only comes close to it when αd approaches zero,
which is expected, since analytically, we know that when αd

approaches zero, the difference between the two strategies
will diminish.

8. CONCLUSIONS AND FUTUREWORK
We have studied the problem of language model smooth-

ing in the context of information retrieval. By rewriting
the query-likelihood retrieval model using a smoothed doc-
ument language model, we derived a general retrieval for-
mula where the smoothing of the document language model
can be interpreted in terms of several heuristics used in
traditional models, including TF-IDF weighting and docu-
ment length normalization. We then examined three popu-
lar interpolation-based smoothing methods (Jelinek-Mercer
method, Dirichlet priors, and absolute discounting), as well
as their backoff versions, and evaluated them using several
large and small TREC retrieval testing collections. We find
that the retrieval performance is generally sensitive to the
smoothing parameters, suggesting that an understanding
and appropriate setting of smoothing parameters is very im-
portant in the language modeling approach. An interesting
observation is that the effect of smoothing is strongly corre-
lated with the type of queries. The performance is generally

350341

more sensitive to smoothing for long and verbose queries
than for concise title queries. This suggests that smoothing
may be playing two different roles in the query likelihood
retrieval method. One role is to improve the accuracy of the
estimated document language model, while the other is to
accommodate generation of non-informative common words
in the query. The results further suggest that Dirichlet prior
may be good for the estimation role, while Jelinek-Mercer
may be good for the query modeling role.

While our results are not completely conclusive as to which
smoothing method is the best, we have made several in-
teresting observations that help us understand each of the
methods better. The Jelinek-Mercer method generally per-
forms well, but tends to perform much better for long queries
than for title queries. The optimal value of λ has a strong
correlation with the query type. For concise title queries,
the optimal value is generally very small (around 0.1), while
for long verbose queries, the optimal value is much larger
(around 0.7). The Dirichlet prior method generally per-
forms well, but tends to perform much better for concise
title queries than for long verbose queries. The optimal
value of µ appears to have a wide range (500-10000) and
usually is around 2,000. A large value is “safer,” especially
for long verbose queries. The absolute discounting method
performs well on concise title queries, but not very well on
long verbose queries. Interestingly, there is little variation
in the optimal value for δ (generally around 0.7 in all cases).
Considering the role of query modeling that smoothing is
playing, we believe that the optimal setting of smoothing
parameters may also be sensitive to the application of stop-
word list.

While used successfully in speech recognition, the backoff
strategy did not work well for retrieval in our evaluation.
All interpolated versions perform significantly better than
their backoff version.

There are several interesting future research directions
that will help better understand the role of smoothing. First,
it would be interesting to test with queries that are long,
but non-verbose, or short but verbose. This will help clar-
ify whether it is the length or the verbosity of the query
that is interacting with the effect of smoothing. Second,
one can de-couple the two different roles of smoothing by
adopting a two stage smoothing strategy in which Dirich-
let smoothing is first applied to implement the estimation
role and Jelinek-Mercer smoothing is then applied to imple-
ment the role of query modeling. Finally, there are many
other effective smoothing algorithms that we have not yet
tested (e.g., Good-Turing smoothing [4], Katz smoothing [7],
Kneser-Ney smoothing [8]); evaluation of them would be a
natural further research direction. It is also very important
to study how to exploit the past relevance judgments, the
current query, and the current database to train the smooth-
ing parameters, since, in practice, it would not be feasible
to search the whole parameter space as we did in this paper.

ACKNOWLEDGEMENTS
We thank Jamie Callan, Bruce Croft, John Prange, and
the three anonymous reviewers for helpful comments on this
work. This research was sponsored in part by the Advanced
Research and Development Activity in Information Tech-
nology (ARDA) under its Statistical Language Modeling for
Information Retrieval Research Program.

REFERENCES
[1] A. Berger and J. Lafferty (1999). “Information retrieval as

statistical translation,” In Proceedings of the 1999 ACM SI-
GIR Conference on Research and Development in Informa-
tion Retrieval, pp. 222–229.

[2] S. F. Chen and J. Goodman (1998). “An empirical study
of smoothing techniques for language modeling,” Tech. Rep.
TR-10-98, Harvard University.

[3] N. Fuhr (1992). “Probabilistic models in information re-
trieval”, The Computer Journal, Vol.35, No.3, pp. 243–255.

[4] I. J. Good (1953). “The Population Frequencies of Species
and the Estimation of Population Parameters,” Biometrika,
Volume 40, parts 3,4, pp. 237–264.

[5] D. Hiemstra and W. Kraaij (1998). “Twenty-one at TREC-
7: Ad-hoc and cross-language track,” in Proc. of Seventh
Text REtrieval Conference (TREC-7), Gaithersburg, MD.

[6] F. Jelinek and R. Mercer (1980). “Interpolated estimation
of Markov source parameters from sparse data”. In Pattern
Recognition in Practice, E. S. Gelsema and L. N. Kanal (ed-
itors), pages 381–402. North Holland, Amsterdam.

[7] S. M. Katz (1987). “Estimation of probabilities from sparse
data for the language model component of a speech recog-
nizer,” IEEE Transactions on Acoustics, Speech and Signal
Processing, volume ASSP-35, pages 400–401, March 1987.

[8] R. Kneser and H. Ney (1995). “Improved smoothing for m-
gram language modeling,” in Proceedings of the Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing, Detroit, MI.

[9] MacKay, D. and Peto, L. (1995). “A hierarchical Dirichlet
language model.” Natural Language Engineering, 1(3), pp.
289–307.

[10] D. H. Miller, T. Leek, and R. Schwartz (1999). “A hidden
Markov model information retrieval system,” In Proceedings
of the 1999 ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, pp. 214–221.

[11] H. Ney, U. Essen, and R. Kneser (1994). “On structuring
probabilistic dependencies in stochastic language modeling,”
Computer Speech and Language, 8:1-38.

[12] J. Ponte (1998). A language modeling approach to informa-
tion retrieval. Ph.D. thesis, University of Massachusetts at
Amherst.

[13] J. Ponte and W. B. Croft (1998). “A language modeling ap-
proach to information retrieval,” Proceedings of the ACM
SIGIR, pp. 275–281.

[14] C. J. van Rijsbergen (1986). “A Non-classical Logic for In-
formation Retrieval,” The Computer Journal, 29(6).

[15] S. E. Robertson, C. J. van-Rijsbergen, and M. F. Porter
(1981). “Probabilistic models of indexing and searching”, in
Oddy R. N. et al. (Eds.) Information Retrieval Research,
Butterworths, London, 1981, pp. 35–56.

[16] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-
Beaulieu, and M. Gatford (1995). “Okapi at TREC-3,” The
Third Text REtrieval Conference (TREC-3), in D. K. Har-
man (ed), NIST Special Publication.

[17] G. Salton and C.Buckley (1988). “Term-weighting ap-
proaches in automatic text retrieval,” Information Process-
ing and Management, 24, pp. 513–523.

[18] G. Salton and C. Buckley (1990), “Improving retrieval per-
formance by relevance feedback”, Journal of the American
Society for Information Science, Vol. 44, No. 4, 288–297.

[19] A. Singhal, C. Buckley, and M. Mitra (1996). “Pivoted doc-
ument length normalization,” in Proceedings of the 1996
ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 21–29.

[20] F. Song and B. Croft (1999). “A general language model
for information retrieval,” in Proceedings of the 1999 ACM
SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 279–280.

[21] K. Sparck Jones (1997). Readings in Information Retrieval,
P. Willett, ed., Morgan Kaufmann Publishers.

[22] S. K. M. Wong and Y. Y. Yao (1995), “On modeling infor-
mation retrieval with probabilistic inference,” ACM Trans-
actions on Information Systems, 13(1), pp. 69–99.

351342

