
CS6200 Information Retreival Retrieval Models

Retrieval Models

June 8, 2015

1 Documents and query representation

1.1 Term incidence matrix

A document-term matrix or term-document matrix is a mathematical matrix that describes the frequency of
terms that occur in a collection of documents. In a document-term matrix, rows correspond to terms in the
collection and columns correspond to documents (or vice versa). There are various schemes for determining
the value that each entry in the matrix should take 1. If you look at the matrix on the bottom, you can see
some of the plays of William Shakespeare as columns, and terms found in those plays as rows. For instance,
the word ”Antony” appears in Antony and Cleopatra, Julius Caesar, and Macbeth, but not in any of the
others:

Figure 1: Term Incidence Matrix for the William Shakespeare plays

1Usually, boolean flags which is used in Boolean Matching Model but other attributes could be used as the values as well
like term frequency - i.e. number of times a particular term occurs in the document (plays in the above example); or inverse
term frequency (discussed later)

1

1.2 Retrieval Models

The basic form of retrieval model can be represented as below. It is basically comprised of the below sub
parts

• Document Store : Index, documents, records, images etc. Basically the data which could be potentially
retrieved.

• Query : These are the inputs which could be free-text, boolean keywords, formal query language
statements etc.

• Matching Rule : This is basically the scoring model to check the similarity between documents and
the query.

• Retrieval Results : Usual output which contains the top matching results.

Query

Document
Store

(INDEX)

Matching
Rule

(Scoring
Model)

Retrieval
Results

Figure 2: Basic Retrieval Model

1.3 Bag of words representation

By representing documents just as ”bag of words” the order of words makes no difference, and there is no
concept of meaningful phrases. This representation loses the relative ordering of the terms in each document,
for example Mary is quicker than John and John is quicker than Mary are identical in such a bag of words
representation. Vector Space Model use this concept where only the occurrence of word in a document is
considered. In VSM the similarity between document and a query mainly depends on the following factors
(none of which signify any correlation between the terms, hence called bag of words/terms):

1. TF : the number of occurrences of a term in a document. This reflects an intuition that a term which
appears more often is more central to the document.

2. DF : the term?s document frequency is the number of documents in the collection which contain term
t.

3. DLength : the length of the document. It needs to be normalized because with a naive matching score,
such as the dot product, longer documents have an unfair advantage due to term repetition (see the
details of document normalization below).

4. AVG(DLength) : Average of all the document lengths in the collection.

5. V : Vocabulary of all the distinct words in the collection (words left after stemming and stopping,
discussed below)

6. N : Total number of documents in the collection.

2

7. IDF : this is inverse document frequency which is obtained by multiplying the TF score by the logarithm
of N divided by the DF

IDF = TF ∗ log
N

DF
(1)

2 Retrieval Scoring Function, Matching

Retrieval Scoring Function helps to match the best documents for a given query and they are based on the
notion of similarity. One example example is semantic matching which measures the similarity of meaning
between two texts, e.g. a query and a document.

2.1 Boolean Retrieval

In this model, queries are Boolean expressions. Words match only themselves, and complex information
needs are expressed by building complex queries (i.e. by logical combination of the boolean results). A
keyword matches itself, and only itself. That means we know nothing about synonyms or other nuances of
language. In order to express a complex information need, the user will have to build a complex query that
combines a lot of keywords using Boolean operators like AND and OR. Boolean Retrieval Model uses a term
incidence matrix as the data structure to keep track of which keywords apply to which documents.

Here is an example of the Boolean queries:

Information need: Information on the legal theories involved in preventing the disclosure of trade secrets
by employees formerly employed by a competing company.
Query: ”trade secret” /s disclos! /s prevent /s employe!!

Information need: Requirements for disabled people to be able to access a workplace.
Query: disab! /p access! /s work-site work-place (employment /3 place)!

Information need: Cases about a host’s responsibility for drunk guests.
Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest

These systems were mainly used by expert searchers who were trained in the custom query language used
by the search software. There are a few interesting query language features on display. Let's look at the
first query. First, you can surround a phrase with quotation marks. Also, if you look at the second and the
last keywords, you can see the prefix of a word followed by an exclamation point. This is used to refer to
any word that starts with that prefix. It's a simple approach to what's called stemming.

Finally, these queries contain a lot of proximity operators. The slash-s means that the terms on either
side should be found in the same sentence, and slash-p means they should be found in the same paragraph.
There is a slash-3 in the second query which means that the terms should be found within three words of
each other. So these languages can get fairly complicated. There are quite a few other operators people have
built into query languages.2

• Advantages

– Boolean Retrieval is a simple model and easy to implement. Its users feel they have control over
the system, and can build up complex queries iteratively to refine the results.

– Boolean Retrieval has been commercially successful, with products surviving for decades.

2The textbook by Croft has a section on a query language for a search engine called Galago if you?re interested in seeing
what a modern query language looks like.

3

– It has mainly been used by trained searchers in vertical search and enterprise search engines, e.g.
in the leading legal and journalistic search engines from the 1970s on. 3 4

• Disadvantages

– Since it's based on set membership, a document either matches the query or doesn't. There is no
way for some documents to match more than others.

– It also has little flexibility to allow us to try to match the information need. We often want
to refine the submitted query before we run it, but the complex operators in Boolean Retrieval
queries make that difficult.

– It is helpful to use simpler queries in order to support more complex processing behind the scenes.
The computer should generally do more work than the user.

3 Vector Space Models

• q is the query vector

• d1is the vector for document 1

• d2 is the vector for document 2

• α is the angle between the query vector and
document 1 vector

• θ is the angle between the query vector and
document 2 vector

The vector space model uses a nice mathematical generalization of query/document matching which,
unlike the set-based Boolean Retrieval model, and has a lot of flexibility for tuning retrieval performance.

Recall the term incidence matrix above, we can also represent keyword queries as vectors. From this
point of view, queries are just ”short documents.” We can use term frequencies as the values in the matrix
since it reflects an intuition that a term which appears more often is more central to the document.

VSM was introduced to move beyond the simple binary set membership world, which is perfectly cap-
tured by ones and zeros, and into a more nuanced world where documents can be just a little relevant or
highly relevant. When we match a given term from a query, we'd like the documents scores for that query
term to be higher if those documents are more likely to be good matches. If the query has multiple terms,
we'll combine the scores from all its terms so that documents which match all terms will end up with higher
scores than documents that just match one.

3This happened somewhat to the frustration of IR researchers, whose more advanced matching models took years to become
widely adopted.

4Boolean Retrieval was the dominant IR system in commercial software for decades, from the 60s and 70s until it was finally
replaced by more sophisticated semantic matching systems in the 90s as the Internet gained in popularity. This was a little bit
of an ?I told you so? moment for the IR research community, whose improved models had been around for quite some time by
then.

4

Matching Score - In order to sort documents by their relevance to a particular query, we will generate a
query matching score’s for each document and sort by that.

s =< Q,D >= Q.D (2)

The matching score should be a function of two vectors which outputs a number. The number should be
larger when the vectors express more similar topics.

Once we have our two vectors, we use an inner product 5 as a similarity function. The inner product
function we choose defines what’s called an ”inner product space”, such that vectors within that space use
the inner product for their notion of distance. Intuitively, the closer two vectors are to each other, based on
their inner product, the more semantic content they should have in common.

3.1 DLength Normalization

Storing raw TF (usually called as ”TF”) has some problems, because there is no normalization done for
the occurrence of the words. For example, With a naive matching score, such as the dot product, longer
documents have an unfair advantage due to term repetition.

d1’

d1
q

Lets say the dot products documents are
• <d1 q> = V
• <d1’ q> = V’
Clearly V’ > V (if we are just considering the scalar product of
the two vectors)

Figure 3: Drawback of considering raw TF without normalization

Very short documents may be less relevant (which might not be always true for example how about a
collection of FAQ answers?), but very long documents may also be less relevant. To avoid this there a few
ways to normalize term vectors:

• Instead of TF, consider the fraction of a document the term occupies.

• Take into account the number of distinct terms in the document to account for repetitive documents.

3.2 Okapi TF and other TF scaling values instead of TF

This is a vector space model using a slightly modified version of TF to score documents. The Okapi TF
score for term w in document d is as follows.

okapi tf(w, d) =
tfw,d

tfw,d + 0.5 + 1.5 · (len(d)/avg(len(d)))

Where:

5”an inner product” because there are many functions which we could potentially use for this purpose. The simplest one is
the dot product, but there are many more. It will be discussed later.

5

tfw,d is the term frequency of term w in document d len(d) is the length of document d avg(len(d)) is the
average document length for the entire corpus The matching score for document d and query q is as follows.

tf(d, q) =
∑

w∈q

okapi tf(w, d)

This helps in normalizing the documents by taking into account the average document length across
corpus and the giving less weight to longer documents.

3.3 Similarity of vectors

Similarity between two vectors can be expressed by various means:

• distances similarities:

dist(q, d) =

√∑

t

(qt − dt)2

sim(q, d) =
1

1 + dist(q, d)

Euclidean distance is the standard distance function you're probably used to. It considers the two
vectors as points in a Euclidean space, and measures how far those points are from each other. It's
the square root of the sum of the squared distances along each axis. This is exactly like Pythagorus'
theorem, scaled up to any number of dimensions.

• dot products:

sim(q, d) = q · d
This just uses the scalar product of two vector. One reason this doesn't work well is that it unfairly
favors repetitive documents. If you made a new play by copying Julius Caesar twice, that new play
would match everything the original play matched, but twice as much.This similarity function is fast
and works fairly well, so it does get used sometimes. However, there's a more principled way to com-
pare these vectors.

Play TF Similarity
Henry VI, part 2 1 2.34

Hamlet 1 2.34
Antony and
Cleopatra 4 9.38

Coriolanus 109 255.65
Julius Caesar 379 888.91

Julius Caesar x 2 758 1777.83
Julius Caesar x 3 1137 2666.74

Figure 4: Dot Product Similarity Scores

• cosine similarity:
Cosine Similarity solves the problems of both Euclidean-based similarity and the dot product.

– Instead of using distance between the vectors, we should use the angle between them.

6

– Instead of using the dot product, we should use a length-normalized dot product. That is, convert
to unit vectors and take their dot product.

sim(u, v) =
u · v

‖u‖ · ‖v‖

=
u · v√∑

i u
2
i ·
√∑

i v
2
i

=
u√∑
i u

2
i

· v√∑
i v

2
i

Cosine Similarity solves the problems with our prior two similarity functions. It?s based on the intuition
that the magnitude of a term vector isn?t very important. What matters is which terms show up in
the vector, and what their relative sizes are. In other words, what's the term vector's angle. This
function uses the angle between two vectors as the distance between them, and totally ignores their
relative lengths.

Play TF Similarity
Henry VI, part 2 1 0.002

Antony and
Cleopatra 4 0.004

Coriolanus 109 0.122
Julius Caesar 379 0.550

Julius Caesar x 2 758 0.550

Figure 5: Cosine Similarity Scores

If we look at the same plays with Cosine Similarity, we get exactly the results we want. Henry VI is
the worst match, and Julius Caesar the best. Double Julius Caesar doesn?t change its matching score
at all, because it just changes the vector?s magnitude and we're ignoring that. However, this function
isn't perfect either.

Approximating Cosine Similarity: The normalization term for cosine similarity can't be cal-
culated in advance, if it depends on dftorcft.
For faster querying, we sometimes approximate it using the number of terms in the document. This
preserves some information about relative document length, which can sometimes be helpful.

sim(q, d) ≈ q√
len(q)

· d√
len(d)

3.4 TF-IDF

We now combine the definitions of term frequency and inverse document frequency, to produce a composite
weight for each term in each document. The main idea is that we want term scores to be proportional to
TF, but we want to discount scores for too-common terms. Two common ways to discount:

• A term's cumulative frequency cft is total number of occurrences of term t in the collection.

• The term's document frequency dft is the number of documents in collection which contain term t.

7

Term Doc tft,d dft cft
tft,d /
dft

tft,d /
cft

tf-idft,d

and King Lear 737 37 25,932 19.92 0.028 0

love Romeo and
Juliet 150 37 2,019 4.05 0.074 0

rome Hamlet 2 16 332 0.125 0.006 1.68

rome Julius
Caesar 42 16 332 2.625 0.127 35.21

romeo Romeo and
Juliet 312 1 312 312 1 1126.61

Figure 6: Various term score functions including tf-idf

The most common way to discount is to multiply by log(D
dft

)., where D is the number of documents in
the collection. This is called IDF, for inverse document frequency, and leads to TF-IDF scores.

tf -idft,d := tft,d · log (D/dft)

The term ”and” shows up in every document. Its TF in King Lear is 737. If you divide that by the
DF you get roughly 20, and by CF you get almost zero. Its TF-IDF score is zero, because it appears
in every document.

The term ”rome” shows up much more in Julius Caesar than in Hamlet, though it's much less common
than ?and.? If we just discount by df or cf, it still has a lower score than ?and.? However, its TF-IDF
score is higher for Hamlet, and much higher for Julius Caesar. That's exactly what we want.

As an extreme example, the term Romeo, which only shows up in a single play, has a very high TF-
IDF score. That's perfect, because this term is a perfect feature in this corpus for finding plays about
Romeo.

4 Term Concurrence

Concurrence6 can be exploited to deduce important features out of the corpus by measuring the co-occurences.
Though, here we're focusing on term co-occurrence, but these measures can be used for many other statis-
tical tasks. For instance, you might be interested in which users have reviewed the same product, or which
web pages link to the same URL.

Here are simplified versions of four different association measures. Mutual Information and Expected
Mutual Information come from information theory, and Chi-squared tests and Dice?s Coefficient are from
statistics.

It's worth mentioning that these formulas are not the full versions of these measures. However, they are
rank-equivalent to the full formulas, so if you?re just using them to sort terms it?s faster and simpler to use
these forms.

1. Dice's coefficient, aka the Sorensen index, is used to compare two random samples. In this case, we
compare the population of documents containing terms a and b to the populations containing a and
containing b.

6From Wikipedia definition: In Western jurisprudence, concurrence (also contemporaneity or simultaneity) is the apparent
need to prove the simultaneous occurrence of both actus reus (”guilty action”) and mens rea (”guilty mind”), to constitute
a crime. In theory, if the actus reus does not hold concurrence in point of time with the mens rea then no crime has been
committed.

8

Measure Formula
Mutual Information nab

na·nb(MIM)
Expected Mutual Inf. nab · log

�
N · nab

na·nb

�
(EMIM)

Chi-square (nab� 1
N ·na·nb)2
na·nb(Χ2)

Dice’s coefficient nab
na+nb(Dice)

Figure 7: Measures of Co-Occurrence

Dice's coefficient imagines that we have random samples of two events: the event that term a occurs
in a document, and the event that term b occurs. It compares how often these events occur together
to the total number of times either event occurs.

Let's take a look at the simplified formula nab/na + nb: nab is the number of documents in the index
which contain both term a and term b. na is the number of documents that contain term a, and nb
is the number of documents containing term b. If a and b always occur together, then nab is going to
equal na and nb, and this formula will equal 1/2. The more they occur without each other, the bigger
na + nb will become relative to nab, so the smaller the number will get.

2. Pointwise mutual information is a measure of correlation from information theory.

It measures how correlated two random events are to each other. That is, if you know that term a
appears in a document, how much information does that give you about whether term b will appear?

pmi(a, b) := log

�
p(a, b)
p(a)p(b)

�

= log

� nab
N

na
N

nb
N

�

= logN + log
nab
nanb

rank
=

nab
nanb

If we use base 2 for the logarithm, the amount of information is measured in bits. It's going to have the
largest magnitude when knowing whether term a appears in a document lets you predict with perfect
accuracy whether term b appears, and be closest to zero when they're totally independent.

The rank-equivalent formula on the bottom of the slide is similar to Dice's coefficient, except that the
denominator grows faster as the terms appear without each other more often. This produces a different
ordering that punishes terms much more harshly for not co-occurring as often. You could argue that
it punishes them too harshly.

3. Expected mutual information corrects a bias of pointwise mutual information toward low frequency
terms.

9

emim(a, b) �P(a, b) · log
P(a, b)
P(a)P(b)

=
nab
N

log

�
N · nab

na · nb

�

rank
= nab · log

�
N · nab

na · nb

�

It's still measuring the level of dependence between the two random events, but this function is smoother
and gives larger values for the lower-frequency terms. You can still see our approximation of mutual
information inside the log function. We're essentially just scaling this up by multiplying by nab outside
the logarithm, so that we tend to pay more attention to co-occurrences even when one of the two terms
is relatively infrequent compared to the other.

4. Pearson's Chi-squared test is a test of statistical significance which compares the number of term co-
occurrences to the number we'd expect if the terms were independent. (This is also not the full form
of this measure.)

chi2(a, b) =

�
nab � N · na

N · nb
N

�2

N · na
N · nb

N

rank
=

�
nab � 1

N · na · nb
�2

na · nb

This is a statistical significance test that's used to measure whether the co-occurrences happen by
chance, or whether they happen because the words are really related to each other. We?ll talk more
about significance testing in the module on evaluation. For now, it's enough to point out that the
denominator is the same as for pointwise mutual information, but the numerator is looking at the
squared difference between the number of co-occurrences and something related to how often each of
the terms occurs on its own. If the two terms are very common, we expect the co-occurrences are more
likely to happen by chance. If they?re very rare, but always happen with each other, they are more
likely to be related. That's the key insight behind this measure.

Now let's take a look at how these four measures perform on real data to get a sense of what they do
differently.

Association Measure Example

Suppose the user has run the query ”tropical fish”, and we want to expand the query by adding terms
related to each of the query terms. These tables show the 15 highest-ranking terms with each of the four
association measures, for each of the two query terms.

The distributions for point wise mutual information, labeled MIM here, and for chi2, are fairly similar.
The distributions for expected mutual information and dice?s coefficient resemble each other more than the
other two. Well, MIM and chi2 are focusing on the lowest-frequency terms that tend to appear with the
query terms. The words in this list tend to be very rare, and to almost always appear with the query term
when they do appear. That isn't necessarily what we want: these terms might be too infrequent to point
out relevant documents. They are also rare enough that the terms for the query term ”tropical” are unlikely
to show up in documents about the query term ”fish”, and vice versa.

The lists for EMIM and Dice's coefficient are better: they don't focus as much on extremely rare terms.
They still have the problem, though, that they aren't related to the overall query. They are focused on one
particular query term at the expense of the other.

10

Most associated terms for ”tropical” in a
collection of TREC news stories.

Most associated terms for ”fish” in the same
collection.

Improving the Results: A few tricks can help us focus on terms more related to the overall query.
They mainly involve filtering out some of the co-occurrences in order to focus on the ones we think really
matter.

First, we want to filter terms out of the list that occur in the same documents by accident. We can
accomplish this by only counting co-occurrences which happen within some fixed distance of the query term.
So when we?re looking for terms related to ”fish”, we?ll only consider co-occurrences within 10 words of each
occurrence of ”fish” in each document from our collection. The intuition here is that the document might
be talking about a lot of things, but the words closest to the query term are most likely to be closely related
to its topic. The table on the right shows an improved list for ”fish” that only counts co-occurrences which
occur within a window of 5 terms from the word ”fish”.

As a second improvement, we can just count co-occurrences when they occur simultaneously for all query
terms. If we use Dice's coefficient on both terms, ”tropical” and ”fish”, we get a much better list of terms
for query expansion (explained later in 8).

• Instead of counting co-occurrences in the
entire document, count those that occur
within a smaller window.

• Look for new terms associated with multi-
ple query terms instead of just one.

• Using Dice with ”tropical fish” gives the
following list: goldfish, reptile, aquarium,
coral, frog, exotic, stripe, regent, pet, wet.

Most associated terms for ”fish” with
co-occurrences measured in a window of 5

terms.

5 BM25

Binary Independence Models

In Bayesian classification, documents are ranked by their likelihood ratios P (D|R=1)
P (D|R=0) calculated from some

11

probabilistic model.

Binary Independence Model =
∏n

i=1 P (wi|R=1)∏n
i=1 P (wi|R=0)

The model predicts the features that a relevant or non-relevant document is likely to have. Our first
model is a unigram language model, which independently estimates the probability of each term appearing
in a relevant or non-relevant document. Any model like this, based on independent binary features fi ∈ F ,
is called a binary independence model.

BM25 is a language model based on a binary independence model. Its matching score is as follows.

bm25(d, q) =
∑

w∈q

log

(
D + 0.5

dfw + 0.5

)
· tfw,d + k1 · tfw,d

tfw,d + k1

(
(1− b) + b · len(d)

avg(len(d))

) · tfw,q + k2 · tfw,q

tfw,q + k2

Where:
tfw,q is the term frequency of term w in query q k1, k2, and b are constants.

Okapi BM25 is one of the strongest ”simple” scoring functions, and has proven a useful baseline for
experiments and feature for ranking. It combines:

• The IDF-like ranking score

• the document term frequency tfi,d, normalized by the ratio of the document?s length dl to the average
length avg(dl), and

• the query term frequency tfi,q.

Is it Better?
Let's unpack this formula to understand it better- The numerator is a ratio of counts of relevant documents
the term does and does not appear in. It's a likelihood ratio giving the amount of ”evidence of relevance”
the term provides.

The denominator is the same ratio, for non- relevant documents. It gives the amount of ”evidence of
non-relevance” for the term.
NOTE: If the term is in many documents, but most of them are relevant, it doesn't discount the term as
IDF would.

6 Language Models

*probabilities as matching evidence

12

6.1 basics of probability likelihoods

6.2 Query Likelihood Model

6.3 Divergence Language Model

6.4 Implementation of Language Models

6.5 Estimating Probabilities

6.6 Smoothing

6.7 Language Models with Ngrams

7 Skipgram Minimum Span Model

8 Query Expansion, Relevance Feedback

9 Metasearch- Ranking Fusion

10 Evaluate with trec eval against a qrel file

13

