1 Summary: Binary and Logic

• Binary Unsigned Representation : each 1-bit is a power of two, the right-most is for 2^0 : $0110101_2 = 2^5 + 2^4 + 2^2 + 2^0 = 32 + 16 + 4 + 1 = 53_{10}$

• Unsigned Range on n bits is $[0...(2^n - 1)]$. For n=4 we have the range [0=0000, 1=0001, ..., 15=1111]

• Binary Two's Complement Representation : same as unsigned, except the power of two for the first bit (the sign bit) is with negative sign. When the signed bit is 0 its positive identical with unsigned transformation; when its 1 that power of two is negative:

 $0100101_2 = +2^5 + 2^2 + 2^0 = 32 + 4 + 1 = 37_{10}$

 $1100101_2 = -2^6 + 2^5 + 2^2 + 2^0 = -64 + 32 + 4 + 1 = -64 + 37 = -27_{10}$

• it is essential to know how many bits to use, to know which bit is the sign bit for negatives: 7 bits two's complement : -27 = 110010110 bits two's complement: -27 = 1111100101

• Two's Complement Range on n bits is $[-2^{n-1}... + (2^{n-1} - 1)]$. For n = 4 we have the range $[-8=1000, -7=1001, -6=1010, \dots, -1=1111, 0=0000, 1=0001, \dots, 7=0111]$

• 3-Step rule to convert from base 10 to two's complement negatives

-	write in binary	27	=	0000011011
-	flip the bits			1111100100
_	add one			1111100101

• addition works like in base 10 with carry bit 1+1 = write 0, carry 1; 1+1+1 = write 1 carry 1 etc

• subtraction base2 : use addition of the negative value

• base $4 = 2^2$ use every two bits in base 2 to make a bit in base 4: $0100101_2 = 0.10_01_01 = 0_{-}(val = 2)_{-}(val = 1)_{-}(val = 1)_4 = 211_4 = 37_{10}$

• base $8 = 2^3$ use every three bits in base 2 to make a bit in base 8: $0100101_2 = 0.100.101 = 0.(val = 4).(val = 5)_8 = 45_8 = 37_{10}$

• base $16 = 2^4$ use every four bits in base 2 to make a bit in base 16: $0100101_2 = 010_0101 = (val = 2)_(val = 5)_{16} = 25_{16} = 37_{10}$ $0011011_2 = 001_1011 = (val = 1)_(val = 11)_{16} = 1B_{16} = 16 + 11_{10} = 27_{10}$

• any base, like base=3 : break the number into powers of 3, with coefficients $\{0,1,2\}$ $35_{10} = 27 + 6 + 2 = 3^3 + 0 * 3^2 + 2 * 3^1 + 2 * 3^0 = 1022_3$

4-bit Signed Binary Number Comparison 1posrep flip(posrep)

Decimal	Signed Magnitude	Signed One's Complement	Signed Two's Complement				
+7	0111	0111	0111				
+6	0110	0110	0110				
+5	0101	0101	0101				
+4	0100	0100	0100				
+3	0011	0011	0011				
+2	0010	0010	0010				
+1	0001	0001	0001				
+0	0000	0000	0000				
-0	1000	1111	-				
-1	1001	1110	1111				
-2	1010	1101	1110				
-3	1011	1100	1101				
-4	1100	1011	1100				
-5	1101	1010	1011				
-6	1110	1001	1010				
-7	1111	1000	1001				

• LOGIC TABLE

_														
A	В	$A \land B (AND)$	$A \lor B (OR)$	$A \oplus B (XOR)$	$\neg(A \land B) $ (NAND)									
1	1	1	1	0	0									
1	0	0	1	1	1									
0	1	0	1	1	1									
0	0	0	0	0	1									

• DNF (OR between clauses for out=1); CNF (OR between negated clauses for out=0). EXAMPLE:

<i>I</i>	4	В	C	output	DNF	CNF	
()	0	0	0		$A \lor B \lor C$	
)	0	1	1	$\neg A \land \neg B \land C$		
)	1	0	0		$A \vee \neg B \vee C$	
)	1	1	1	$\neg A \land B \land C$		
1	L	0	0	1	$A \wedge \neg B \wedge \neg C$		
1	L	0	1	0		$\neg A \lor B \lor \neg C$	
1	L	1	0	1	$A \wedge B \wedge \neg C$		
1	L	1	1	0		$\neg A \lor \neg B \lor \neg C$	
D	N_{\cdot}	F =	= (-	$A \wedge \neg B$	$(\neg A \land B) \lor (\neg A \land B)$	$(\land C) \lor (A \land \neg B)$	$\wedge \neg C) \lor (A \land B \land \neg C)$
C_{i}	N_{\perp}	F =	= (À	$\vee B \vee C$	$(A \lor \neg B \lor C)$	$C) \land (\neg A \lor B \lor \neg$	$C) \land (\neg A \lor \neg B \lor \neg C)$

• BOOLEAN ALGEBRA LAWS (1=true=T; 0=false=F)

Commutative laws	$p \wedge q \equiv q \wedge p$
	$p \lor q \equiv q \lor p$
Associative laws	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
Distributive laws	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
	$\left \begin{array}{c} p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) \end{array} ight $
Identity laws	$p \wedge T \equiv p$
	$p \lor F \equiv p$
Complement laws	$p \wedge \neg p \equiv F$
	$p \lor \neg p \equiv T$
Annihilator laws	$p \wedge F \equiv F$
	$p \lor T \equiv T$
Idempotence laws	$p \wedge p \equiv p$
	$p \lor p \equiv p$
Absorption laws	$p \wedge (p \lor q) \equiv p$
	$p \lor (p \land q) \equiv p$
Double negation law	$ eg(eg p) \equiv p$
De Morgan's laws	$ eg (p \land q) \equiv \neg p \lor \neg q$
	$ eg (p \lor q) \equiv \neg p \land \neg q$

• LOGIC GATES

Name			NOT AND \overline{A} AB \overline{A} AB \underline{A} \underline{A} \underline{A} \underline{A}		AND			NAND			OR			R	XOR			XNOR			
Alg. Expr.							A + B														
Symbol																					
Truth	<u>A</u>	X	B	A	X	B	A	X	B	A	X	B	A	X	B	A	X	B	A	X	
Table	1	0	0	1 0	0	0	1 0	1	0	1 0	1	0	1 0	0	0	1	1	0	1 0	0	
			1	1	1	1	1	0	1	1	1	1	1	0	1	1	0	1	1	1	