## 1 Summary: Sets, Counting, Permutations \& Combinations

- Set builder notation
$\mathrm{A}=\{$ positive integers smaller than 100 divisible with 7$\}=\{x|x \in Z ; 0<x<100 ; 7| x\}$
- count A via indexing
$A=\{x|x \in Z ; 0<x<100 ; 7| x\}=\{7 * i \mid i \in Z ; 1 \leq i \leq 14\} \Rightarrow|A|=14$
- union, intersection, set difference, set symmetric difference
$A \cup B=\{x \mid x \in A$ OR $x \in B\}$
$A \cap B=\{x \mid x \in A$ AND $x \in B\}$
$A-B=\{x \mid x \in A$ AND $x \notin B\}$
$A \Delta B=(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$
- Cartesian Product $A \times B=\{(x, y) \mid x \in A ; y \in B\}$
- Product Rule: if any element from A can be combined with any element from B , then the number of combinations is $|A \times B|=|A| *|B|$
- power set of A is $\mathbf{P}(A)=$ the set of all subsets of A , including $A$ and $\emptyset ;|\mathbf{P}(A)|=2^{|A|}$. Example:
$A=\{x, y, z\}$. Then $\mathbf{P}(A)=\{\emptyset ;\{x\} ;\{y\} ;\{z\} ;\{x, y\} ;\{x, z\} ;\{y, z\} ;\{x, y, z\}\}$
- inclusion-exclusion principle : $|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|A \cap C|-|B \cap C|+|A \cap B \cap C|$

- Sum (Partition) Rule : if $\emptyset=|A \cap B|=|A \cap C|=|B \cap C|$ then $|A \cup B \cup C|=|A|+|B|+|C|$
- Pigeonhole Principle: if $n$ items are put into $k$ boxes, then at least one box contains at least $\left\lceil\frac{n}{k}\right\rceil$ items
- Permutations $P(n, k)$ ways to choose a sequence of $k$ items out of $n$. ORDER MATTERS.
$P(n, k)=n *(n-1) *(n-1) * \ldots *(n-k+1)=\frac{n!}{(n-k)!}$
- Combinations $C(n, k)=\binom{n}{k}$ ways to choose a set of $k$ items out of $n$. ORDER DOESNT MATTER.
$\binom{n}{k}=n *(n-1) *(n-1) * \ldots *(n-k+1) /(1 * 2 * \ldots * k)=\frac{n!}{k!(n-k)!}$
- $P(n, k)$ can be thought of as choosing a set of $k$, then permute the elements chosen in all $k$ ! ways. Thus $P(n, k)=\binom{n}{k} * k!=\frac{n!}{k!(n-k)!} * k!=\frac{n!}{(n-k)!}$
- ( $\left.\begin{array}{l}n \\ k\end{array}\right)=\binom{n}{n-k}$ since choosing $k$ items to "take" is equivalent to choosing $n-k$ to "remain"
- Binomial Theorem
$(x+y)^{n}=\binom{n}{0} x^{0} y^{n}+\binom{n}{1} x^{1} y^{n-1}+\ldots\binom{n}{n} x^{n} y^{0}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}$

$$
\begin{aligned}
& x=1, y=1: 2^{n}=(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k}=\binom{n}{0}+\binom{n}{1}+\ldots+\binom{n}{n} \\
& x=-1, y=1: 0=(-1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k}(-1)^{k}=\binom{n}{0}-\binom{n}{1}+\ldots+\binom{n}{n}(-1)^{n}
\end{aligned}
$$

- Pascal Formula $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$
- Pascal Triangle applies his formula at every row:

| $n$ | $\binom{n}{0}$ | $\binom{n}{1}$ | $\binom{n}{2}$ | $\binom{n}{3}$ | $\binom{n}{4}$ | $\binom{n}{5} \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 |  |  |  |  |
| 2 | 1 | 2 | 1 |  |  |  |
| 3 | 1 | 3 | 3 | 1 |  |  |
| 4 | 1 | 4 | 6 | 4 | 1 |  |
| 5 | 1 | 5 | 10 | 10 | 5 | 1 |

- Balls in Bins: The number of ways to throw indistinguishable $n$ balls into $m$ distinguishable bins $B_{1}, B_{2}, . . B_{m}$ is counted by choosing $m-1$ bin-separator locations out of $n+m-1$ spots for balls and separators.
For example for $n=10, m=6$ the throw with bin counts 1-2-4-1-0-2 corresponds to the following choices of $m-1=5$ separator locations among $m+n-1=15$ balls+separators: Balls in Bins count is $\binom{n+m-1}{m-1}$
- circular permutation : when sitting $n$ people at a round table the number of ways to sit them (not including rotations) is by keeping one chair-fixed and permute the rest; thus ( $n-1$ )! ways.
- counting with bijective functions: if a bijection (pairing) can be established between set A and set B then they have the same size, $|A|=|B|$. A bijection function $f$ has two properties - injectivity (different arguments produce different values): $\forall x, y \in A ; x \neq y \Rightarrow f(x) \neq f(y)$
- surjectivity (all B are possible function values): $\forall v \in B, \exists x \in A, f(x)=v$

