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Notations for permutations

Consider a permutation in 1-line form:

f = 6 5 2 7 1 3 4 8

This represents a function f : [8]→ [8]

f (1) = 6 f (5) = 1

f (2) = 5 f (6) = 3

f (3) = 2 f (7) = 4

f (4) = 7 f (8) = 8

The 2-line form is

f =

(
i1 i2 · · ·

f (i1) f (i2) · · ·

)
=

(
1 2 3 4 5 6 7 8
6 5 2 7 1 3 4 8

)
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Cycles in permutations
f = 6 5 2 7 1 3 4 8

Draw a picture with points numbered 1, . . . , n and arrows i→ f (i).

1 6 4 7

5 3 8

2

Each number has one arrow in and one out: f−1(i)→ i→ f (i)
Each chain closes upon itself, splitting the permutation into cycles.

The cycle decomposition is f = (1,6,3,2,5)(4,7)(8)
If all numbers are 1 digit, we may abbreviate: f = (16325)(47)(8)

The cycles can be written in any order.
Within each cycle, we can start at any number.

f = (1, 6, 3, 2, 5)(4, 7)(8) = (8)(7, 4)(3, 2, 5, 1, 6) = · · ·
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Multiplying permutations

f = (1, 2, 4)(3, 6)(5) = 246153

g = (1, 3)(2, 5)(4, 6) = 351624

There are two conventions for multiplying permutations,
corresponding to two conventions for composing functions.

Left-to-right composition (our book and often in Abstract Algebra)
( f g)(i) = g( f (i)) ( f g)(1) = g( f (1)) = g(2) = 5

Right-to-left composition (usual convention in Calculus)
( f g)(i) = f (g(i)) ( f g)(1) = f (g(1)) = f (3) = 6

Note that multiplication of permutations is not commutative.
E.g., with the left-to-right convention,

( f g)(1) = g( f (1)) = g(2) = 5 while
(g f )(1) = f (g(1)) = f (3) = 6,

so ( f g)(1) , (g f )(1), so f g , g f .
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Multiplying permutations: left-to-right composition

f = (1, 2, 4)(3, 6)(5) = 246153

g = (1, 3)(2, 5)(4, 6) = 351624

i (1, 2, 4) (3, 6) (5) (1, 3) (2, 5) (4, 6) ( f g)(i)

1 2 5 ( f g)(1) = 5

2 4 6 ( f g)(2) = 6

3 6 4 ( f g)(3) = 4

4 1 3 ( f g)(4) = 3

5 5 2 ( f g)(5) = 2

6 3 1 ( f g)(6) = 1

So f g = (1, 2, 4)(3, 6)(5)(1, 3)(2, 5)(4, 6) = 564321 = (1, 5, 2, 6)(3, 4).
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Multiplying permutations: right-to-left composition

f = (1, 2, 4)(3, 6)(5) = 246153

g = (1, 3)(2, 5)(4, 6) = 351624

( f g)(i) (1, 2, 4) (3, 6) (5) (1, 3) (2, 5) (4, 6) i

( f g)(1) = 6 6 3 1

( f g)(2) = 5 5 5 2

( f g)(3) = 2 2 1 3

( f g)(4) = 3 3 6 4

( f g)(5) = 4 4 2 5

( f g)(6) = 1 1 4 6

So f g = (1, 2, 4)(3, 6)(5)(1, 3)(2, 5)(4, 6) = 652341 = (1, 6)(2, 5, 4, 3).
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Inverse permutation

The identity permutation on [n] is f (i) = i for all i. Call it
idn = 12 · · · n = (1)(2) · · · (n)

It satisfies f · idn = idn · f = f .

The inverse of a permutation f is the inverse function f−1.
f = 246153 f−1 = 416253

It satisfies f ( f−1(i)) = i and f−1( f (i)) = i for all i.
Equivalently, f · f−1 = f−1 · f = idn.

In cycle form, just reverse the direction of each cycle:
f = (1, 2, 4)(3, 6)(5) f−1 = (4, 2, 1)(6, 3)(5)

The inverse of a product is ( f g)−1 = g−1f−1

since g−1 · f−1 · f · g = g−1 · idn ·g = g−1 · g = idn.
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Type of a permutation

The type of a permutation is the integer partition formed from
putting the cycle lengths into decreasing order:
f = 6 5 2 7 1 3 4 8 = (1, 6, 3, 2, 5)(4, 7)(8) type( f ) = (5, 2, 1)

How many permutations of size 8 have type (5, 2, 1)?
Draw a pattern with blanks for cycles of lengths 5, 2, 1:

( _ , _ , _ , _ , _ )( _ , _ )( _ )

Fill in the blanks in one of 8! = 40320 ways.

Each cycle can be restarted anywhere:
(1, 6, 3, 2, 5) = (6, 3, 2, 5, 1) = (3, 2, 5, 1, 6) = (2, 5, 1, 6, 3) = (5, 1, 6, 3, 2)

We overcounted each cycle of length ` a total of ` times, so divide
by the product of the cycle lengths:

8!
5 · 2 · 1

=
40320

10
= 4032

Prof. Tesler Ch. 6.1. Cycles in Permutations Math 184A / Winter 2019 8 / 31



How many permutations of size 15 have 5 cycles of length 3?

Draw a pattern with blanks for 5 cycles of length 3:
( _ , _ , _ )( _ , _ , _ )( _ , _ , _ )( _ , _ , _ )( _ , _ , _ )

These comprise 5 · 3 = 15 entries.

Fill in the blanks in one of 15! ways.

Each cycle has 3 representations matching this format (by
restarting at any of 3 places), so divide by 35.

The order of the whole cycles can be changed while keeping the
pattern, e.g., (1, 2, 3)(4, 5, 6) = (4, 5, 6)(1, 2, 3).
Divide by 5! ways to reorder the cycles.

Total:
15!

35 · 5!
= 44844800
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General formula for the number of permutations of each type

Given these parameters:

Number of cycles of length i: mi

Permutation size: n =
∑

i mi · i
Number of cycles:

∑
i mi

The number of permutations of this type is
n!

1m1 2m2 3m3 · · ·m1! m2! m3! · · ·
=

n!
1m1 m1! 2m2 m2! 3m3m3! · · ·

Example: 10 cycles of length 3 and 5 cycles of length 4
type = (4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3)

n = 10 · 3 + 5 · 4 = 30 + 20 = 50

10 + 5 = 15 cycles

Number of permutations =
50!

310 · 45 · 10! · 5!
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Stirling Numbers of the First Kind
Let c(n, k) = # of permutations of n elements with exactly k cycles.
This is called the Signless Stirling Number of the First Kind .
We will work out the values of c(4, k), so n = 4 and k varies.

k = 4 (1)(2)(3)(4) c(4, 4) = 1

k = 3 ( _ , _ )( _ )( _ ) c(4, 3) = 4!
21·12·1!·2! =

24
4 = 6

k = 2 ( _ , _ )( _ , _ ) 4!
22·2! =

24
4·2 = 3

( _ , _ , _ )( _ ) 4!
3·1·1!·1! =

24
3 = 8

c(4, 2) = 3 + 8 = 11

k = 1 ( _ , _ , _ , _ ) c(4, 1) = 4!
41·1! =

24
4 = 6

k , 1, 2, 3, 4 c(4, k) = 0

Total = 1 + 6 + 11 + 6 = 24 = 4!

For c(n, k): the possible permutation types are integer partitions of
n into k parts. Compute the number of permutations of each type.
Add them up to get c(n, k).
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Recursive formula for c(n, k)
What permutations can be formed by inserting n = 6 into (1, 4, 2)(3, 5)
(a permutation of size n − 1)?

Case: Insert 6 into an existing cycle in one of n − 1 = 5 ways:

(1, 6, 4, 2)(3, 5)
(1, 4, 6, 2)(3, 5)
(1, 4, 2, 6)(3, 5) = (6, 1, 4, 2)(3, 5)
(1, 4, 2)(3, 6, 5)
(1, 4, 2)(3, 5, 6) = (1, 4, 2)(6, 3, 5)

Note: inserting a number at the start or end of a cycle is the
same, so don’t double-count it.

Case: Insert (6) as a new cycle; there is only one way to do this:

(1, 4, 2)(3, 5)(6)

To obtain k cycles, insert 6 into a permutation of [5] with k cycles (if
added to an existing cycle) or k − 1 cycles (if added as a new cycle).
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Recursive formula for c(n, k)

Insert n into a permutation of [n−1]
to obtain a permutation of [n] with k cycles:

Case: permutations of [n] in which n is not in a cycle alone:
Choose a permutation of [n−1] into k cycles (c(n−1, k) ways)
Insert n into an existing cycle after any of 1, . . . , n−1 (n−1 ways)

Subtotal: (n − 1) · c(n − 1, k)

Case: permutations of [n] in which n is in a cycle alone:
Choose a permutation of [n−1] into k−1 cycles (c(n−1, k−1) ways)
and add a new cycle (n) with one element (one way)

Subtotal: c(n − 1, k − 1)

Total: c(n, k) = (n − 1) · c(n − 1, k) + c(n − 1, k − 1)

This recursion requires using n − 1 > 0 and k − 1 > 0, so n, k > 1.
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Initial conditions for c(n, k)
When n = 0 or k = 0

n = 0: Permutations of ∅
There is only one “empty function” f : ∅ → ∅.
It is vacuously one-to-one, onto, and a bijection.
As a permutation, it has no cycles.
c(0, 0) = 1 and c(0, k) = 0 for k > 0.

k = 0: Permutations into 0 cycles
c(n, 0) = 0 when n > 0
since every permutation of [n] must have at least one cycle.

Not an initial condition, but related:
c(n, k) = 0 for k > n
since the permutation of [n] with the most cycles is (1)(2) · · · (n).
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Table of values of c(n, k)

Compute c(n, k) from the recursion and initial conditions:
c(0, 0) = 1
c(n, 0) = 0 if n > 0
c(0, k) = 0 if k > 0

c(n, k) = (n − 1) · c(n − 1, k)
+ c(n − 1, k − 1)

if n > 1 and k > 1

c(n, k) k = 0 k = 1 k = 2 k = 3 k = 4
n = 0 1 0 0 0 0

n = 1 0

n = 2 0

n = 3 0

n = 4 0
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Table of values of c(n, k)

Compute c(n, k) from the recursion and initial conditions:
c(0, 0) = 1
c(n, 0) = 0 if n > 0
c(0, k) = 0 if k > 0

c(n, k) = (n − 1) · c(n − 1, k)
+ c(n − 1, k − 1)

if n > 1 and k > 1

c(n, k) k = 0 k = 1 k = 2 k = 3 k = 4
n = 0 1 0 0 0 0

n = 1 0

n = 2 0 c(n−1,k−1) c(n−1, k)

n = 3 0 c(n, k)

n = 4 0

·(n−1)
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Table of values of c(n, k)

Compute c(n, k) from the recursion and initial conditions:
c(0, 0) = 1
c(n, 0) = 0 if n > 0
c(0, k) = 0 if k > 0

c(n, k) = (n − 1) · c(n − 1, k)
+ c(n − 1, k − 1)

if n > 1 and k > 1

c(n, k) k = 0 k = 1 k = 2 k = 3 k = 4 Total: n!
n = 0 1 0 0 0 0 1

n = 1 0 1 0 0 0 1

n = 2 0 1 1 0 0 2

n = 3 0 2 3 1 0 6

n = 4 0 6 11 6 1 24

·0 ·0 ·0 ·0

·1 ·1 ·1 ·1

·2 ·2 ·2 ·2

·3 ·3 ·3 ·3
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Generating function for c(n, k)

Theorem
Let n be a positive integer. Then

n∑
k=0

c(n, k)x k = x(x + 1) · · · (x + n − 1)

Example
For n = 3: x(x + 1)(x + 2) = 2x + 3x2 + x3

= 0x0 + 2x1 + 3x2 + 1x3

Compare with row n = 3 of the c(n, k) table: 0 2 3 1

For n = 4: x(x+1)(x+2)(x+3) = 6x+11x2+6x3+x4

= 0x0+6x1+11x2+6x3+1x4

Compare with row n = 4 of the c(n, k) table: 0 6 11 6 1

So this theorem gives another way (besides the recurrence) to
compute c(n, k).
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Generating function for c(n, k)
Example of going from n = 3 to n = 4

With values of c(n, k) plugged in
case n = 4︷                        ︸︸                        ︷

x(x + 1)(x + 2)︸               ︷︷               ︸
case n = 3

(x + 3) = (2x + 3x2 + x3) · (x + 3)
= (2x + 3x2 + x3) · x + (2x + 3x2 + x3) · 3
= 2x2 + 3x3 + x4

+ 6x + 9x2 + 3x3

= 6x + 11x2 + 6x3 + x4

With c(n, k) unevaluated
(c(3, 0) x0 + c(3, 1)x1 + c(3, 2)x2 + c(3, 3)x3) · (x + 3)

= c(3, 0)x1 + c(3, 1)x2 + c(3, 2)x3 + c(3, 3)x4

+ 3c(3, 0)x0 + 3c(3, 1)x1 + 3c(3, 2)x2 + 3c(3, 3)x3

= c(4, 0)x0 + c(4, 1)x1 + c(4, 2)x2 + c(4, 3)x3 + c(4, 4)x4

Here, n = 4, and for 0 < k < n, the coefficient of x k is
c(n, k) = c(n − 1, k − 1) + (n − 1) · c(n − 1, k)
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Generating function for c(n, k)

Theorem
Let n be a positive integer. Then

∑n
k=0 c(n, k)x k = x(x + 1) · · · (x + n − 1)

Proof:
Base case n = 1: c(1, 0) + c(1, 1)x = 0 + 1x = x

Induction: For n > 2, assume it holds for n − 1:

x(x + 1) · · · (x + n − 2) =
n−1∑
k=0

c(n − 1, k)x k

Multiply by x + n − 1 to get x(x + 1) · · · (x + n − 1) on one side:

x(x + 1) · · · (x + n − 1) =

(
n−1∑
k=0

c(n − 1, k)x k

)
(x + n − 1)

We’ll show that the other side equals
∑n

k=0 c(n, k) x k.
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Generating function for c(n, k)
Proof continued (induction step)

x(x + 1) · · · (x + n − 1) =

(
n−1∑
k=0

c(n − 1, k)x k

)
(x + n − 1)

Expand the product on the right side:

=

n−1∑
k=0

c(n−1, k)x k+1

︸                  ︷︷                  ︸
=
∑n

k=1 c(n−1, k−1)x k

+

n−1∑
k=0

(n−1)c(n−1, k)x k

Combine terms with the same power of x:

= (n−1)c(n−1, 0)︸               ︷︷               ︸
= 0 = c(n, 0)

x0+

(
n−1∑
k=1

(c(n−1, k−1) + (n−1)c(n−1, k))︸                                      ︷︷                                      ︸
= c(n, k)

x k

)
+ c(n−1, n−1)︸           ︷︷           ︸
= 1 = c(n, n)

x n

This equals
∑n

k=0 c(n, k)x k, so the induction step is complete.
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Signs in the Stirling Number of the First Kind

We showed that
n∑

k=0

c(n, k)x k = x(x + 1) · · · (x + n − 1)

Substitute x→ −x :
n∑

k=0

c(n, k)(−1)kx k = (−x)(−x + 1) · · · (−x + n − 1)
= (−1)n x(x − 1) · · · (x − n + 1) = (−1)n (x)n

Multiply by (−1)n:
n∑

k=0

(−1)n−kc(n, k)x k = (x)n

Set s(n, k) = (−1)n−kc(n, k):
n∑

k=0

s(n, k)x k = (x)n = x(x − 1)(x − 2) · · · (x − n + 1)
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Signs in the Stirling Number of the First Kind

n∑
k=0

s(n, k)x k = (x)n = x(x − 1)(x − 2) · · · (x − n + 1)

This also holds for n = 0: left = s(0, 0)x0 = (−1)0−01x0 = 1∑0
k=0 s(0, k)x k = (x)0 right = (x)0 = 1

s(n, k) = (−1)n−kc(n, k) is the Stirling Number of the First Kind .
Recall c(n, k) is the Signless Stirling Number of the First Kind .
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Duality between Stirling numbers of the first and
second kind

For all nonnegative integers n, we can convert between powers of
x and falling factorials in x in both directions:

x n =

n∑
k=0

S(n, k) · (x)k (x)n =

n∑
k=0

s(n, k)x k
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Linear algebra interpretation
A basis of the space of polynomials is x0, x1, x2, . . . Any polynomial
can be expressed as a unique linear combination of these.
(x)0, (x)1, (x)2, . . . is also a basis!
(x)n has leading term 1x n. E.g., (x)3 = x(x−1)(x−2) = x3−3x2+2x.

Express f (x) = 4x3 − 5x + 6 in the basis (x)0, (x)1, . . .
Start with 4(x)3 to get the leading term correct:

4(x)3 = 4x3 − 12x2 + 8x

Add 12(x)2 = 12x(x − 1) to get the x2 term correct:
4(x)3 + 12(x)2 = 4x3 − 12x2 + 8x + 12x(x − 1) = 4x3 − 4x

Subtract (x)1 = x to get the x1 term correct:
4(x)3 + 12(x)2 − (x)1 = 4x3 − 5x

Add 6(x)0 = 6 to get the x0 term correct:
4(x)3 + 12(x)2 − (x)1 + 6(x)0 = 4x3 − 5x + 6

So f (x) = 4(x)3 + 12(x)2 − (x)1 + 6(x)0
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Linear algebra interpretation

Coefficient vectors of f (x) in each basis:

f (x) Basis Coefficient vector

4x3 − 5x + 6 x0, . . . , x3 [6,−5, 0, 4]
4(x)3 + 12(x)2 − (x)1 + 6(x)0 (x)0, . . . , (x)3 [6,−1, 12, 4]

Prof. Tesler Ch. 6.1. Cycles in Permutations Math 184A / Winter 2019 26 / 31



Lin. alg. interp. of x n =
∑n

k=0 S(n, k) (x)k and (x)n =
∑n

k=0 s(n, k)x k

Form matrices [S(n, k)] and [s(n, k)] for 0 6 n, k 6 3:

S = [S(n, k)] =


1 0 0 0
0 1 0 0
0 1 1 0
0 1 3 1

 s = [s(n, k)] =


1 0 0 0
0 1 0 0
0 −1 1 0
0 2 −3 1


f (x) Basis Coefficient vector

4x3 − 5x + 6 x0, . . . , x3 [6,−5, 0, 4]
4(x)3 + 12(x)2 − (x)1 + 6(x)0 (x)0, . . . , (x)3 [6,−1, 12, 4]

S and s are the transition matrices between the two bases:
[6,−5, 0, 4]S = [6,−1, 12, 4] and [6,−1, 12, 4]s = [6,−5, 0, 4]

The matrices are inverses: Ss = sS = identity matrix.

For polynomials of degree 6 N, form (N + 1)× (N + 1) matrices
where the indices are 0 6 k, n 6 N.
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Proof of
∑n

k=0 c(n, k)x k = x(x + 1) · · · (x + n − 1) using weights
Optional material to read after we cover Chapter 8

n∑
k=0

c(n, k)x k = x(x + 1) · · · (x + n − 1)

In addition to how we already proved this formula, there is another
method based on material coming up in Chapter 8. The following
is optional material that may be read after we cover Chapter 8.

Define the weight of a permutation as the number of cycles it has.
E.g., σ = (1, 3, 5, 4)(2)(6) has weight w(σ) = 3.

Consider summing xw(σ) over all permutations σ of [n].
There are c(n, k) permutations of weight k, which will combine to
give a term c(n, k)x k. Thus, the sum is

∑n
k=0 c(n, k)x k.

The following construction will show it also equals the right side.
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Proof using weights
Optional material to read after we cover Chapter 8

Let n > 1 and set

A =
{
[i1, . . . , in] : 1 6 ij 6 j for j = 1, . . . , n

}
In elements of A:

1st number is 1
2nd number is 1 or 2
3rd number is 1, 2, or 3
Etc.
So |A| = n!.

Example: [1, 2, 1, 3, 3, 6] ∈ A, but [1, 3, 1, 2, 3, 6] < A.
We’ll give a bijection between A and permutations of [n]. It works
similarly to the recursion for c(n, k) from earlier in these slides, so
review that if you need to.
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Proof using weights
Optional material to read after we cover Chapter 8

Given [i1, . . . , in] ∈ A, construct a permutation as follows:
Start with an empty permutation. (weight 0)
Loop over j = 1, . . . , n:
If ij = j, insert a new cycle ( j). (increases weight by 1)
Otherwise, insert j after ij in ij’s cycle. (weight unchanged)

Example: input [1, 2, 1, 3, 3, 6] ∈ A

Start with empty permutation
i1 = 1 isn’t in the permutation. Insert new cycle (1): (1)
i2 = 2 isn’t in the permutation. Insert new cycle (2): (1)(2)
i3 = 1 is in the permutation. Insert 3 after 1: (1, 3)(2)
i4 = 3 is in the permutation. Insert 4 after 3: (1, 3, 4)(2)
i5 = 3 is in the permutation. Insert 5 after 3: (1, 3, 5, 4)(2)
i6 = 6 isn’t in the permutation. Insert new cycle (6): (1, 3, 5, 4)(2)(6)
This permutation has 3 cycles, so its weight is 3.
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Proof using weights
Optional material to read after we cover Chapter 8

Given [i1, . . . , in] ∈ A, construct a permutation as follows:

Start with an empty permutation. (weight 0)
Loop over j = 1, . . . , n:
If ij = j, insert a new cycle ( j). (increases weight by 1)
Otherwise, insert j after ij in ij’s cycle. (weight unchanged)

At step j,
1 choice adds weight 1;
j − 1 choices add weight 0,

so step j contributes a factor 1x1 + ( j − 1)x0 = x + j − 1.

The total weight over j = 1, . . . , n is
∏n

j=1(x + j − 1).

This construction gives every permutation exactly once, weighted
by its number of cycles, so the total weight is also

∑n
k=0 c(n, k)x k.
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