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Abstract

This report presents an expression for the number of a multiset’s sub-multisets of

a given cardinality as a function of the multiplicity of its elements. This is also the

number of distinct samples of a given size that may be produced by sampling without

replacement from a finite population partitioned into subsets, in the case where items

belonging to the same subset are considered indistinguishable. Despite the generality

of this problem, we have been unable to find this result published elsewhere.

Keywords: enumerative combinatorics, multiset, inclusion exclusion principle, con-

strained k-resolutions, cardinality of the support of the multivariate hypergeometric

distribution.

1 Introduction

A multiset is a generalisation of a set that allows elements to appear an integer number
of times, rather than being simply present or absent [2]. The number of times that an
element appears in a multiset is termed its multiplicity. One multiset may be considered a
sub-multiset of a second when it does not contain any element with a greater multiplicity.
The cardinality of a multiset is the sum of its elements’ multiplicities, the number of its
elements is a distinct quantity called the dimension. In this report, we provide a formula for

the number of sub-multisets of a given multiset that have a specified cardinality.

A concrete example of a multiset is found in a packet of candies distinguishable only
by their colour. In this case, each colour of candy corresponds to a distinct element of the
multiset whose multiplicity is simply the number of candies of that colour that are present.
To ask how many distinct handfuls of a given size may be obtained from the packet is to
ask how many multisets of a given cardinality exist that are sub-multisets of the multiset
represented by the packet.
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To our surprise, even after extensive searching, we were not able to find an answer to this
question in the literature. While the number may be found through exhaustive enumeration
of the type described in [4], this will quickly become impractical as the dimensions and
multiplicities of the multisets increase. In this report, we use a proof based on the k-
resolutions of n and the inclusion-exclusion principle to derive an expression of this quantity
as the sum of binomial coefficients presented in equation (10). A concise proof is provided
in section 5, while a longer, step-by-step derivation is provided in sections 2 to 4.

Python code to verify the provided formula is available online at
https://github.com/SebastianoF/counting_sub_multisets.git.

2 Sampling from a multiset

We begin with a simple multiset that possesses 2 elements with an equal multiplicity of 5:

S = {b, b, b, b, b, w, w,w,w,w} .

In our candy analogy, this corresponds to a packet containing 5 black candies and 5 white
ones. In this case, if we want to know how many handfuls of 5 may be produced1, we can
simply enumerate them, as has been done in the table below. Here, each row represents a
handful, and the black and white circles represent the candies of the corresponding colors.

1 • • • • •
2 • • • • ◦
3 • • • ◦ ◦
4 • • ◦ ◦ ◦
5 • ◦ ◦ ◦ ◦
6 ◦ ◦ ◦ ◦ ◦

The number of black candies must be an integer between 0 and 5, this also specifies the
number of white candies, and therefore a total of 6 handfuls are possible. Generalising
this, let the multiplicities of the elements (black and white candies) be denoted a1 and
a2 respectively, the cardinality of the multiset (packet) be denoted N = a1 + a2, and the
cardinality of the sub-multisets (handfuls) be denoted n. Providing n is not greater than a1
or a2, the multiplicity of the first element in the sub-multiset may range between 0 and n,
so there will be n+ 1 possible outcomes.

If we allow the size of the handful to exceed the number of candies of a given colour, there
is an additional constraint we must consider: it is now possible to “run out of” one colour
of candy as the handful is drawn. If, instead of the original packet, we drew a handful of 5
from a smaller packet containing only 3 black candies and 4 white ones, we would no longer
be able to produce the handfuls numbered 1, 2 and 6 in the table above; the number of black
candies we draw must be between n − a2 = 1 and a1 = 3. Generalising again, a multiset
with two elements of multiplicities a1 and a2 has the following number of sub-multisets with
cardinality n:

r = min(n, a1)−max(1, n− a2) + 2 .

While it has been straightforward to solve this problem in the case of two elements, when
we increase the number of colours to a number beyond two, this can no longer be done so

1by drawing without replacement, as is usually the case with candies
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intuitively. For example, we might ask how many distinct handfuls of 12 may be drawn from
a packet containing 5 blue candies, 9 green ones, and 14 red ones.2 To answer this type of
question, we must reformulate the problem in terms of integer resolutions.

3 Reformulating the problem with k-resolutions

We consider the multiset S of cardinality N and dimension k where each element sj has a
multiplicity of aj :

S = {s1, s1, ..., s1
︸ ︷︷ ︸

a1-instances

, s2, s2, ..., s2
︸ ︷︷ ︸

a2-instances

, ..., sk, sk, ..., sk
︸ ︷︷ ︸

ak-instances

} ,

where

a1 + a2 + · · ·+ ak = N .

Providing some ordering is available for the elements, the sequence of their multiplicities
(a1, a2, ..., ak) is all that is required to uniquely specify S. Any sub-multiset of S with
cardinality n (n ≤ N) can be similarly specified by a sequence (x1, x2, ..., xk) which must
satisfy the constraints

x1 + x2 + · · ·+ xk = n , 0 ≤ xj ≤ aj . (1)

Sequences (x1, x2, ..., xk) that satisfy only x1 + x2 + · · ·+ xk = n are known as k-resolutions
of n, and there are established techniques to count them (see [3] or [5], for example). The
strategy we use to count sequences that satisfy (1) is based on their correspondence to the
k-resolutions of n that satisfy the additional constraints 0 ≤ xj ≤ aj.

k-resolutions of n

We denote the number of the k-resolutions of n

Rn
k = |{(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, xi ≥ 0}| . (2)

For any choice of k and n, Rn
k can be found by considering a row of n indistinguishable

candies and k−1 dividers that can be placed to split the row of candies into k subsets. Here,
the number of candies in the jth subset corresponds to the integer value of the summand xj .
For example, the 3-resolution of 8 given by 3 + 1 + 4 = 8 is represented

• • • • • • • •

With this representation, the number of permutations of the full set of candies and dividers
is (n+ k − 1)!. Because we consider all candies and dividers indistinguishable, this number
will overestimate the number of distinguishable arrangements by a factor of n! × (k − 1)! .
Correcting for this, we obtain

Rn
k =

(n+ k − 1)!

n!(k − 1)!
=

(
n+ k − 1

k − 1

)

=

(
n+ k − 1

n

)

. (3)

This is the number of sub-multisets of cardinality n that a multiset has when n is smaller
than all aj .

2 If we were to draw handfuls at random, their probabilities would be described by the multivariate hyper-
geometric distribution [1]. The number of possible handfuls corresponds to the cardinality of its support.
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k-resolutions of n with lower constraints

Before considering the constraints of the form 0 ≤ xj ≤ aj that occur in our original problem,
it is instructive to consider another type of constraints: those of the form xj ≥ aj ≥ 0. We
shall call these lower constraints. The number of k-resolutions that satisfy the set of lower
constraints specified by the sequence (a1, a2, . . . , ak) is given

Rn
(a1,a2,...,ak)↓

= |{(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, xi ≥ ai}| .

To determine this quantity, we perform the substitution yj = xj − aj for each of the xj :

x1 + x2 + · · ·+ xk = n xi ≥ ai

x1 − a1 + x2 − a2 + · · ·+ xk − ak = n−
k∑

j=1

aj xi − ai ≥ 0 .

This produces the equivalent equation

y1 + y2 + · · ·+ yk = n−
k∑

j=1

aj yi ≥ 0 yi = xi − ai . (4)

Noting that n−
∑k

j=1 aj is not negative, we can see that this equation has the same form as

equation (2). By equation (3), the number of solutions to equation (4) is R
n−

∑k
j=1

aj

k , and
therefore

Rn
(a1,a2,...,ak)↓

=

(
n−

∑k

j=1 aj + k − 1

k − 1

)

=

(
n−

∑k

j=1 aj + k − 1

n−
∑k

j=1 aj

)

. (5)

k-resolutions with upper constraints

We now consider the case that corresponds to our original problem. Here, each of the xj

satisfies a constraint of the form xj ≤ aj . We denote the number of upper constrained

k-resolutions of n

Rn
(a1,a2,...,ak)↑

= |{(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, 0 ≤ xi ≤ ai}| . (6)

The previous strategy can not be adapted so easily to this new case. We could make the
substitution

x1 + x2 + · · ·+ xk = n xi ≤ ai

x1 + x2 + · · ·+ xk = n ai − xi ≥ 0

a1 − x1 + a2 − x2 + · · ·+ ak − xk =
k∑

j=1

aj − n ai − xi ≥ 0

to obtain the form

y1 + y2 + · · ·+ yk =

k∑

j=1

aj − n yi = ai − xi . (7)
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It might seem like we could apply the same reasoning we used for equation (4) to produce
the result

Rn
(a1,a2,...,ak)↑

=

(∑k
j=1 aj − n+ k − 1

k − 1

)

=

(∑k
j=1 aj − n+ k − 1
∑k

j=1 aj − n

)

, (8)

but this formula is not correct. Unlike those of equation (4), the corresponding yj of equation
(7) may take negative values.

This can be seen in the counter example that follows. If we consider the problem specified
by n = 5, k = 3 and (a1, a2, a3) = (2, 3, 3), then the possible resolutions are the 9 that follow
in the form [x1, x2, x3]:

[0, 2, 3], [0, 3, 2], [1, 1, 3],

[1, 2, 2], [1, 3, 1], [2, 0, 3],

[2, 1, 2], [2, 2, 1], [2, 3, 0] .

As can be seen below, equation (8) would suggest that there are 10:

(
8− 5 + 3− 1

3− 1

)

= 10 .

This has happened because we have also counted the invalid solution

[−1, 3, 3] .

To find Rn
(a1,a2,...,ak)↑

, the number of upper constrained k-resolutions of n, we must use

a different strategy.

4 Solution from the inclusion-exclusion principle

We begin again with the equations specifying a k-resolution of n as a sequence of integers
xj that satisfy the original constraints:

x1 + x2 + · · ·+ xk = n , 0 ≤ xi ≤ ai .

We consider the following:

A = {(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, such that ∀i 0 ≤ xi ≤ ai}

B = {(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, such that ∃i xi ≥ ai + 1}

C = {(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, such that ∀i xi ≥ 0} .

Here, C is the full set of k-resolutions of n, A is the set of the upper constrained resolutions
(whose cardinality we wish to determine), and B is the set where at least one of the xj

exceeds the shared bounds aj . We can see that A = C \B and |A| = |C| − |B|.

By (3), the cardinality of C is

|C| =

(
n+ k − 1

k − 1

)

.
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To determine |A|, we now only need to determine |B|. B may be written as the union

B = B1 ∪B2 ∪ · · · ∪Bk ,

where

Bj = {(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, xj ≥ aj + 1} .

By the inclusion-exclusion principle,

|B1 ∪B2 ∪ · · · ∪Bk| =
k∑

m=1

(−1)m+1
∑

1≤i1<i2<···<im≤k

|Bi1 ∩Bi2 ∩ · · · ∩Bim | .

At this point, we note that the sets Bi1 ∩ Bi2 ∩ · · · ∩ Bim are sets of lower constrained

k-resolutions of the form

Bi1 ∩Bi2 ∩ · · · ∩Bim = {(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, xil ≥ ail + 1 , l = 1, . . . ,m} .

By equation (5), the value of each summand must therefore be

|Bi1 ∩Bi2 ∩ · · · ∩Bim | =

(
n− (ai1 + 1 + ai2 + 1+ · · ·+ aim + 1) + k − 1

k − 1

)

=

(
n− (

∑m

l=1 ail +m) + k − 1

k − 1

)

.

With this last formula we can finally determine the cardinality of A (i.e., the number of
upper constrained k-resolutions):

Rn
(a1,a2,...,ak)↑

= |A| = |C| − |B|

=

(
n+ k − 1

k − 1

)

−
k∑

m=1

(−1)m+1
∑

1≤i1<i2<···<im≤k

(
n−

∑m

l=1 ail −m+ k − 1

k − 1

)

.

This can be expressed more concisely as

Rn
(a1,a2,...,ak)↑

=
∑

L∈P(Ik)

(−1)|L|

(n+ k − 1− |L| −
∑

i∈L

ai

k − 1

)

, (9)

where P(Ik) denotes the power set of Ik, and binomial coefficients of the form
(
α
β

)
with α < 0

or α < β are taken to be zero in line with their combinatorial meaning.

5 Concise proof

This section provides a summary of the definitions and proofs presented in this report.

Definition 1 Given a finite set A of cardinality k, a multiset S is a collection of elements of

A where each element of A can appear zero or more times, and where the order of the elements

and appearances does not matter. The number of occurrences of an element a ∈ A in S is

called its multiplicity. The sum of all a multiset’s elements’ multiplicities is its cardinality.

The dimension of the multiset S is the number of distinct elements that it contains one or

more times.
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Definition 2 A sub-multiset S′ of a multiset S is a multiset whose elements are all also

elements of S. The elements’ multiplicities in S′ must be less than or equal to their corre-

sponding multiplicities in S.

We wish to determine the number of multisets of cardinality n that may be considered sub-
mulitisets of a multiset S of cardinality N and dimension k. The k distinct elements have
multiplicities in S specified by the sequence (a1, a2, . . . , ak). This problem can be formulated
in terms of constrained resolutions of integers.

Definition 3 A k-resolution of n is an element of the set

{(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, xi ≥ 0} .

The cardinality of this set is denoted

Rn
k = |{(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, xi ≥ 0}| .

The cardinality of the set of k-resolutions with lower constraints specified by a sequence

(a1, a2, . . . , ak) is

Rn
(a1,a2,...,ak)↓

= |{(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, 0 ≥ xi ≥ ai}| ,

while the cardinality of the set of k-resolutions with upper constraints specified by such a

sequence is

Rn
(a1,a2,...,ak)↑

= |{(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, xi ≤ ai}| .

The number of sub-multisets is thus equivalent to the number of k-resolutions of n with the
upper constraints (a1, a2, . . . , ak).

Lemma 1 The cardinality of the set of k-resolutions with lower constraints specified by

(a1, a2, · · · , ak) is given

Rn
(a1,a2,...,ak)↓

=

(
n−

∑k

j=1 aj + k − 1

k − 1

)

.

Proof:

Rn
(a1,a2,...,ak)↓

= |{(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, xi ≥ ai}|

= |{(x1, x2, . . . , xk) | x1 − a1 + x2 − a2 + · · ·+ xk − ak = n−
k∑

j=1

aj , xi ≥ ai}|

= |{(x1, x2, . . . , xk) | y1 + y2 + · · ·+ yk = n−
k∑

j=1

aj , yi ≥ 0}|

and so using the standard result for unconstrained k-resolutions,

=

(
n−

∑k

j=1 aj + k − 1

k − 1

)

.

�
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Theorem 1 Indicating {1, 2, · · · , k} with Ik, the cardinality of the set of upper constrained

k-resolutions is

Rn
(a1,a2,...,ak)↑

=
∑

L∈P(Ik)

(−1)|L|

(n+ k − 1− |L| −
∑

i∈L

ai

k − 1

)

, (10)

where P(Ik) is the power set of Ik.

Proof: We define the sets A, B and C as follows:

A = {(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, such that ∀i 0 ≤ xi ≤ ai}

B = {(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, such that ∃i xi ≥ ai + 1}

C = {(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, such that ∀i xi ≥ 0} .

From this, it follows that

A ∪B = C A ∩B = ∅ |A| = |C| − |B| |C| =

(
n+ k − 1

k − 1

)

.

The set B can be written as the union of subsets

B = B1 ∪B2 ∪ · · · ∪Bk ,

where

Bj = {(x1, x2, . . . , xk) | x1 + x2 + · · ·+ xk = n, xj ≥ aj + 1} .

Due to the inclusion-exclusion principle,

|B1 ∪B2 ∪ · · · ∪Bk| =
k∑

m=1

(−1)m+1
∑

1≤i1<i2<···<ij≤k

|Bi1 ∩Bi2 ∩ · · · ∩Bim | .

From the previous lemma, it follows that

|Bi1 ∩Bi2 ∩ · · · ∩Bim | =

(
n− (ai1 + 1 + ai2 + 1 + · · ·+ aim + 1) + k − 1

k − 1

)

,

and therefore

Rn
(a1,a2,...,ak)↑

=

(
n+ k − 1

k − 1

)

−
k∑

m=1

(−1)m+1
∑

1≤i1<i2<···<ij≤k

(
n−

∑m

l=1 ail −m+ k − 1

k − 1

)

.

�
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