## 1 Summary: Binary and Logic

- Binary Unsigned Representation : each 1-bit is a power of two, the right-most is for $2^{0}$ :
$0110101_{2}=2^{5}+2^{4}+2^{2}+2^{0}=32+16+4+1=53_{10}$
- Unsigned Range on $n$ bits is $\left[0 \ldots\left(2^{n}-1\right)\right]$. For $\mathrm{n}=4$ we have the range
$[0=0000,1=0001, \ldots, 15=1111]$
- Binary Two's Complement Representation : same as unsigned, except the power of two for the first bit (the sign bit) is with negative sign. When the signed bit is 0 its positive identical with unsigned transformation; when its 1 that power of two is negative:
$0100101_{2}=\quad+2^{5}+2^{2}+2^{0}=32+4+1=37_{10}$
$1100101_{2}=-2^{6}+2^{5}+2^{2}+2^{0}=-64+32+4+1=-64+37=-27_{10}$
- it is essential to know how many bits to use, to know which bit is the sign bit for negatives:

7 bits two's complement : $-27=1100101$
10 bits two's complement: $-27=1111100101$

- Two's Complement Range on $n$ bits is $\left[-2^{n-1} \ldots+\left(2^{n-1}-1\right)\right]$. For $n=4$ we have the range $[-8=1000,-7=1001,-6=1010, \ldots-1=1111,0=0000,1=0001, \ldots, 7=0111]$
- 3-Step rule to convert from base 10 to two's complement negatives
- write in binary $27=0000011011$
- flip the bits 1111100100
- add one 1111100101
- addition works like in base 10 with carry bit $1+1=$ write 0 , carry 1 ;
$1+1+1=$ write 1 carry 1 etc
- subtraction base2 : use addition of the negative value
- base $4=2^{2}$ use every two bits in base 2 to make a bit in base 4 :
$0100101_{2}=0 \_10 \_01 \_01=0 \_(v a l=2) \_(v a l=1)_{-}(v a l=1)_{4}=211_{4}=37_{10}$
- base $8=2^{3}$ use every three bits in base 2 to make a bit in base 8 :
$0100101_{2}=0 \_100 \_101=0 \_(v a l=4)_{-}(v a l=5)_{8}=45_{8}=37_{10}$
- base $16=2^{4}$ use every four bits in base 2 to make a bit in base 16 :
$0100101_{2}=010 \_0101=(\text { val }=2)_{-}(\text {val }=5)_{16}=25_{16}=37_{10}$
$0011011_{2}=001 \_1011=($ val $=1) \_(v a l=11)_{16}=1 B_{16}=16+11_{10}=27_{10}$
- any base, like base $=3$ : break the number into powers of 3 , with coefficients $\{0,1,2\}$
$35_{10}=27+6+2=3^{3}+0 * 3^{2}+2 * 3^{1}+2 * 3^{0}=1022_{3}$


## 4-bit Signed Binary Number Comparison

1posrep flip(posrep)

| Decimal | Signed Magnitude | Signed One's Complement | Signed Two's <br> Complement |
| :---: | :---: | :---: | :---: |
| +7 | 0111 | 0111 | 0111 |
| +6 | 0110 | 0110 | 0110 |
| +5 | 0101 | 0101 | 0101 |
| +4 | 0100 | 0100 | 0100 |
| +3 | 0011 | 0011 | 0011 |
| +2 | 0010 | 0010 | 0010 |
| +1 | 0001 | 0001 | 0001 |
| +0 | 0000 | 0000 | 0000 |
| -0 | 1000 | 1111 | - |
| -1 | 1001 | 1110 | 1111 |
| -2 | 1010 | 1101 | 1110 |
| -3 | 1011 | 1100 | 1101 |
| -4 | 1100 | 1011 | 1100 |
| -5 | 1101 | 1010 | 1011 |
| -6 | 1110 | 1001 | 1010 |
| -7 | 1111 | 1000 | 1001 |

- LOGIC TABLE

| A | B | $\mathrm{A} \wedge \mathrm{B}(\mathrm{AND})$ | $\mathrm{A} \vee \mathrm{B}(\mathrm{OR})$ | $\mathrm{A} \oplus \mathrm{B}(\mathrm{XOR})$ | $\neg(A \wedge B)$ (NAND) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 0 | 0 |
| 1 | 0 | 0 | 1 | 1 | 1 |
| 0 | 1 | 0 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 |

- DNF (OR between clauses for out=1); CNF (OR between negated clauses for out=0). EXAMPLE:

| $A$ | $B$ | $C$ | output | $D N F$ | $C N F$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |  |  |
| 0 | 0 | 1 | 1 | $\neg A \wedge \neg B \wedge C$ | $A \vee B \vee C$ |
| 0 | 1 | 0 | 0 |  |  |
| 0 | 1 | 1 | 1 | $\neg A \wedge B \wedge C$ | $A \vee \neg B \vee C$ |
| 1 | 0 | 0 | 1 | $A \wedge \neg B \wedge \neg C$ |  |
| 1 | 0 | 1 | 0 |  |  |
| 1 | 1 | 0 | 1 | $A \wedge B \wedge \neg C$ | $\neg A \vee B \vee \neg C$ |
| 1 | 1 | 1 | 0 |  |  |
| $D N F=(\neg A \wedge \neg B \wedge C) \vee(\neg A \wedge B \wedge C) \vee(A \wedge \neg B \wedge \neg C) \vee(A \wedge B \wedge \neg C)$ |  |  |  |  |  |
| $C N F=(A \vee B \vee C) \wedge(A \vee \neg B \vee C) \wedge(\neg A \vee B \vee \neg C) \wedge(\neg A \vee \neg B \vee \neg C)$ |  |  |  |  |  |

- BOOLEAN ALGEBRA LAWS ( $1=$ true $=\mathrm{T} ; 0=\mathrm{false}=\mathrm{F}$ )

| Commutative laws | $\begin{aligned} & p \wedge q \equiv q \wedge p \\ & p \vee q \equiv q \vee p \end{aligned}$ |
| :---: | :---: |
| Associative laws | $\begin{aligned} & (p \wedge q) \wedge r \equiv p \wedge(q \wedge r) \\ & (p \vee q) \vee r \equiv p \vee(q \vee r) \end{aligned}$ |
| Distributive laws | $\begin{aligned} & p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\ & p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \end{aligned}$ |
| Identity laws | $\begin{aligned} & p \wedge T \equiv p \\ & p \vee F \equiv p \end{aligned}$ |
| Complement laws | $\begin{aligned} & p \wedge \neg p \equiv F \\ & p \vee \neg p \equiv T \end{aligned}$ |
| Annihilator laws | $p \wedge F \equiv F$ |
|  | $p \vee T \equiv T$ |
| Idempotence laws | $p \wedge p \equiv p$ |
|  | $p \vee p \equiv p$ |
| Absorption laws | $p \wedge(p \vee q) \equiv p$ |
|  | $p \vee(p \wedge q) \equiv p$ |
| Double negation law | $\neg(\neg p) \equiv p$ |
| De Morgan's laws | $\begin{aligned} & \neg(p \wedge q) \equiv \neg p \vee \neg q \\ & \neg(p \vee q) \equiv \neg p \wedge \neg q \end{aligned}$ |

- LOGIC GATES

| Name | NOT |  | AND |  |  | NAND |  |  | OR |  |  | NOR |  |  | XOR |  |  | XNOR |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alg. Expr. | $\bar{A}$ |  | $A B$ |  |  | $\overline{A B}$ |  |  | $A+B$ |  |  | $\overline{A+B}$ |  |  | $A \oplus B$ |  |  | $\overline{A \oplus B}$ |  |
| Symbol | $A>0-x$ |  |  |  |  |  |  |  |  |  |  | $D 0$ |  |  | $\square)$ |  |  |  |  |
| Truth Table | A | x | B A |  | x |  | B A | x |  | B A | x |  | B A | x |  | B A | x | B A | X |
|  | 0 | 1 |  | 0 | 0 |  | 0 | 1 | 0 | 0 | 0 |  | 0 | 1 |  | 0 | 0 | 0 | 1 |
|  | 1 |  |  | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
|  |  |  |  | 0 | 0 |  | 0 | 1 |  | 0 | 1 |  | 0 | 0 |  | 0 | 1 | 10 | 0 |
|  |  |  |  | 1 |  |  |  | 0 |  | 1 | 1 |  |  | 0 |  |  |  |  | 1 |

