Chapter 6
An Introduction to Discrete Probability

6.1 Sample Space, Outcomes, Events, Probability

Roughly speaking, probability theory deals with experiments whose outcome are
not predictable with certainty. We often call such experiments random experiments.
They are subject to chance. Using a mathematical theory of probability, we may be
able to calculate the likelihood of some event.

In the introduction to his classical book [1] (first published in 1888), Joseph
Bertrand (1822-1900) writes (translated from French to English):

“How dare we talk about the laws of chance (in French: le hasard)? Isn’t chance
the antithesis of any law? In rejecting this definition, I will not propose any
alternative. On a vaguely defined subject, one can reason with authority. ...”

Of course, Bertrand’s words are supposed to provoke the reader. But it does seem
paradoxical that anyone could claim to have a precise theory about chance! It is not
my intention to engage in a philosophical discussion about the nature of chance.
Instead, I will try to explain how it is possible to build some mathematical tools that
can be used to reason rigorously about phenomema that are subject to chance. These
tools belong to probability theory. These days, many fields in computer science
such as machine learning, cryptography, computational linguistics, computer vision,
robotics, and of course algorithms, rely a lot on probability theory. These fields are
also a great source of new problems that stimulate the discovery of new methods
and new theories in probability theory.

Although this is an oversimplification that ignores many important contributors,
one might say that the development of probability theory has gone through four eras
whose key figures are: Pierre de Fermat and Blaise Pascal, Pierre-Simon Laplace,
and Andrey Kolmogorov. Of course, Gauss should be added to the list; he made
major contributions to nearly every area of mathematics and physics during his life-
time. To be fair, Jacob Bernoulli, Abraham de Moivre, Pafnuty Chebyshev, Alek-
sandr Lyapunov, Andrei Markov, Emile Borel, and Paul Lévy should also be added
to the list.
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Fig. 6.1 Pierre de Fermat (1601-1665) (left), Blaise Pascal (1623-1662) (middle left), Pierre—
Simon Laplace (1749-1827) (middle right), Andrey Nikolaevich Kolmogorov (1903—-1987) (right)

Before Kolmogorov, probability theory was a subject that still lacked precise def-
initions. In1933, Kolmogorov provided a precise axiomatic approach to probability
theory which made it into a rigorous branch of mathematics; with even more appli-
cations than before!

The first basic assumption of probability theory is that even if the outcome of an
experiment is not known in advance, the set of all possible outcomes of an experi-
ment is known. This set is called the sample space or probability space. Let us begin
with a few examples.

Example 6.1. If the experiment consists of flipping a coin twice, then the sample
space consists of all four strings

Q = {HH,HT, TH, TT},

where H stands for heads and T stands for tails.

If the experiment consists in flipping a coin five times, then the sample space
Q is the set of all strings of length five over the alphabet {H, T}, a set of 25 = 32
strings,

Q = {HHHHH, THHHH, HTHHH, TTHHH, . .., TTTTT}.

Example 6.2. If the experiment consists in rolling a pair of dice, then the sample
space €2 consists of the 36 pairs in the set

Q=DxD
with
D =1{1,2,3,4,5,6},
where the integer i € D corresponds to the number (indicated by dots) on the face of

the dice facing up, as shown in Figure 6.2. Here we assume that one dice is rolled
first and then another dice is rolled second.

Example 6.3. In the game of bridge, the deck has 52 cards and each player receives
a hand of 13 cards. Let Q be the sample space of all possible hands. This time it is
not possible to enumerate the sample space explicitly. Indeed, there are
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Fig. 6.2 Two dice
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(52) 520 52:51-50:140 oo cco 600

13) ~ 131-39!  13-12----2-1
different hands, a huge number.

Each member of a sample space is called an outcome or an elementary event.
Typically, we are interested in experiments consisting of a set of outcomes. For
example, in Example 6.1 where we flip a coin five times, the event that exactly one
of the coins shows heads is

A ={HTTTT, THTTT, TTHTT, TTTHT, TTTTH}.

The event A consists of five outcomes. In Example 6.3, the event that we get “dou-
bles” when we roll two dice, namely that each dice shows the same value is,

B= {(1’ 1)’ (2’2)’ (3’3)’ (4’4)’ (5’5)7 (676)}7

an event consisting of 6 outcomes.
The second basic assumption of probability theory is that every outcome @ of
a sample space £ is assigned some probability Pr(w). Intuitively, Pr(w) is the
probabilty that the outcome @ may occur. It is convenient to normalize probabilites,
so we require that
0<Pr(w)<1.

If Q is finite, we also require that

Y Pr(w)=1.

weQ

The function Pr is often called a probability distribution on 2. Indeed, it distributes
the probability of 1 among the outomes .

In many cases, we assume that the probably distribution is uniform, which means
that every outcome has the same probability.

For example, if we assume that our coins are “fair,” then when we flip a coin five
times, since each outcome in €2 is equally likely, the probability of each outcome

weQis |
P = —.
r(o) n



366 6 An Introduction to Discrete Probability

If we assume that our dice are “fair,” namely that each of the six possibilities for a
particular dice has probability 1/6, then each of the 36 rolls @ € Q has probability

1

Pr(w) = TR

We can also consider “loaded dice” in which there is a different distribution of
probabilities. For example, let

Pl’l(l) = Pr1(6) :%

Pr1(2) = Prl (3) = Pr1 (4) = Pl’l (5) = %

These probabilities add up to 1, so Pr; is a probability distribution on D. We can
assign probabilities to the elements of 2 = D x D by the rule

Pr1 1 (d,d/) = PI’] (d)PI’] (d/)

We can easily check that

Z Pr”(a)) = 17

weR

so Pry; is indeed a probability distribution on 2. For example, we get

1 1

Pr11(6,3):Pr1(6)Pr1(3): ~§: 32.

=

Let us summarize all this with the following definition.

Definition 6.1. A finite discrete probability space (or finite discrete sample space)
is a finite set 2 of outcomes or elementary events ® € €2, together with a function
Pr: Q — R, called probability measure (or probability distribution) satisfying the
following properties:

0<Pr(w)<1 foral weQ.

Z Pr(w)=1.

0eN

An event is any subset A of . The probability of an event A is defined as

Pr(A) = Z Pr(w).
weA

Definition 6.1 immediately implies that

Pr(0)=0
Pr(Q)=1.
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For another example, if we consider the event
A={HTTTT, THTTT, TTHTT, TTTHT, TTTTH}

that in flipping a coin five times, heads turns up exactly once, the probability of this

event is
5

Pr(A) = EvR

If we use the probability distribution Pr on the sample space 2 of pairs of dice, the
probability of the event of having doubles

B= {(15 1)5 (2’2)’ (3’3)’ (474)7 (575)7 (676)}7

is 1 1
Pr(B) =6 — — -
"(B) =63 =%

However, using the probability distribution Prj;, we obtain

11 1 1 1 1 3 1
PriiB)=—+—=+=+—=++=>—.

16 64 64 64 64 16 16 16
Loading the dice makes the event “having doubles” more probable.
It should be noted that a definition slightly more general than Definition 6.1 is
needed if we want to allow £ to be infinite. In this case, the following definition is
used.

Definition 6.2. A discrete probability space (or discrete sample space) is a triple
(Q,.%,Pr) consisting of:

1. A nonempty countably infinite set £2 of outcomes or elementary events.

2. The set .% of all subsets of 2, called the set of events.

3. A function Pr: .% — R, called probability measure (or probability distribution)
satisfying the following properties:

a. (positivity)
0<Pr(A)<1 forallAe %.

b. (normalization)
Pr(Q2)=1.

c. (additivity and continuity)
For any sequence of pairwise disjoint events Ey,E>, ..., E;,...in % (which
means that E; N E; = 0 for all i # j), we have

Pr (O E,~> = i Pr(E;)

The main thing to observe is that Pr is now defined directly on events, since
events may be infinite. The third axiom of a probability measure implies that
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Pr(0) = 0.

The notion of a discrete probability space is sufficient to deal with most problems
that a computer scientist or an engineer will ever encounter. However, there are
certain problems for which it is necessary to assume that the family .% of events
is a proper subset of the power set of Q. In this case, .# is called the family of
measurable events, and .# has certain closure properties that make it a 6-algebra
(also called a o-field). Some problems even require £2 to be uncountably infinite. In
this case, we drop the word discrete from discrete probability space.

Remark: A c-algebra is a nonempty family .# of subsets of Q satisfying the fol-
lowing properties:

1. 0e #. B
2. For every subset A C Q,if A € .Z then A € %.
3. For every countable family (A;);>1 of subsets A; € .7, we have ;> A; € F.

Note that every o-algebra is a Boolean algebra (see Section 7.11, Definition 7.14),
but the closure property (3) is very strong and adds spice to the story.

In this chapter, we deal mostly with finite discrete probability spaces, and occa-
sionally with discrete probability spaces with a countably infinite sample space. In
this latter case, we always assume that .Z = 2, and for notational simplicity we
omit .% (that is, we write (€2, Pr) instead of (2,.%,Pr)).

Because events are subsets of the sample space €2, they can be combined using
the set operations, union, intersection, and complementation. If the sample space
Q is finite, the definition for the probability Pr(A) of an event A C Q given in
Definition 6.1 shows that if A, B are two disjoint events (this means that AN B = 0),
then

Pr(AUB) = Pr(A) + Pr(B).

More generally, if Ay, ..., A, are any pairwise disjoint events, then
Pr(AjU---UA,) =Pr(A;) +---+Pr(4,).

It is natural to ask whether the probabilities Pr(A U B), Pr(ANB) and Pr(A) can
be expressed in terms of Pr(A) and Pr(B), for any two events A, B € Q. In the first
and the third case, we have the following simple answer.

Proposition 6.1. Given any (finite) discrete probability space (L,Pr), for any two
events A,B C Q, we have

Pr(AUB) = Pr(A) 4+ Pr(B) —Pr(ANB)
Pr(A) =1—Pr(A).

Furthermore, if A C B, then Pr(A) < Pr(B).

Proof. Observe that we can write AU B as the following union of pairwise disjoint
subsets:
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AUB=(ANB)U(A—B)U(B—A).

Then, using the observation made just before Proposition 6.1, since we have the dis-
joint unions A = (ANB)U(A—B) and B= (ANB)U(B—A), using the disjointness
of the various subsets, we have

Pr(AUB) =Pr(ANB)+Pr(A—B)+Pr(B—A)
Pr(A) =Pr(ANB)+Pr(A—B)
Pr(B) =Pr(ANB)+Pr(B—A),
and from these we obtain
Pr(AUB) = Pr(A) +Pr(B) — Pr(ANB).

The equation Pr(A) = 1 — Pr(A) follows from the fact that ANA = 0 and AUA = Q,
SO

1 =Pr(Q)=Pr(A)+Pr(A).

IfACB, then ANB=A,s0 B=(ANB)U(B—A) =AU (B—A), and since A and
B — A are disjoint, we get

Pr(B) =Pr(A)+Pr(B—A).
Since probabilities are nonegative, the above implies that Pr(A) < Pr(B). O

Remark: Proposition 6.1 still holds when £ is infinite as a consequence of axioms
(a)—(c) of a probability measure. Also, the equation

Pr(AUB) = Pr(A) +Pr(B) —Pr(ANB)

can be generalized to any sequence of n events. In fact, we already showed this as
the Principle of Inclusion—-Exclusion, Version 2 (Theorem 5.2).

The following proposition expresses a certain form of continuity of the function
Pr.

Proposition 6.2. Given any probability space (2,.% ,Pr) (discrete or not), for any
sequence of events (A;)i>1, if A C Ajt1 foralli > 1, then

”(U&>=HQMMJ
i=1

Proof. The trick is to express [J;—; A; as a union of pairwise disjoint events. Indeed,
we have

UAi:Al U(Ay—A)U(A3—A) U U(Ajp1 —A) U+,
i=1

so by property (c) of a probability measure
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Pr (UA1> =Pr <A1 @] U (Al'Jrl —Al‘)>
i=1 i=1

=Pr(A1) + i Pr(Ait1 —A;)

i=1

n—1
=Pr(A;) + lim Z Pr(Ai;1 —A;)
i=1

nso0

= lim Pr(A,),

N300

as claimed.

We leave it as an exercise to prove that if A;;; C A; for alli > 1, then
Pr(ﬂlAi) = lim Pr(4,).

In general, the probability Pr(A N B) of the event A N B cannot be expressed in a
simple way in terms of Pr(A) and Pr(B). However, in many cases we observe that
Pr(ANB) = Pr(A)Pr(B). If this holds, we say that A and B are independent.

Definition 6.3. Given a discrete probability space (2, Pr), two events A and B are
independent if
Pr(ANB) = Pr(A)Pr(B).

Two events are dependent if they are not independent.
For example, in the sample space of 5 coin flips, we have the events
A={HHw |we {H,TP*}U{HTw |w € {H,T}*},
the event in which the first flip is H, and
B={HHw|wec {H,TP}U{THw | w € {H,T}’},
the event in which the second flip is H. Since A and B contain 16 outcomes, we have

16 1
Pr(A)=Pr(B) = — = —.
((4) = Pr(B) = 35 = 5
The intersection of A and B is
ANB={HHw|w ¢ {H,T}*},

the event in which the first two flips are H, and since AN B contains 8 outcomes, we
have

Since
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1
Pr(ANB) = -~
and R

we see that A and B are independent events. On the other hand, if we consider the
events
A ={TTTTT,HHTTT}

and
B={TTTTT,HTTTT},
we have
Pr(A) = Pr(B) = i = i
N 32 16’
and since
ANB={TTTTT},
we have 1
Pr(ANB) = —.
r(ANB) %
It follows that L |
Pr(A)Pr(B) = — - — = —
"(A)PrB) = 75" 76 ~ 256’
but |
Pr(ANB) = —
(ANB) = 5,

so A and B are not independent.

Example 6.4. We close this section with a classical problem in probability known as
the birthday problem. Consider n < 365 individuals and assume for simplicity that
nobody was born on February 29. In this problem, the sample space is the set of
all 365" possible choices of birthdays for n individuals, and let us assume that they
are all equally likely. This is equivalent to assuming that each of the 365 days of
the year is an equally likely birthday for each individual, and that the assignments
of birthdays to distinct people are independent. Note that this does not take twins
into account! What is the probability that two (or more) individuals have the same
birthday?

To solve this problem, it is easier to compute the probability that no two individ-
uals have the same birthday. We can choose n distinct birthdays in (325) ways, and
these can be assigned to n people in n! ways, so there are

(325>n! =365-364---(365—n+1)

configurations where no two people have the same birthday. There are 365" possible
choices of birthdays, so the probabilty that no two people have the same birthday is
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_365-364--(365—n+1) _ ([ 1\ (,_ 2 n—1
7= 365" - 365 365 365 )’

and thus, the probability that two people have the same birthday is

1 2 n—1
= 1— = 1— 1_7 1_7 L. 1_ .
P i ( 365> < 365) < 365 )

In the proof of Proposition 5.15, we showed that x < e lforallxeR,s0l—x<e ™™
for all x € R, and we can bound g as follows:

If we want the probability ¢ that no two people have the same birthday to be at most

1/2, it suffices to require
n(n—1
e~ £«365) <

i

| —

that is, —n(n—1)/(2-365) <1In(1/2), which can be written as

(¢

n(n—1)>2-365In2.
The roots of the quadratic equation

n*—n—2-365In2=0

1++/148-365In2

m = ) 5

and we find that the positive root is approximately m = 23. In fact, we find that if
n =23, then p = 50.7%. If n = 30, we calculate that p ~ 71%.

What if we want at least three people to share the same birthday? Then n = 88
does it, but this is harder to prove! See Ross [12], Section 3.4.

Next, we define what is perhaps the most important concept in probability: that
of a random variable.
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6.2 Random Variables and their Distributions

In many situations, given some probability space (£2,Pr), we are more interested
in the behavior of functions X : Q — R defined on the sample space 2 than in the
probability space itself. Such functions are traditionally called random variables, a
somewhat unfortunate terminology since these are functions. Now, given any real
number a, the inverse image of a

X(a)={w e 2| X(w)=d},

is a subset of Q, thus an event, so we may consider the probability Pr(X ~a)),
denoted (somewhat improperly) by

This function of a is of great interest, and in many cases it is the function that we
wish to study. Let us give a few examples.

Example 6.5. Consider the sample space of 5 coin flips, with the uniform probability
measure (every outcome has the same probability 1/32). Then, the number of times
X (w) that H appears in the sequence ® is a random variable. We determine that

1 5 10
10 5 1

The function defined Y such that Y (@) = 1 iff H appears in @, and Y (®w) =0
otherwise, is a random variable. We have

1
Pr(Y =0) = —
(Y =0)= 3
31

PrY =1)= —.

Example 6.6. Let 2 = D x D be the sample space of dice rolls, with the uniform
probability measure Pr (every outcome has the same probability 1/36). The sum
S(w) of the numbers on the two dice is a random variable. For example,

5(2,5)=1.

The value of S is any integer between 2 and 12, and if we compute Pr(S = s) for
s=2,...,12, we find the following table:

s 2345678 9101112
T 2 3 4 5 6 5 4

—_ L 23 45 6 5 4 3 2 1
Pr(S=5)|3 3 36 36 36 36 36 36 36 36 36

Here is a “real” example from computer science.
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Example 6.7. Our goal is to sort of a sequence S = (x1,...,x,) of n distinct real
numbers in increasing order. We use a recursive method known as quicksort which
proceeds as follows:

1. If S has one or zero elements return S.

2. Pick some element x = x; in S called the pivot.

3. Reorder S in such a way that for every number x; # x in S, if x; < x, then x; is
moved to a list Sy, else if x; > x then x; is moved to a list S5.

4. Apply this algorithm recursively to the list of elements in S; and to the list of
elements in S5.

5. Return the sorted list Sp,x,S,.

Let us run the algorithm on the input list
§=(1,5,9,2,3,8,7,14,12,10).

We can represent the choice of pivots and the steps of the algorithm by an ordered
binary tree as shown in Figure 6.3. Except for the root node, every node corresponds

(1,5,9,2,3,8,7,14,12,10)

Fig. 6.3 A tree representation of a run of quicksort

to the choice of a pivot, say x. The list S; is shown as a label on the left of node x,
and the list S; is shown as a label on the right of node x. A leaf node is a node such
that [S1| <1 and |S,| < 1.If |S;| > 2, then x has a left child, and if |S,| > 2, then x
has a right child. Let us call such a tree a computation tree. Observe that except for
minor cosmetic differences, it is a binary search tree. The sorted list can be retrieved
by a suitable traversal of the computation tree, and is
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(1,2,3,5,7,8,9,10,12, 14).

If you run this algorithm on a few more examples, you will realize that the choice
of pivots greatly influences how many comparisons are needed. If the pivot is chosen
at each step so that the size of the lists S and S is roughly the same, then the number
of comparisons is small compared to n, in fact O(nlnn). On the other hand, with a
poor choice of pivot, the number of comparisons can be as bad as n(n— 1) /2.

In order to have a good “average performance,” one can randomize this algorithm
by assuming that each pivot is chosen at random. What this means is that whenever
it is necessary to pick a pivot from some list Y, some procedure is called and this
procedure returns some element chosen at random from Y. How exactly this done is
an interesting topic in itself but we will not go into this. Let us just say that the pivot
can be produced by a random number generator, or by spinning a wheel containing
the numbers in Y on it, or by rolling a dice with as many faces as the numbers in Y.
What we do assume is that the probability distribution that a number is chosen from
a list Y is uniform, and that successive choices of pivots are independent. How do
we model this as a probability space?

Here is a way to do it. Use the computation trees defined above! Simply add
to every edge the probability that one of the element of the corresponding list, say
Y, was chosen uniformly, namely 1/|Y|. So, given an input list S of length n, the
sample space € is the set of all computation trees 7" with root label S. We assign
a probability to the trees T in Q as follows: If n = 0, 1, then there is a single tree
and its probability is 1. If n > 2, for every leaf of 7', multiply the probabilities along
the path from the root to that leaf and then add up the probabilities assigned to
these leaves. This is Pr(7). We leave it as an exercise to prove that the sum of the
probabilities of all the trees in €2 is equal to 1.

A random variable of great interest on (£, Pr) is the number X of comparisons
performed by the algorithm. To analyse the average running time of this algorithm,
it is necessary to determine when the first (or the last) element of a sequence

Y = (yi,..-,y5)

is chosen as a pivot. To carry out the analysis further requires the notion of expecta-
tion that has not yet been defined. See Example 6.23 for a complete analysis.

Let us now give an official definition of a random variable.

Definition 6.4. Given a (finite) discrete probability space (2, Pr), a random vari-
able is any function X : Q — R. For any real number a € R, we define Pr(X = a)
as the probability

Pr(X =a) =Pr(X '(a)) =Pr({w € Q | X(0) = a}),
and Pr(X < a) as the probability

Pr(X <a) =Pr(X '((—e,a])) =Pr({w € Q | X(») < a}).
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The function f: R — [0, 1] given by
fla)=Pr(X=a), acR
is the probability mass function of X, and the function F: R — [0, 1] given by
F(a)=Pr(X<a), acR
is the cumulative distribution function of X.

The term probability mass function is abbreviated as p.m.f, and cumulative dis-
tribution function is abbreviated as c.d.f. It is unfortunate and confusing that both
the probability mass function and the cumulative distribution function are often ab-
breviated as distribution function.

The probability mass function f for the sum S of the numbers on two dice from
Example 6.6 is shown in Figure 6.4, and the corresponding cumulative distribution
function F is shown in Figure 6.5.

p(S)
0.16

0.14
0.12
0.10
0.08
0.06

H= B ',j»—- i g(m P

Fig. 6.4 The probability mass function for the sum of the numbers on two dice

If Q is finite, then f only takes finitely many nonzero values; it is very discontin-
uous! The c.d.f F of S shown in Figure 6.5 has jumps (steps). Observe that the size
of the jump at every value a is equal to f(a) = Pr(S = a).

The cumulative distribution function F' has the following properties:

1. We have
lim F(x)=0, limF(x)=1.

Xr3—o0 X—yoo

2. Tt is monotonic nondecreasing, which means that if a < b, then F(a) < F(b).
3. Itis piecewise constant with jumps, but it is right-continuous, which means that
limh>0’h,_>0 F(a + /’l) = F(a)

For any a € R, because F is nondecreasing, we can define F(a—) by

Fla—)=limF(a—h)= lim F(a—h).
(a—) lim (a—h) polim (a—h)
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0.6 T Py

04 1

0.3 1

0.1+ o

Fig. 6.5 The cumulative distribution function for the sum of the numbers on two dice

These properties are clearly illustrated by the c.d.f on Figure 6.5.
The functions f and F determine each other, because given the probability mass
function f, the function F is defined by

F(a)=)_ f(x),

x<a

and given the cumulative distribution function F, the function f is defined by

If the sample space €2 is countably infinite, then f and F are still defined as above

but in
F(a)=Y f(»),

x<a
the expression on the righthand side is the limit of an infinite sum (of positive terms).

Remark: If Q is not countably infinite, then we are dealing with a probability
space (,.%,Pr) where .# may be a proper subset of 2, and in Definition 6.4,
we need the extra condition that a random variable is a function X: Q — R such
that X~ (a) € .Z for all a € R. (The function X needs to be .%-measurable.) In this
more general situation, it is still true that

fla) =Pr(X =a) = F(a) = F(a—),
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but F' cannot generally be recovered from f. If the c.d.f F of a random variable X

can be expressed as
X

F@) = [ fo)ay,

—oo0

for some nonnegative (Lebesgue) integrable function f, then we say that F and X
are absolutely continuous (please, don’t ask me what type of integral!). The function
f is called a probability density function of X (for short, p.d.f).

In this case, F is continuous, but more is true. The function F is uniformly con-
tinuous, and it is differentiable almost everywhere, which means that the set of input
values for which it is not differentiable is a set of (Lebesgue) measure zero. Further-
more, F' = f almost everywhere.

Random variables whose distributions can be expressed as above in terms of a
density function are often called continuous random variables. In contrast with the
discrete case, if X is a continuous random variable, then

Pr(X=x)=0 forallxeR.

As a consequence, some of the definitions given in the discrete case in terms of the
probabilities Pr(X = x), for example Definition 6.7, become trivial. These defini-
tions need to be modifed; replacing Pr(X = x) by Pr(X < x) usually works.

In the general case where the cdf F' of a random variable X has discontinuities,
we say that X is a discrete random variable if X (®) # 0 for at most countably many
o € Q. Equivalently, the image of X is finite or countably infinite. In this case, the
mass function of X is well defined, and it can be viewed as a discrete version of a
density function.

In the discrete setting where the sample space (2 is finite, it is usually more
convenient to use the probability mass function f, and to abuse language and call it
the distribution of X.

Example 6.8. Suppose we flip a coin n times, but this time, the coin is not necessarily
fair, so the probability of landing heads is p and the probability of landing tails
is 1 — p. The sample space € is the set of strings of length n over the alphabet
{H,T}. Assume that the coin flips are independent, so that the probability of an
event @ € £ is obtained by replacing H by p and T by 1 — p in w. Then, let X be
the random variable defined such that X (®) is the number of heads in @. For any i
with 0 <i < n, since there are ('l’) subsets Wi_th i elements, and since the probability
of a sequence @ with i occurrences of H is p'(1 — p)"~', we see that the distribution
of X (mass function) is given by

fi)= (7)#(1 —p)" 7 i=0,...,n,
i
and 0 otherwise. This is an example of a binomial distribution.

Example 6.9. As in Example 6.8, assume that we flip a biased coin, where the prob-
ability of landing heads is p and the probability of landing tails is 1 — p. However,
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this time, we flip our coin any finite number of times (not a fixed number), and we
are interested in the event that heads first turns up. The sample space € is the infinite
set of strings over the alphabet {H, T} of the form

Q ={H,TH,TTH,..., T'H,...,}.

Assume that the coin flips are independent, so that the probability of an event w € Q
is obtained by replacing H by p and T by 1 — p in @. Then, let X be the random
variable defined such that X (w) = n iff |@| = n, else 0. In other words, X is the
number of trials until we obtain a success. Then, it is clear that

f)=(1=p)"'p, n=1L
and 0 otherwise. This is an example of a geometric distribution.

The process in which we flip a coin » times is an example of a process in which
we perform n independent trials, each of which results in success of failure (such
trials that result exactly two outcomes, success or failure, are known as Bernoulli tri-
als). Such processes are named after Jacob Bernoulli, a very significant contributor
to probability theory after Fermat and Pascal.

N | MATHEMATICH

Fig. 6.6 Jacob (Jacques) Bernoulli (1654-1705)

Example 6.10. Let us go back to Example 6.8, but assume that n is large and that
the probability p of success is small, which means that we can write np = A with A
of “moderate” size. Let us show that we can approximate the distribution f of X in
an interesting way. Indeed, for every nonnegative integer i, we can write
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Now, for n large and A moderate, we have
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<1a>" - (11)_';1 n(n—l)u-'(n—iJrl)%l’

n n'

%

SO we obtain
A A
f(l.)%ei T ieN.
i!

The above is called a Poisson distribution with parameter A. It is named after the
French mathematician Simeon Denis Poisson.

Fig. 6.7 Siméon Denis Poisson (1781-1840)

It turns out that quite a few random variables occurring in real life obey the
Poisson probability law (by this, we mean that their distribution is the Poisson dis-
tribution). Here are a few examples:

1. The number of misprints on a page (or a group of pages) in a book.

2. The number of people in a community whose age is over a hundred.

3. The number of wrong telephone numbers that are dialed in a day.

4. The number of customers entering a post office each day.

5. The number of vacancies occurring in a year in the federal judicial system.

As we will see later on, the Poisson distribution has some nice mathematical
properties, and the so-called Poisson paradigm which consists in approximating the
distribution of some process by a Poisson distribution is quite useful.

6.3 Conditional Probability and Independence

In general, the occurrence of some event B changes the probability that another
event A occurs. It is then natural to consider the probability denoted Pr(A | B) that
if an event B occurs, then A occurs. As in logic, if B does not occur not much can be
said, so we assume that Pr(B) # 0.

Definition 6.5. Given a discrete probability space (£, Pr), for any two events A and
B, if Pr(B) # 0, then we define the conditional probability Pr(A | B) that A occurs
given that B occurs as
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Pr(A | B) = P'F(fr‘(gf)

Example 6.11. Suppose we roll two fair dice. What is the conditional probability
that the sum of the numbers on the dice exceeds 6, given that the first shows 3? To

solve this problem, let
B={(3,j)[1<j<6}

be the event that the first dice shows 3, and
A={(i,))|i+j>7,1<i,j<6}
be the event that the total exceeds 6. We have
ANB={(3,4),(3,5),(3,6)},

SO we get

PralB) = "o ~ 36

Pr(AnB) 3 /6 1
36 2

The next example is perhaps a little more surprising.

Example 6.12. A family has two children. What is the probability that both are boys,
given at least one is a boy?
There are four possible combinations of sexes, so the sample space is

Q@ = {GG,GB,BG,BB},

and we assume a uniform probability measure (each outcome has probability 1/4).

Introduce the events
B ={GB,BG,BB}

of having at least one boy, and

A ={BB}
of having two boys. We get
ANB={BB},
and so Pr(AnB) 1 /3 1
r(AN
PrlA|B)=——+"=-/-=-=.
"A1B) = 5B 4/4 3

Contrary to the popular belief that Pr(A | B) = 1/2, it is actually equal to 1/3. Now,
consider the question: what is the probability that both are boys given that the first
child is a boy? The answer to this question is indeed 1/2.

The next example is known as the “Monty Hall Problem,” a standard example of
every introduction to probability theory.

Example 6.13. On the old television game Let’s make a deal, a contestant is pre-
sented with a choice of three (closed) doors. Behind exactly one door is a terrific
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prize. The other doors conceal cheap items. First, the contestant is asked to choose
a door. Then, the host of the show (Monty Hall) shows the contestant one of the
worthless prizes behind one of the other doors. At this point, there are two closed
doors, and the contestant is given the opportunity to switch from his original choice
to the other closed door. The question is, is it better for the contestant to stick to his
original choice or to switch doors?

We can analyze this problem using conditional probabilities. Without loss of gen-
erality, assume that the contestant chooses door 1. If the prize is actually behind door
1, then the host will show door 2 or door 3 with equal probability 1/2. However, if
the prize is behind door 2, then the host will open door 3 with probability 1, and if
the prize is behind door 3, then the host will open door 2 with probability 1. Write
Pi for “the prize is behind door i,” with i = 1,2,3, and Dj for “the host opens door
Dj,” for j =2,3. Here, it is not necessary to consider the choice D1 since a sensible
host will never open door 1. We can represent the sequences of choices occurrring
in the game by a tree known as probability tree or tree of possibilities, shown in
Figure 6.8.

1/2 Pr(P1; D2) = 1/6
Pr(P1; D3) = 1/6

1/3
/ @ ! @ Pr(P2: D3) — 1/3

1/3

Pr(P3: D2) = 1/3

Fig. 6.8 The tree of possibilities in the Monty Hall problem

Every leaf corresponds to a path associated with an outcome, so the sample space
is
Q ={P1,D2,P1,D3,P2;D3,P3;D2}.
The probability of an outcome is obtained by multiplying the probabilities along the
corresponding path, so we have

1 1 1 1
Pr(P1;D2) = 3 Pr(P1;D3) = 3 Pr(P2;D3) = 3 Pr(P3;D2) = 3
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Suppose that the host reveals door 2. What should the contestant do?
The events of interest are:

1. The prize is behind door 1; that is, A = {P1;D2,P1;D3}.
2. The prize is behind door 3; that is, B = {P3;D2}.
3. The host reveals door 2; that is, C = {P1;D2,P3;D2}.

Whether or not the contestant should switch doors depends on the values of the
conditional probabilities

1. Pr(A | C): the prize is behind door 1, given that the host reveals door 2.
2. Pr(B| C): the prize is behind door 3, given that the host reveals door 2.

We have ANC = {P1;D2}, so
Pr(ANC) =1/6,

and .
Pr(C) =Pr({P1;D2,P3:D2}) = =+ = -

Pr(4 €)= THANC) 1/1 _L

SO

(C) 6/2 3
We also have BNC = {P3;D2}, so

Pr(BNC) =1/3,

_Pr(BNC) 1 /1 2
PrB1O) = —pre —3/2—3'

and

Since 2/3 > 1/3, the contestant has a greater chance (twice as big) to win the bigger
prize by switching doors. The same probabilities are derived if the host had revealed
door 3.

A careful analysis showed that the contestant has a greater chance (twice as large)
of winning big if she/he decides to switch doors. Most people say “on intuition” that
it is preferable to stick to the original choice, because once one door is revealed,
the probability that the valuable prize is behind either of two remaining doors is
1/2. This is incorrect because the door the host opens depends on which door the
contestant orginally chose.

Let us conclude by stressing that probability trees (trees of possibilities) are very
useful in analyzing problems in which sequences of choices involving various prob-
abilities are made.

The next proposition shows various useful formulae due to Bayes.

Proposition 6.3. (Bayes’ Rules) For any two events A, B with Pr(A) > 0 and Pr(B) >
0, we have the following formulae:
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1. (Bayes’ rule of retrodiction)

Pr(A | B)Pr(B)

Pr(B|4) = =5 5

2. (Bayes’ rule of exclusive and exhaustive clauses) If we also have Pr(A) < 1 and
Pr(B) < 1, then

Pr(A) = Pr(A | B)Pr(B) + Pr(A | B)Pr(B).

More generally, if By, ...,B, form a partition of Q with Pr(B;) >0 (n > 2), then

'M=

Pr(A) =) Pr(A|Bi)Pr(B;).

i=1

3. (Bayes’ sequential formula) For any sequence of events Ay, ... ,A,, we have

(ﬂA) = Pr(A;)Pr(A; | A;)Pr(As | A1 NA,)- (A | ﬂA)

Proof. The first formula is obvious by definition of a conditional probability. For
the second formula, observe that we have the disjoint union

A=(ANB)U(ANB),

Pr(A) =Pr(ANB)UPr(ANB)
=Pr(A | B)Pr(A)UPr(A | B)Pr(B).

We leave the more general rule as an exercise, and the last rule follows by unfolding
definitions. 0O

It is often useful to combine (1) and (2) into the rule

Pr(A | B)Pr(B)
Pr(A | B)Pr(B) +Pr(A | B)Pr(B)’

Pr(B|A) =

also known as Bayes’ law.

Bayes’ rule of retrodiction is at the heart of the so-called Bayesian framewok. In
this framework, one thinks of B as an event describing some state (such as having
a certain desease) and of A an an event describing some measurement or test (such
as having high blood pressure). One wishes to infer the a posteriori probability
Pr(B | A) of the state B given the test A, in terms of the prior probability Pr(B) and
the likelihood function Pr(A | B). The likelihood function Pr(A | B) is a measure of
the likelihood of the test A given that we know the state B, and Pr(B) is a measure
of our prior knowledge about the state; for example, having a certain disease. The
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probability Pr(A) is usually obtained using Bayes’s second rule because we also
know Pr(A | B).

Example 6.14. Doctors apply a medical test for a certain rare disease that has the
property that if the patient is affected by the desease, then the test is positive in
99% of the cases. However, it happens in 2% of the cases that a healthy patient tests
positive. Statistical data shows that one person out of 1000 has the desease. What is
the probability for a patient with a positive test to be affected by the desease?

Let S be the event that the patient has the desease, and + and — the events that
the test is positive or negative. We know that

Pr(S) = 0.001
Pr(+]S)=0.99
Pr(+S)=0.02,

and we have to compute Pr(S | +). We use the rule

Pr(+ | S)Pr(S)_

Pr(S|+) = Pr(+)

We also have
Pr(+) = Pr(+ | S)Pr(S) +Pr(+ | S)Pr(S),

SO we obtain

0.99 x 0.001 1

= ~—=5%.
0.99 x 0.00140.02 x0.999 20 ?

Pr(S|+)

Since this probability is small, one is led to question the reliability of the test! The
solution is to apply a better test, but only to all positive patients. Only a small portion
of the population will be given that second test because

Pr(+) =0.99 x 0.001 4 0.02 x 0.999 = 0.003.
Redo the calculations with the new data

Pr(S) = 0.00001
Pr(+]5)=0.99
Pr(+|S) =0.01.

You will find that the probability Pr(S | 4) is approximately 0.000099, so the chance
of being sick is rather small, and it is more likely that the test was incorrect.

Recall that in Definition 6.3, we defined two events as being independent if
Pr(ANB) = Pr(A)Pr(B).

Asuming that Pr(A) # 0 and Pr(B) # 0, we have
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Pr(ANB) = Pr(A| B)Pr(B) = Pr(B|A)Pr(A),
so we get the following proposition.

Proposition 6.4. For any two events A, B such that Pr(A) # 0 and Pr(B) # 0, the
following statements are equivalent:

1. Pr(ANB) = Pr(A)Pr(B); that is, A and B are independent.
2. Pr(B|A) = Pr(B).
3. Pr(A| B) = Pr(A).

Remark: For a fixed event B with Pr(B) > 0, the function A — Pr(A | B) satisfies
the axioms of a probability measure stated in Definition 6.2. This is shown in Ross
[11] (Section 3.5), among other references.

The examples where we flip a coin n times or roll two dice n times are examples
of indendent repeated trials. They suggest the following definition.

Definition 6.6. Given two discrete probability spaces (2;,Pri) and (£,,Pr;), we
define their product space as the probability space (2 x £,,Pr), where Pr is given
by

Pr(or, @) =Pri(o)Pry(22), o € Qp,m € .

There is an obvious generalization for n discrete probability spaces. In particular, for
any discrete probability space (£2,Pr) and any integer n > 1, we define the product
space (Q2",Pr), with

Pr(oi,...,0,) =Pr(®m)---Pr(e,), o,€R,i=1,...,n.

The fact that the probability measure on the product space is defined as a prod-
uct of the probability measures of its components captures the independence of the
trials.

Remark: The product of two probability spaces (21, %#;,Pri) and (2,, %,,Pr;)
can also be defined, but % x %, is not a c-algebra in general, so some serious
work needs to be done.

The notion of independence also applies to random variables. Given two random
variables X and Y on the same (discrete) probability space, it is useful to consider
their joint distribution (really joint mass function) fx y given by

fxy(a,b)=Pr(X=aandY =b)=Pr{oe Q| (X(w)=a)A(Y(®)=0D)}),
for any two reals a,b € R.

Definition 6.7. Two random variables X and Y defined on the same discrete proba-
bility space are independent if

Pr(X=aandY =b) =Pr(X =a)Pr(Y =b), foralla,beR.
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Remark: If X and Y are two continuous random variables, we say that X and Y are
independent if

Pr(X <aandY <b)=Pr(X <a)Pr(Y <b), foralla,beR.

It is easy to verify that if X and Y are discrete random variables, then the above
condition is equivalent to the condition of Definition 6.7.

Example 6.15. If we consider the probability space of Example 6.2 (rolling two
dice), then we can define two random variables S| and S,, where S is the value
on the first dice and S, is the value on the second dice. Then, the total of the two
values is the random variable S = S| + S of Example 6.6. Since

1 11
P = = = ——= — . — = P — P —
r(S; =aand S, =b) %66 r(S;1 =a)Pr(S, =b),
the random variables S and S, are independent.

Example 6.16. Suppose we flip a biased coin (with probability p of success) once.
Let X be the number of heads observed and let Y be the number of tails observed.
The variables X and Y are not independent. For example

Pr(X=1andY =1)=0,

yet
Pr(X =1)Pr(Y =1) = p(1 —p).

Now, if we flip the coin N times, where N has the Poisson distribution with parame-
ter A, it is remarkable that X and Y are independent; see Grimmett and Stirzaker [6]
(Section 3.2).

The following characterization of independence for two random variables is left
as an exercise.

Proposition 6.5. If X and Y are two random variables on a discrete probability
space (,Pr) and if fx y is the joint distribution (mass function) of X and Y, fx is
the distribution (mass function) of X and fy is the distribution (mass function) of Y,
then X and Y are independent iff

fry(xy) = fx@)fr(y) forallx,ycR.

Given the joint mass function fy y of two random variables X and Y, the mass
functions fxy of X and fy of Y are called marginal mass functions, and they are
obtained from fy y by the formulae

fx@) =Y frr(xy), fr)=Y frr(xy).

Remark: To deal with the continuous case, it is useful to consider the joint distri-
bution Fx y of X and Y given by



388 6 An Introduction to Discrete Probability
Fxy(a,b)=Pr(X <agandY <b)=Pr({wc Q| (X(w) <a)A (Y (w) <b)}),

for any two reals a,b € R. We say that X and Y are jointly continuous with joint
density function fx y if

Fyy(x,y) = //fxyuv)dudv forall x,y € R

for some nonnegative integrable function fx y. The marginal density functions fx
of X and fy of Y are defined by

/fxyxydy, fr(y /fxyxy

They correspond to the marginal distribution functions Fxy of X and Fy of Y given
by

Fx(x) =Pr(X <x) =Fxy(x,00), Fy(y) =Pr(Y <y)=Fxy(c,y).
Then, it can be shown that X and Y are independent iff
Fxy(x,y) = Fx(x)Fy(y) forallx,y € R,
which, for continuous variables, is equivalent to

fxy(x,y) = fx(x)fr(y) forallx,yeR.

We now turn to one of the most important concepts about random variables, their
mean (or expectation).

6.4 Expectation of a Random Variable

In order to understand the behavior of a random variable, we may want to look at
its “average” value. But the notion of average in ambiguous, as there are different
kinds of averages that we might want to consider. Among these, we have

1. the mean: the sum of the values divided by the number of values.
2. the median: the middle value (numerically).
3. the mode: the value that occurs most often.

For example, the mean of the sequence (3, 1,4,1,5) is 2.8; the median is 3, and the
mode is 1.

Given arandom variable X, if we consider a sequence of values X (@;),X (@), ...,
X (w,), each value X(®;) = a; has a certain probability Pr(X = a;) of occurring
which may differ depending on j, so the usual mean
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X(o)+X () +---+X(w,) ar+---+ay
n n

may not capture well the “average” of the random variable X. A better solution is to
use a weighted average, where the weights are probabilities. If we write a; = X (®;),
we can define the mean of X as the quantity

aPriX=a1)+aPr(X =ay)+---+a,Pr(X =ay).

Definition 6.8. Given a discrete probability space (€2, Pr), for any random variable
X, the mean value or expected value or expectation' of X is the number E(X) defined

E(X)= Z x-PriX=x)= Z xf(x),

xeX(Q) x| f(x)>0

where X () denotes the image of the function X and where f is the probability
mass function of X. Because 2 is finite, we can also write

EX)= Y X(0)Pr(o).

weN

In this setting, the median of X is defined as the set of elements x € X () such
that

PrX <x) > and Pr(X >x)>

1
7

| =

Remark: If Q is countably infinite, then the expectation E(X), if it exists, is given

by
EX)= ), xf(v),
x|f(x)>0
provided that the above sum converges absolutely (that is, the partial sums of abso-
lute values converge). If we have a probability space (X,.%, Pr) with Q uncountable
and if X is absolutely continuous so that it has a density function f, then the expec-
tation of X is given by the integral

It is even possible to define the expectation of a random variable that is not neces-
sarily absolutely continuous using its cumulative density function F as

E(X) = /::oxdF(x),

where the above integral is the Lebesgue—Stieljes integal, but this is way beyond the
scope of this book.

11t is amusing that in French, the word for expectation is espérance mathématique. There is hope
for mathematics!
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Observe that if X is a constant random variable (that is, X (@) = ¢ for all ® €
for some constant c), then

E(X)= Z X(0)Pr(w)=c Z Pr(w) =cPr(Q) =c,

e we

since Pr(£) = 1. The mean of a constant random variable is itself (as it should be!).

Example 6.17. Consider the sum S of the values on the dice from Example 6.6. The
expectation of S is

1 2 5 6 5 1

Example 6.18. Suppose we flip a biased coin once (with probability p of landing
heads). If X is the random variable given by X (H) = 1 and X (T) = 0, the expectation
of X is

EX)=1-Pr(X=1)+0-Pr(X =0)=1-P+0-(1—p) = p.

Example 6.19. Consider the binomial distribution of Example 6.8, where the ran-
dom variable X counts the number of tails (success) in a sequence of # trials. Let us
compute E(X). Since the mass function is given by

fli) = (?)pi(l —p)"", i=0,....n,

we have . .
0 =Y i@ = Y1) -
i=0 i=0

We use a trick from analysis to compute this sum. Recall from the binomial theorem

that
(14x)" = i (':);c'

i=0

If we take derivatives on both sides, we get

Now, if we set x = p/q, since p+q = 1, we get
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n

Zi(’:> p'(1—p)"~"=np,

i=0
and so
E(X) =np.

It should be observed that the expectation of a random variable may be infinite.
For example, if X is a random variable whose probability mass function f is given
by

then Yren— oy f(k) = 1, since

o | = (1 1 1
=Y (- —)=lim(1-— ) =1,
k;k(k‘f‘l) kzl<k k+1> kgrolo( k+1)

1 —
k+1

but

EX)= Y kflk)=

keN—{0} keN—{0}

oo,

A crucial property of expectation that often allows simplifications in computing
the expectation of a random variable is its linearity.

Proposition 6.6. (Linearity of Expectation) Given two random variables on a dis-
crete probability space, for any real number A, we have

E(X+Y)=E(X)+E®Y)
E(AX) = AE(X).

Proof. We have
EX+Y)=) z-Pr(X+Y =2)

:iZ()H—y)-Pr(X:xandY:y)
Xy

:ZZx-Pr(X:xandY=y)+22y-Pr(X:xandY:y)
Xy Xy

:ZZx~Pr(X:xandY:y)+ZZy~Pr(X:xandY:y)
Xy y X

=Y xY Pr(x=xandY =y)+) y) Pr(X =xand Y =y).
x oy y X

Now, the events A, = {x | X = x} form a partition of , which implies that

Y Pr(X =xand Y =y) =Pr(X =x).

Similarly the events By, = {y | Y = y} form a partition of £, which implies that
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ZPr(X:xandY:y) =Pr(Y =y).

By substitution, we obtain

E(X+Y) :Zx~Pr(X=x)—|—Zy-Pr(Y:y),
x ¥

proving that E(X +Y) = E(X) + E(Y). When € is countably infinite, we can per-
mute the indices x and y due to absolute convergence.
For the second equation, if A # 0, we have

E(AX) = Zx~ Pr(AX =x)
= AZ% Pr(X =x/2)
=AYy Pr(X=y)
= AE(X).
as claimed. If A = 0, the equation is trivial. O

By a trivial induction, we obtain that for any finite number of random variables

Xi,...,X,, we have
n n
E(in) =) EX).
I=1 I=1

It is also important to realize that the above equation holds even if the X; are not

independent.
Here is an example showing how the linearity of expectation can simplify calcu-
lations. Let us go back to Example 6.19. Define n random variables X, ..., X, such

that X;(w) = 1 iff the ith flip yields heads, otherwise X;(®w) = 0. Clearly, the number
X of heads in the sequence is

X=X+ +Xp
However, we saw in Example 6.18 that E(X;) = p, and since
E(X) =E(X1) +---+E(X),

we get
E(X) =np.

The above example suggests the definition of indicator function, which turns out
to be quite handy.

Definition 6.9. Given a discrete probability space with sample space €2, for any
event A, the indicator function (or indicator variable) of A is the random variable I
defined such that
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| foecA
@) ={,
MO =10 iroga

The main property of the indicator function I4 is that its expectation is equal to
the probabilty Pr(A) of the event A. Indeed,

E([A) = Z IA((O)PI’(CO)

weR
= Z Pr(w)
weA

= Pr(A).

This fact with the linearity of expectation is often used to compute the expectation
of a random variable, by expressing it as a sum of indicator variables. We will see
how this method is used to compute the expectation of the number of comparisons in
quicksort. But first, we use this method to find the expected number of fixed points
of a random permutation.

Example 6.20. For any integer n > 1, let Q be the set of all n! permutations of

{1,...,n}, and give Q the uniform probabilty measure; that is, for every permutation
7, let
1

We say that these are random permutations. A fixed point of a permutation 7 is any
integer k such that (k) = k. Let X be the random variable such that X () is the
number of fixed points of the permutation 7. Let us find the expectation of X. To do
this, for every k, let X; be the random variable defined so that Xi (%) = 1iff (k) =k,
and 0 otherwise. Clearly,

X=X+ +X,,

and since
E(X) =EX1) +--+E(Xy),

we just have to compute E(X}). But, X; is an indicator variable, so
E(Xk) = PI’(Xk = 1)

Now, there are (n— 1)! permutations that leave k fixed, so Pr(X = 1) = 1/n. There-

fore,

E(X):E(X1)+---+E(Xn):n-lzl.

S

On average, a random permutation has one fixed point.

If X is a random variable on a discrete probability space 2 (possibly countably
infinite), for any function g: R — R, the composition go X is a random variable
defined by

(goX)(0) =g(X(w)), ®eQ.

This random variable is usually denoted by g(X).
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Given two random variables X and Y, if ¢ and y are two functions, we leave it
as an exercise to prove that if X and Y are independent, then so are ¢(X) and y(Y).

Altough computing its mass function in terms of the mass function f of X can be
very difficult, there is a nice way to compute its expectation.

Proposition 6.7. If X is a random variable on a discrete probability space £, for
any function g: R — R, the expectation E(g(X)) of g(X) (if it exists) is given by

E(g(X)) =} g(x)f(x),

where f is the mass function of X.

Proof. We have
E(s(X)) = Ly-PrigoX =))
_ Zy Pri{o € 2 |g(X(@) =3})
= iy; Pri{m e Q| g(x) =y X() =x})
zi Y yPr{oeQ,|X(w)=x})

Y xg(x)=y

= Z Z gx)-Pr(X=x)
Y xg(x)=y

~ Ye0)-Pr(X = x)

=Y g f(x),

as claimed.

The cases g(X) = X, g(X) = z¥, and g(X) = ¢'X (for some given reals z and 7)
are of particular interest.

Given two random variables X and Y on a discrete probability space €2, for any
function g: R xR — R, then g(X,Y) is a random variable and it is easy to show
that E(g(X,Y)) (if it exists) is given by

E(g(X7Y)) = Zg(xay)fX,Y(xay)v

Xy

where fx y is the joint mass function of X and Y.

Example 6.21. Consider the random variable X of Example 6.19 counting the num-
ber of heads in a sequence of coin flips of length », but this time, let us try to compute
E(X¥), for k > 2. We have
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Recall that

Using this, we get

(= n— . .
= npjg(j“r 1)k1< i l)p'/(l _p)nflfj

=0
=npE((Y + 1)),
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where Y is a random variable with binomial distribution on sequences of length n — 1
and with the same probability p of success. Thus, we obtain an inductive method to

compute E(X¥). For k = 2, we get

E(X?) =npE(Y +1) =np((n—1)p+1).

If X only takes nonnegative integer values, then the following result may be use-

ful for computing E(X).

Proposition 6.8. If X is a random variable that takes on only nonnegative integers,

then its expectation E(X) (if it exists) is given by

EX) =Y Pr(x >i).

™

i=1

Proof. For any integer n > 1, we have

n n

n n
Y jPrix=j)=Y
Jj=1 Jj=1 i=1 j=i

Then, if we let n go to infinity, we get

gP«Xj)ZZPr(ny



396 6 An Introduction to Discrete Probability
oo w oo w ] o
YPrix>i=)Y YPrx=j)=) Y Pr(x=j))=Y jPr(X =) =EX),
i=1 i=1j=i j=li=1 J=1
as claimed. 0O
Proposition 6.8 has the following intuitive geometric interpretation: E(X) is the

area above the graph of the cumulative distribution function F (i) = Pr(X <i) of X
and below the horizontal line F = 1. Here is an application of Proposition 6.8.

Example 6.22. In Example 6.9, we consider finite sequences of flips of a biased
coin, and the random variable of interest is the first occurrence of tails (success).
The distribution of this random variable is the geometric distribution,

fn)=(1-p)"'p, n>1

To compute its expectation, let us use Proposition 6.8. We have

Prix >i)=) (1-p)"'p

™

=1

—p(1—p) Y (1 p)
j=0

i—1 1
1=(1-p)

=p(l1-p)

Then, we have

Therefore,

which means that on the average, it takes 1/p flips until heads turns up.
Let us now compute E(X?). We have
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I
D
s
=
|
=
I
S

E(X?)

(i—1+1(1-p)'p

I
Mx

I
Ms

(= 21— p) p+ Y 26— (1= p) p e Y (1—p)'p
i=1 i

Il
-
Il
-

F=pYp+2Y j(=p)p+1 (letj=i—1)
=1

—p)E(X?) +2(1 - p)E(X) +1.

I
Ms

|

—~ ~.

—
(==}

Since E(X) = 1/p, we obtain

2(1—
pE(x) = 20=P)
p
_2-p
p )
SO ’
—P
E(X?) = :
O

By the way, the trick of writing i =i — 14 1 can be used to compute E(X). Try to
recompute E(X) this way.

Example 6.23. Let us compute the expectation of the number X of comparisons
needed when running the randomized version of quicksort presented in Example
6.7. Recall that the input is a sequence S = (x1,...,x,) of distinct elements, and that
(¥1,---,yn) has the same elements sorted in increasing order. In order to compute
E(X), we decompose X as a sum of indicator variables X; j» With X; ; = 1 iff y; and
y; are ever compared, and X; ; = 0 otherwise. Then, it is clear that

||M|‘

7/’

and
j—1

E(X)= Z Y EXi)).

j=2i=1
Furthermore, since X; ; is an indicator variable, we have
E(X;;) = Pr(y; and y; are ever compared).

The crucial observation is that y; and y; are ever compared iff either y; or y; is chosen
as the pivot when {y;,yi+1,...,y;} is a subset of the set of elements of the (left or
right) sublist considered for the choice of a pivot.
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This is because if the next pivot y is larger than y;, then all the elements in
(Vi»Yi+1,---,y;) are placed in the list to the left of y, and if y is smaller than y;,
then all the elements in (y;,yi11,...,y;) are placed in the list to the right of y. Conse-
quently, if y; and y; are ever compared, some pivot y must belong to (y;,yit1,.--,¥;),
and every y; # y in the list will be compared with y. But, if the pivot y is distinct
from y; and y;, then y; is placed in the left sublist and y; in the right sublist, so y;
and y; will never be compared.

It remains to compute the probability that the next pivot chosen in the sublist
Y; i = (i,Yi+1,---,¥j) is y;i (or that the next pivot chosen is y;, but the two proba-
bilities are equal). Since the pivot is one of the values in (y;,yit1,...,y;) and since
each of these is equally likely to be chosen (by hypothesis), we have

1

Pr(y; is ch th tpivotinY; j) = ————.
r(y; is chosen as the next pivot in ¥; ;) it

Consequently, since y; and y; are ever compared iff either y; is chosen as a pivot or
y; is chosen as a pivot, and since these two events are mutally exclusive, we have

2
E(X; ;) = Pr(y; and y; are ever compared) = T

It follows that

=2, Z% (sethk=j—i+1)

18 a harmonic number, and it is shown that

1
In(n)+- <H,<Ilnn+1.
n
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Therefore, H, = Inn+ (1), which shows that
E(X) =2nln+0(n).

Therefore, the expected number of comparisons made by the randomized version of
quicksort is 2nlnn+ O (n).

Example 6.24. If X is a random variable with Poisson distribution with parameter A
(see Example 6.10), let us show that its expectation is

E(X) = A.

Recall that a Poisson distribution is given by

A
f(z)—e_li—', ieN,
so we have
E(X) = Vet X
=Yt
oo )Li—l
_ A
= Ae ;(i—l)‘

>
~.

Il
~
o

L
™
|

(=]
~.

(let j=i—1)

I
>
ml
>
(O
>
I
>

as claimed. This is consistent with the fact that the expectation of a random variable
with a binomial distribution is np, under the Poisson approximation where A = np.
We leave it as an exercise to prove that

E(X2)=A(A+1).

Alhough in general E(XY) # E(X)E(Y), this is true for independent random vari-
ables.

Proposition 6.9. If two random variables X and Y on the same discrete probability
space are independent, then

E(XY) = E(X)E(Y).

Proof. We have
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EXY)= Y X(0)Y(0)Pr(w)

weN

:Zny-Pr(X:x andY =y)
Xy

- ;;xy Pr(X = x)Pr(Y =y)
- <lex Pr(X =x)> (Zy Pr(Y ZY)>

y
= E(X)E(Y),

as claimed. Note that the independence of X and Y was used in going from line 2 to
line3. O

In Example 6.15 (rolling two dice), we defined the random variables S; and S,
where S is the value on the first dice and S, is the value on the second dice. We
also showed that S| and S, are independent. If we consider the random variable
P =5,5,, then we have

49

E(P) = E(S)ES:) =55 = -

since E(S1) = E(S2) = 7/2, as we easily determine since all probabilities are equal
to 1/6. On the other hand, S and P are not independent (check it).

6.5 Variance, Standard Deviation, Chebyshev’s Inequality

The mean (expectation) E(X) of a random variable X gives some useful information
about it, but it does not say how X is spread. Another quantity, the variance Var(X),
measure the spread of the distribution by finding the “average” of the square differ-
ence (X —E(X))?, namely

Var(X) = E(X —E(X))>.
Note that computing E(X — E(X)) yields no information since
E(X —E(X))=E(X)—E(E(X)) =E(X)—E(X) =0.

Definition 6.10. Given a discrete probability space (€2, Pr), for any random variable
X, the variance Var(X) of X (if it exists) is defined as

Var(X) = E(X —E(X))>.

The expectation E(X) of a random variable X is often denoted by u. The variance
is also denoted V(X), for instance, in Graham, Knuth and Patashnik [5]).
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Since the variance Var(X) involves a square, it can be quite large, so it is conve-
nient to take its square root and to define the standard deviation of ¢ X as

o = +/Var(X).

The following result shows that the variance Var(X) can be computed using E(X?)
and E(X).

Proposition 6.10. Given a discrete probability space (,Pr), for any random vari-
able X, the variance Var(X) of X is given by

Var(X) = E(X?) — (E(X))>.
Consequently, Var(X) < E(X?).

Proof. Using the linearity of expectation and the fact that the expectation of a
constant is itself, we have

Var(X) = E(X —E(X))?
= E(X* - 2XE(X) + (E(X))*)
= E(X?) —2E(X)E(X) + (E(X))?
=E(X?) - (E(X))?

as claimed. 0O

For example, if we roll a fair dice, we know that the number S| on the dice has
expectation E(S1) = 7/2. We also have

1 91
E(SH) = c (12422 432+ 42452 +6%) = —,

so the variance of Sy is

2
Var(sy) = E(s5) - €0 =5 - (3) =35

The quantity E(X?) is called the second moment of X. More generally, we have
the following definition.

Definition 6.11. Given a random variable X on a discrete probability space (Q, Pr),
for any integer k > 1, the kth moment wy; of X is given by p; = E(X), and the kth
central moment oy, of X is defined by o = E((X — u1)k).

Typically, only it = u; and o, are of interest. As before, 0 = /0>. However,
o3 and 04 give rise to quantities with exotic names: the skewness (03 / 03) and the
kurtosis (04/c* —3).

We can easily compute the variance of a random variable for the binomial distri-
bution and the geometric distribution, since we already computed E(X?).
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Example 6.25. In Example 6.21, the case of a binomial distribution, we found that
E(X?) =npE(Y +1) =np((n—1)p+1).
We also found earlier (Example 6.19) that E(X) = np. Therefore, we have
Var(X) = E(x?) — (E(X))?

=np((n—1)p+1)— (np)?
=np(l-p).

Therefore,
Var(X) =np(1l —p).

Example 6.26. In Example 6.22, the case of a geometric distribution, we found that

It follows that

_2-p 1
P
_1-p
P
Therefore, |
Var(X) = pzp .

Example 6.27. In Example 6.24, the case of a Poisson distribution with parameter
A, we found that

It follows that
Var(X) = E(X?) — (EX))>*=A(A+1)—A>=A.

Therefore, a random variable with a Poisson distribution has the same value for its
expectation and its variance,

E(X) =Var(X) =A.
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In general, if X and Y are not independent variables, Var(X +7Y) # Var(X) +
Var(Y). However, if they are, things are great!

Proposition 6.11. Given a discrete probability space (Q,Pr), for any random vari-
able X and Y, if X and Y are independent, then

Var(X +Y) = Var(X) + Var(Y).

Proof. Recall from Proposition 6.9 that if X and Y are independent, then E(XY) =
E(X)E(Y). Then, we have

E(X%+2XY +1?)
E(X?)+2E(XY)+E(Y?)
E(X?)+2E(X)E(Y)+E(Y?).

E(X+Y)?)

Using this, we get

Var(X +Y) =E((X +Y)?) — (E(X +Y))?
= E(X?)+2E(X)E(Y) +E(Y?) — ((E(X))* +2E(X)E(Y) + (E(Y))?)
= E(X?) - (E(X))* +E(Y?) — (E(Y))?

= Var(X) + Var(Y),

as claimed. 0O

The following proposition is also useful.

Proposition 6.12. Given a discrete probability space (,Pr), for any random vari-
able X, the following properties hold:

1. IfX >0, then E(X) > 0.

2. If X is a random variable with constant value A, then E(X) = A.

3. For any two random variables X andY defined on the probablity space (2, Pr),
if X <Y, which means that X(®) <Y () for all ® € Q, then E(X) < E(Y)
(monotonicity of expectation).

4. For any scalar A € R, we have

Var(AX) = A*Var(X).

Proof. Properties (1) and (2) are obvious. For (3), X <Y iff Y —X > 0, so by (1)
we have E(Y — X) > 0, and by linearity of expectation, E(Y) > E(X). For (4), we
have
Var(AX) = ((lX —E(AX) 2)
—Emzx E(X))?)
=A%E E((X —E(X) 2) A2Var(X
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as claimed. 0O

Property (4) shows that unlike expectation, the variance is not linear (although
for independent random variables, Var(X +Y) = Var(X) + Var(Y). This also holds
in the more general case of uncorrelated random variables; see Proposition 6.13
below).

As an application of Proposition 6.11, if we consider the event of rolling two
dice, since we showed that the random variables S| and S, are independent, we can
compute the variance of their sum S = S| + .5, and we get

35 35 35
Var(S) = Var(S;) + Var($,) = R
Recall that E(S) = 7.

Here is an application of geometrically distributed random variables.

Example 6.28. Suppose there are m different types of coupons (or perhaps, the kinds
of cards that kids like to collect), and that each time one obtains a coupon, it is
equally likely to be any of these types. Let X denote the number of coupons one
needs to collect in order to have at least one of each type. What is the expected
value E(X) of X? This problem is usually called a coupon collecting problem.

The trick is to introduce the random variables X;, where X; is the number of
additional coupons needed, after i distinct types have been collected, until another
new type is obtained, for i = 0,1,...,m — 1. Clearly,

m—1

X=1Y) X,
i=0

and each X; has a geometric distribution, where each trial has probability of success
pi = (m—1i)/m. We know (see Example 6.22,) that

1 m
EX)=—=
Di m—i
Consequently,
m—1 m—1 m m o1
EX)=) EX)=) =m) -
i=0 i=0 M—1 =1t
Once again, the harmonic number
o1
H, = Z E
k=1

shows up! Since H, = Inn+ 0(1), we obtain

E(X) =mlnm+O(m).
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For example, if m = 50, then In50 = 3.912, and mInm =~ 196. If m = 100, then
In 100 = 4.6052, and mInm ~ 461. If the coupons are expensive, one begins to see
why the company makes money!

It turns out that using a little bit of analysis, we can compute the variance of X.
This is because it is easy to check that the X; are independent, so

m—1
Var(X) = Z Var(X;).
i=0
From Example 6.22, we have

Var(X;) = 1;%” P (1 m;) / (m”izi)z - (mniii)z'

It follows that

i
Var(X) = Z Var(X;) :mz —-
i=0 S (m—i)
To compute this sum, write
m—1 i 7 m—1 m mz—’l m—i
S (m—i)? & (m—i)? & (m—i?
_ m—1 m m—1 1
& (m—i)? & (m—i)
m 1 m 1
SO W
==V

SO we get

Var(X) = mé +O(mlnm).

Let us go back to the example about fixed points of random permutations (Ex-
ample 6.20). We found that the expectation of the number of fixed points is 4 = 1.
The reader should compute the standard deviation. The difficulty is that the ran-
dom variables X} are not independent, (for every permutation 7, we have X; () = 1
iff (k) = k, and O otherwise). You will find that o = 1. If you get stuck, look at
Graham, Knuth and Patashnik [5], Chapter 8.

If X and Y are not independent, we still have
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E((X+Y)*) = E(X* +2XY +77)
— E(X?) +2E(XY) +E(Y?),

and we get

Var(X +¥) = E(X +¥))) — (E(X +Y))’
(

(
= E(X?) +2E(XY) +E(Y?) — ((E(X))* +2E(X)E(Y) + (E(Y))?)
= E(X?) = (E(X))* +E(r?) - (E(Y))* +2(E(XY) — EX)E(Y))
= Var(X)+ Var(Y) +2(E(XY) —E(X)E(Y)).

The term E(XY) — E(X)E(Y) has a more convenient form. Indeed, we have

E((X —EX))(Y —E(Y))) =E(XY —XE(Y) —E(X)Y + E(X)E(Y))
—E(X)E(Y) +E(X)E(Y)

In summary we proved that
Var(X +Y) = Var(X)+ Var(Y) + 2E((X —E(X))(Y —E(Y))).
The quantity E((X —E(X))(Y — E(Y))) is well known in probability theory.

Definition 6.12. Given two random variables X and Y, their covariance Cov(X,Y)
is defined by

Cov(X,Y) =E((X —E(X))(Y —E(Y))) = E(XY) — E(X)E(Y).

If Cov(X,Y) = 0 (equivalently if E(XY) = E(X)E(Y)) we say that X and Y are
uncorrelated.

Observe that the variance of X is expressed in terms of the covariance of X by
Var(X) = Cov(X,X).

Let us recap the result of our computation of Var(X +7Y) in terms of Cov(X,Y) as
the following proposition.

Proposition 6.13. Given two random variables X and Y, we have
Var(X +Y) = Var(X)+ Var(Y) 4+ 2Cov(X,Y).
Therefore, if X an'Y are uncorrelated (Cov(X,Y) =0), then
Var(X +Y) = Var(X) + Var(Y).

In particular, if X and Y are independent, then X and Y are uncorrelated because
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Cov(X,Y) = E(XY) — E(X)E(Y) = E(X)E(Y) — E(X)E(Y) = 0.

This yields another proof of Proposition 6.11.

However, beware that Cov(X,Y) = 0 does not necessarily imply that X and Y are
independent. For example, let X and Y be the random variables defined on {—1,0,1}
by

1
PriX=0)=Pr(X=1)=Pr(X=-1)= 3
and
Yy — {0 ifX#0
1 ifX=0.

Since XY = 0, we have E(XY) = 0, and since we also have E(X) = 0, we have
Cov(X,Y) =E(XY)—-EX)E(Y) =0.

However, the reader will check easily that X and Y are not independent.
A better measure of independence is given by the correlation coefficient p(X,Y)

of X and Y, given by
Cov(X,Y)

VVar(X)y/Var(Y)’

provided that Var(X) # 0 and Var(Y) # 0. It turns out that |p(X,Y)| < 1, which is
shown using the Cauchy—Schwarz inequality.

pX.Y)=

Proposition 6.14. (Cauchy-Schwarz inequality) For any two random variables X
and Y on a discrete probability space £2, we have

IE(XY)| < +/E(X2)\/E(Y2).

Equality is achieved if and only if there exist some o, € R (not both zero) such
that E((aX + BY)?) = 0.

Proof. This is a standard argument involving a quadratic equation. For any 4 € R,
define the function 7'(1) by

T(1) =E((X+AY)?).
We get
T(A) = E(X* +2AXY +A%r?)
= E(X?) +24E(XY) +A2E(Y?).
Since E((X +AY)?) >0, we have T(A) > 0forall A € R. If E(Y?) =0, then we must
have E(XY) = 0, since otherwise we could choose A so that E(X?) +2AE(XY) < 0.

In this case, the inequality is trivial. If E(Y?) > 0, then for T'(1) to be nonnegative
the quadratic equation
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E(X?)+2AE(XY)+A%E(Y?) =0
should have at most one real root, which is equivalent to the well-known condition

4(E(XY))* —4E(X?)E(Y?) <0,

[E(XY)| < \/E(X?)\/E(Y?),

as claimed. If (E(XY))? = E(X?)E(Y?), then either E(Y?) = 0, and then with a@ =
0,8 = 1, we have E((aX + BY)?) =0, or E(Y?) > 0, in which case the quadratic
equation

which is equivalent to

E(X?)+24E(XY)+A%E(Y?) =0

has a unique real root Ag, so we have E((X + AgY)?) =

Conversely, if E((aX + BY)?) = 0 for some o, € R then either E(Y?) =0, in
which case we showed that we also have E(XY) = 0, or the quadratic equation has
some real root, so we must have (E(XY))? — E(X?)E(Y?) = 0. In both cases, we
have (E(XY))? = E(X?)E(Y?). O

It can be shown that for any random variable Z, if E(Z?) = 0, then Pr(Z = 0) =
1; see Grimmett and Stirzaker [6] (Chapter 3, Problem 3.11.2). In fact, this is a
consequence of Proposition 6.2 and Chebyshev’s Inequality (see below), as shown
in Ross [11] (Section 8.2, Proposition 2.3). It follows that if equality is achieved in
the Cauchy—Schwarz inequality, then there are some reals ¢, 8 (not both zero) such
that Pr(aX + BY = 0) = 1; in other words, X and Y are dependent with probability
1. If we apply the Cauchy-Schwarz inequality to the random variables X — E(X) and
Y — E(Y), we obtain the following result.

Proposition 6.15. For any two random variables X and Y on a discrete probability
space, we have
lp(X,Y)[ <1,

with equality iff there are some real numbers o, 3,y (with &, B not both zero) such
that Pr(aX +BY =y) = 1.

As emphasized by Graham, Knuth and Patashnik [5], the variance plays a key
role in an inquality due to Chebyshev (published in 1867) that tells us that a random
variable will rarely be far from its mean E(X) if its variance Var(X) is small.

Proposition 6.16. (Chebyshev’s Inequality) If X is any random variable, for every
o > 0, we have
Var(X)

04

Pr((X —E(X)P > a) <

Proof. We follow Knuth. We have
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Fig. 6.9 Pafnuty Lvovich Chebyshev (1821-1894)

Var(X) = ¥ (X(0) —E(X))*Pr()

e

> Y (@) -EX) P
(X(w)iog(x))zza

> ) aPr(w)

0eQ
(X(0)-E(X))*>a

=aPr((X —E(X))* > a),
which yields the desired inequality. O

The French know this inequality as the Bienaymé—Chebyshev’s Inequality. Bien-
aymé proved this inequality in 1853, before Chebyshev who published it in 1867.
However, it was Chebyshev who recognized its significance.? Note that Chebyshev’s
Inequality can also be stated as

Var(X)

Pr(IX —E(X)| > @) < —3

It is also convenient to restate the Chebyshev’s Inequality in terms of the standard
deviation 6 = /Var(X) of X, to write E(X) = u, and to replace o by ¢*Var(X),
and we get: For every ¢ > 0,

1
Pr(I X —u|>co) < —;
(X |2 c0) <
equivalently

1
Pr(|X —ul < >1——.
(X —p<co) 21—

This last inequality says that a random variable will lie within co of its mean with
probability at least 1 — 1 /¢2. If ¢ = 10, the random variable will lie between i — 10c
and i + 100 at least 99% of the time.

We can apply the Chebyshev Inequality to the experiment where we roll two
fair dice. We found that y = 7 and o2 =35 /6 (for one roll). If we assume that we

2 still, Bienaymé is well loved!
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perform n independent trials, then the total value of the n rolls has expecation 7n
and the variance if 35n/6. It follows that the sum will be between

7n710\/£6n and 7n+10\/?

at least 99% of the time. If n = 10° (a million rolls), then the total value will be
between 6.976 million and 7.024 million more than 99% of the time.

Another interesting consequence of the Chebyshev’s Inequality is this. Suppose
we have a random variable X on some discrete probability space (£2, Pr). For any n,
we can form the product space (2", Pr) as explained in Definition 6.6, with

Pr(wi,...,0,) =Pr(®)---Pr(w,), w,€Q,i=1,...,n.
Then, we define the random variable X on the product space by
Xi(01,-..,0,) =X (o).
It is easy to see that the X are independent. Consider the random variable
S=X1+ - +X,.

We can think of S as taking n independent “samples” from 2 and adding them to-
gether. By our previous discussion, S has mean nu and standard deviation o+/n,
where U is the mean of X and o is its standard deviation. The Chebyshev’s Inequal-
ity implies that the average
X1+ + X,
n

will lie between ¢ — 106 /+/n and o + 100 /1/n at least 99% of the time. This im-
plies that if we choose n large enough, then the average of n samples will almost
always be very near the expected value u = E(X).

This concludes our elementary introduction to discrete probability. The reader
should now be well prepared to move on to Grimmett and Stirzaker [6] or Venkatesh
[14]. Among the references listed at the end of this chapter, let us mention the clas-
sical volumes by Feller [3, 4], and Shiryaev [13].

The next three sections are devoted to more advanced topics and are optional.

6.6 Limit Theorems; A Glimpse

The behavior of the average sum of n independent samples described at the end of
Section 6.5 is an example of a weak law of large numbers. A precise formulation
of such a result is shown below. A version of this result was first shown by Jacob
Bernoulli and was published by his nephew Nicholas in 1713. Bernoulli did not have
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Chebyshev’s Inequality at this disposal (since Chebyshev Inequality was proved in
1867), and he had to resort to a very ingenious proof.

Fig. 6.10 Jacob (Jacques) Bernoulli (1654-1705)

Theorem 6.1. (Weak Law of Large Numbers (“Bernoulli’s Theorem”)) Let X1,X3,

< Xn, ... be a sequence of random variables. Assume that they are independent,
that they all have the same distribution, and let U be their common mean and o2 be
their common variance (we assume that both exist). Then, for every € > 0,

lim Pr(’M—u‘ 28) =0.

n—oo n

Proof. As earlier,
(m+m+&>
E(—————— | =u

n
and because the X; are independent,

X 4+ X 2
Var(ﬁ_—'_") _o
n n

Then, we apply Chebyshev’s Inequality and we obtain

2
m(yﬁ--Hﬂ_42€)<6

n ~ ne?’
which proves the result. O

The locution independent and identically distributed random variables is often
used to say that some random variables are independent and have the same distribu-
tion. This locution is abbreviated as i.i.d. Probability books are replete with i.i.d.’s

Another remarkable limit theorem has to do with the limit of the distribution of

the random variable
X+ +X,—nu

o\/n ’
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where the X; are i.i.d random variables with mean y and variance ¢. Observe that
the mean of X; + - - - + X, is npt and its variance is 6+/n, since the X; are assumed to
be i.i.d.

We have not discussed a famous distribution, the normal or Gaussian distribution,
only because it is a continuous distribution. The standard normal distribution is the
cumulative distribution function @ whose density function is given by

fx) = Eé’_ﬂ ;

that is,

o) =—— [
X)=—— e .
V2T J—eo Y
The function f(x) decays to zero very quickly and its graph has a bell-shape. More

generally, we say that a random variable X is normally distributed with parameters
i and ¢ (and that X has a normal distribution) if its density function is the function

1 (x—p)?
202 .

fx) =

- 276

Figure 6.11 shows some examples of normal distributions.
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Fig. 6.11 Examples of normal distributions

Using a little bit of calculus, it is not hard to show that if a random variable X
is normally distributed with parameters p and o2, then its mean and variance are
given by

Var(X) = 2.

The normal distribution with parameters y and 62 is often denoted by .4 (i, 5?).
The standard case corresponds to 4t =0 and o = 1.
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The following theorem was first proved by de Moivre in 1733 and generalized by
Laplace in 1812. De Moivre introduced the normal distribution in 1733. However, it
was Gauss who showed in 1809 how important the normal distribution (alternatively
Gaussian distribution) really is.

Fig. 6.12 Abraham de Moivre (1667-1754) (left), Pierre—Simon Laplace (1749-1827) (middle),
Johann Carl Friedrich Gauss (1777-1855) (right)

Theorem 6.2. (de Moivre—Laplace Limit Theorem) Consider n repeated indepen-
dent Bernoulli trials (coin flips) X;, where the probability of success is p. Then, for
all a < b,

Xy 4. b X —
HmP(aS s +”"p§b>=¢wy4ww.
e np(1—p)

Observe that now, we have two approximations for the distribution of a random
variable X = X| + --- + X,, with a binomial distribution. When n is large and p is
small, we have the Poisson approximation. When np(1 — p) is large, the normal
approximation can be shown to be quite good.

Theorem 6.2 is a special case of the following important theorem known as cen-
tral limit theorem.

Theorem 6.3. (Central Limit Theorem) Let X1, Xo, ..., Xy, ... be a sequence of ran-
dom variables. Assume that they are independent, that they all have the same dis-
tribution, and let | be their common mean and 62 be their common variance (we
assume that both exist). Then, the distribution of the random variable

X+ -+ X, —npt
o\/n

tends to the standard normal distribution as n goes to infinity. This means that for
every real a,

cee — a
lim Pr (Xl +o X < a) = 71 / ef%xz.
O'\/ﬁ 2T J—

We lack the machinery to prove this theorem. This machinery involves character-
istic functions and various limit theorems. We refer the interested reader to Ross [11]

N0
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(Chapter 8), Grimmett and Stirzaker [6] (Chapter 5), Venkatesh [14], and Shiryaev
[13] (Chapter III).

The central limit theorem was originally stated and proved by Laplace but
Laplace’s proof was not entirely rigorous. Laplace expanded a great deal of efforts
in estimating sums of the form

n —
o (ra-ort
k
k<np+xy/np(1—p)

using Stirling’s formula.

Reading Laplace’s classical treatise [7, 8] is an amazing experience. The intro-
duction to Volume I is 164 pages long! Among other things, it contains some inter-
esting philosophical remarks about the role of probability theory, for example on the
reliability of the testimony of witnesses. It is definitely worth reading. The second
part of Volume I is devoted to the theory of generating functions, and Volume II
to probability theory proper. Laplace’s treatise was written before 1812, and even
though the factorial notation was introduced in 1808, Laplace does not use it, which
makes for complicated expressions. The exposition is clear, but it is difficult to read
this treatise because definitions and theorems are not clearly delineated. A version
of the central limit theorem is proved in Volume II, Chapter III; page 306 contains
a key formula involving the Gaussian distribution, although Laplace does not refer
to it by any name (not even as normal distribution). Anybody will be struck by the
elegance and beauty of the typesetting. Lyapunov gave the first rigorous proof of the
central limit theorem around 1901.

Fig. 6.13 Pierre-Simon Laplace (1749-1827) (left), Aleksandr Mikhailovich Lyapunov (1857-
1918) (right)

The following example from Ross [11] illustrates how the central limit theorem
can be used.

Example 6.29. An astronomer is interested in measuring the distance, in light-years,
from his observatory to a distant star. Although the astronomer has a measuring tech-
nique, he knows that, because of changing atmospheric conditions and normal error,
each time a measurement is made it will not be the exact distance, but merely an ap-
proximation. As a result, the astronomer plans to make a series of measurements
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and then use the average value of these measurements as his estimated value of the
actual distance.

If the astronomer believes that the values of the measurements are independent
and identically distributed random variables having a common mean d and a com-
mon variance 4 (light-years), how many measurements need he make to be reason-
ably sure that his estimated distance is accurrate to within £0.5 light-years?

Suppose that the astronomer makes n observations, and let Xj,...,X, be the n
measurements. By the central limit theorem, the random variable

X\ +--+X,—nd
2\/n

has approximately a normal distribution. Hence,

) enctd

:2¢<4)_1

If the astronomer wants to be 95% certain that his estimated value is accurrate to
within 0.5 light year, he should make n* measurements, where n* is given by

2@({?)10%,

Zy =

—=<—<
2 n

N —

PI’( 1 Xi+-+X,

that is,

e ( \/4’?> =0.975.

Using tables for the values of the function @, we find that

Vn*
4

=1.96,

which yields
n* ~61.47.

Since n should be an integer, the astronomer should make 62 observations.

The above analysis relies on the assumption that the distribution of Z, is well
approximated by the normal distribution. If we are concerned about this point, we
can use Chebyshev’s inequality. If we write

Xi+--+X, —nd

Sn: 2 )

we have
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4
E(S,)=d and Var(S,) = -,
n

so by Chebyshev’s inequality, we have

1 4 16
_ )< .
Pr<|S,, d|>2>n(1/2)2 .

Hence, if we make n = 16/0.05 = 320 observations, we are 95% certain that the
estimate will be accurate to within 0.5 light year.

The method of making repeated measurements in order to “average” errors is
applicable to many different situations (geodesy, astronomy, etc.).

There are generalizations of the central limit theorem to independent but not
necessarily identically distributed random variables. Again, the reader is referred to
Ross [11] (Chapter 8), Grimmett and Stirzaker [6] (Chapter 5), and Shiryaev [13]
(Chapter III).

There is also the famous strong law of large numbers due to Andrey Kolmogorov
proved in 1933 (with an earlier version proved in 1909 by Emile Borel). In order to
state the strong law of large numbers, it is convenient to define various notions of
convergence for random variables.

Fig. 6.14 Félix Edouard Justin Emile Borel (1871-1956) (left), Andrey Nikolaevich Kolmogorov
(1903-1987) (right)

Definition 6.13. Given a sequence of random variable X|,X5,...,X,,..., and some
random variable X (on the same probability space (€2, Pr)), we have the following
definitions:

1. We say that X, converges to X almost surely (abbreviated a.s.), denoted by
X, 2% X, if
Pri{owe Q| limX,(0)=X(w)})=1.
ni—yoo

2. We say that X, converges to X in rth mean, with r > 1, denoted X, L x , if
E(|X}]) is finite for all n and if

lim E(|X, — X|") =0.

N0
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3. We say that X,, converges to X in probability, denoted X, Pox , if for every
>0,
lim Pr(|X, — X| > €) =0.

ni—yoo

4. We say that X, converges to X in distribution, denoted X, i> X, if

lim Pr(X, <x) =Pr(X <x),

n—soo
for every x € R for which F(x) = Pr(X <x) is continuous.

Convergence of type (1) is also called convergence almost everywhere or conver-
gence with probability 1. Almost sure convergence can be stated as the fact that the
set

{w € Q| X,(®) does not converge to X (m)}

of outcomes for which convergence fails has probability 0.

It can be shown that both convergence almost surely and convergence in rth
mean imply convergence in probability, which implies convergence in distribution.
All converses are false. Neither convergence almost surely nor convergence in rth
mean imply the other. For proofs, Interested readers should consult Grimmett and
Stirzaker [6] (Chapter 7) and Shiryaev [13] (Chapter III).

Observe that the convergence of the weak law of large numbers is convergence
in probability, and the convergence of the central limit theorem is convergence in
distribution.

The following beautiful result was obtained by Kolmogorov (1933).

Theorem 6.4. (Strong Law of Large Numbers, Kolmogorov) Let X1,X, ..., Xy, ..
be a sequence of random variables. Assume that they are independent, that they all
have the same distribution, and let |1 be their common mean and E(Xlz) be their
common second moment (we assume that both exist). Then,

X+ 4+ X,
n

converges almost surely and in mean square to L = E(X;).

The proof is beyond the scope of this book. Interested readers should consult
Grimmett and Stirzaker [6] (Chapter 7), Venkatesh [14], and Shiryaev [13] (Chapter
IID). Fairly accessible proofs under the additional assumption that E(X}") exists can
be found in Brémaud [2], and Ross [11].

Actually, for almost sure convergence, the assumption that E(Xlz) exists is re-
dundant provided that E(|X;|) exists, in which case y = E(|X}]), but the proof takes
some work; see Brémaud [2] (Chapter 1, Section 8.4) and Grimmett and Stirzaker
[6] (Chapter 7). There are generalizations of the strong law of large numbers where
the independence assumption on the X, is relaxed, but again, this is beyond the
scope of this book.
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6.7 Generating Functions; A Glimpse

If a random variables X on some discrete probability space (2, Pr) takes nonnega-
tive integer values, then we can define its probability generating function (for short
pgf) Gx(z) as
Gx(z) =) Pr(X = k)~
k>0

which can also be expressed as

Gx() = ¥ Pri)e® =E(Y).

weN

Therefore

Note that

Gx(1)= Y Pr(o)=1,

weN

so the radius of convergence of the power series Gx(z) is at least 1. The nicest
property about pgf’s is that they usually simplify the computation of the mean and
variance. For example, we have

E(X)=) kPr(X =k)

k>0
=Y Pr(X=k) -k _,
k>0
= Gy(1).
Similarly,
E(X?) = Y KPr(X =k)
k>0
=Y Pr(X =k)- (k(k— 1) 2 +k )|
k>0
= Gy (1) + Gy (1).

Therefore, we have

Var(X) = Gx (1) + Gk (1) — (G (1))*.

Remark: The above results assume that G (1) and G% (1) are well defined, which
is the case if the radius of convergence of the power series Gx (z) is greater than 1.
If the radius of convergence of Gx (z) is equal to 1 and if lim_; G (z) exists, then
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E(X) =1imGy(2),
4!

and similarly if lim_;; G% (z) exists, then
E(X?) = limG¥(2).
!

The above facts follow from Abel’s theorem, a result due to N. Abel. Abel’s theorem

Fig. 6.15 Niels Henrik Abel (1802-1829)

states that if G(x) = ¥,_anz" is a real power series with radius of convergence
R =1 and if the sum )~ a, exists, which means that

n
lim Z a,=a
NnH>oo ¢
i=0

for some a € R, then G(z) can be extended to a uniformly convergent series on
[0,1] such that lim,,,; Gx (z) = a. For details, the reader is referred to Grimmett and
Stirzaker [6] (Chapter 5) and Brémaud [2] (Appendix, Section 1.2).

However, as explained in Graham, Knuth and Patashnik [5], we may run into
unexpected problems in using a closed form formula for Gy (z). For example, if X
is a random variable with the uniform distribution of order n , which means that X
takes any value in {0, 1,...,n— 1} with equal probability 1/n, then the pgf of X is

1-7"

n(l—z)

If we set z = 1 in the above closed-form expression, we get 0/0. The computations
of the derivatives Uy (1) and Uy (1) will also be problematic (although we can resort
to L’Hospital’s rule).

Fortunately, there is an easy fix. If G(z) = ¥,~0a,2" is a power series that con-
verges for some z with |z| > 1, then G'(z) = ¥,,>ona,z" ' also has that property,
and by Taylor’s theorem, we can write

1
Uy = Z(1+z+~-+z"_1) =

/ 1 1! 1 u 1
G(1+x) :G(1)+G1(' Doy Gz(' )x2+G3$ Jo s
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It follows that all derivatives of G(z) at z = 1 appear as coefficients when G(1 + x)
is expanded in powers of x. For example, we have

1 "—1
Un(1+x):%
nx
_1/n 1/n 1 /n\ , 1/n\ ,_
It follows that
—1 —1)(n—-2
uy=1 um="21 grm= 0202,
2 3
Then, we find that the mean is given by
_n—1
=7
and the variance by
2 " ! ! 2 n’—1
0% = Uy (1) +Up(1) - (Us(1)* = "

Another nice fact about pgf’s is that the pdf of the sum X +Y of two indepen-
dent variables X and Y is the product their pgf’s. This is because if X and Y are
independent, then

Pr(X+Y=n)= ZPr(X:kandY:n—k)
k=0

= i Pr(X =k)Pr(Y =n—k),
k=0

a convolution! Therefore, if X and Y are independent, then
Gx4y(z) = Gx(2)Gy ().

If we flip a biased coin where the probability of tails is p, then the pgf for the
number of heads after one flip is

H(z)=1-p+pz
If we make n independent flips, then the pgf of the number of heads is
H(z)" = (1-p+p2)".
This allows us to rederive the formulae for the mean and the variance. We get

u=(H"(2)'(1) = nH'(1) = np,
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and
o’ =n(H"(1)+H'(1) = (H'(1))*) = n(0+ p—p*) = np(1—p).

If we flip a biased coin repeatedly until heads first turns up, we saw that the
random variable X that gives the number of trials n until the first occurrence of tails
has the geometric distribution f(n) = (1 — p)"~!p. It follows that the pgf of X is

Pz
1-(1-p)z

Since we are assuming that these trials are independent, the random variables that
tell us that m heads are obtained has pgf

e

=g (M)
= Zj: (j:;)p’”(l —p)y .

An an exercise, the reader should check that the pgf of a Poisson distribution with
parameter A is

Gx(2) = pz+(1=p)pz* 4+ (1=p)" ' p 4 =

GX(Z) _ el(zfl).

More examples of the use of pgf can be found in Graham, Knuth and Patashnik

[5].
Another interesting generating function is the moment generating function My (t).
It is defined as follows: for any ¢ € R,

Mx (1) = E(e™) = )¢ f(x),

where f(x) is the mass function of X. If X is a continuous random variable with
density function f, then

My (1) = /_ i ¢ f(x)dx.

The main problem with the moment generating function is that it is not always
defined for all + € R. If Mx(¢) converges absolutely on some open interval (—r,r)
with » > 0, then its nth derivative for t = 0 is given by

M (0) =Y K" f(x)],_y = Y. f(x) = E(X").
X X
Therefore, the moments of X are all defined and given by
E(X™) =M™ (0).

Within the radius of convergence of My (), we have the Taylor expansion
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My(5)= Y E(;k)tk.
k=0 '

This shows that M (¢) is the exponential generating function of the sequence of mo-
ments (E(X")); see Graham, Knuth and Patashnik [5]. If X is a continuous random
variable, then the function M (—t) is the Laplace transform of the density function
I

Furthermore, if X and Y are independent, then E(XY) = E(X)E(Y), so we have

E(X+¥)) =Y (Z) By ) = ¥ (Z) ECORE()™—,

k=0 k=0

and since

Myiy(1) =Y, py
1 (& /n i\ .n
= ;)(k)E(X)kE(Y) k)z
EX)FE(Y)"*
=L (k') (15—)k)!t
E(X%) E(Y"K)
:; (k' (nk)')t'

But, this last term is the coefficient of #* in My (t)My (¢). Therefore, as in the case of
pgf’s, if X and Y are independent, then

Mx+y(t) :Mx(l‘)My(t).

Another way to prove the above equation is to use the fact that if X and Y are
independent random variables, then so are X and €Y for any fixed real z. Then,

E(et(X+Y)) _ E(erezY) — E(e[X)E(etY).

Remark: If the random variable X takes nonnegative integer values, then it is easy
to see that

Mx (1) = Gx(€'),
where Gy is the generating function of X, so My is defined over some open
interval (—r,r) with r > 0 and Mx(t) > 0 on this interval. Then, the function
Kx (t) = InMx () is well defined, and it has a Taylor expansion
K K K
Kx(t) = —t+ 1"+ =t +~~+n—t”+~~-. (%)

The numbers x;, are called the cumulants of X. Since



6.7 Generating Functions; A Glimpse 423

where u, = E(E™) is the nth moment of X, by taking exponentials on both sides of
(*), we get relations between the cumulants and the moments, namely:

K1 =l

K = Uy — .1112

K3 = i3 — 3Ly + 247

Ky = Ll — A s+ 120210 — 32 — 6

Notice that k) is the mean and k» is the variance of X. Thus, it appears that the
cumulants are the natural generalization of the mean and variance. Furthermore, be-
cause logs are taken, all cumulants of the sum of two independent random variables
are additive, just as the mean and variance. This property makes cumulants more
important than moments.

The third generating function associtaed with a random variable X, and the most
important, is the characteristic function @x(t), defined by

ox (1) = E(¢"™) = E(costX) + iE(sinzX),
for all # € R. If f is the mass function of X, we have

ox(t) = Zei’xf(x) = Zcos(tx)f(x) + iZsin(tx)f(x),

a complex function of the real variable ¢. The “innocent” insertion of i in the expo-
nent has the effect that |¢X | = 1, so @x(¢) is defined for all € R.
If X is a continuous random variable with density function f, then

ox (1) = /_ Z ¢ f(x)dx.

Up to sign and to a change of variable, @y (¢) is basically the Fourier transform of
f. Traditionally the Fourier transform f of f is given by

fioy= [ e pa

Next, we summarize some of the most important properties of @x without proofs.
Details can be found in Grimmett and Stirzaker [6] (Chapter 5).

The characteristic function ¢x of a random variable satisfies the following prop-
erties:

Loox(0) =1, [ox ()] <1.
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2. @x is uniformly continuous on R.

3. If @) exists, then E(|E¥|) is finite if k is even, and E(|E*~'|) is finite if k is
odd.

4. If X and Y are independent, then

x4y (1) = ox (1) oy (t).

The proof is essentially the same as the one we gave for the moment generating
function, modulo powers of i.
5. If X is a random variable, for any two reals a, b,

Pax+5(t) = " ox (at).

Given two random variables X and Y, their joint characteristic function @x y (x,y)
is defined by

Px v (x,y) = E(e"¥e™).
Then, X and Y are independent iff

oxy(x,y) = ox(x)@y(y) forallx,y € R.

In general, if all the moments u, = E(X") of a random variable X are defined,
these moments do not uniquely define the distibution F' of X. There are examples of
distinct distributions F (for X) and G (for Y) such that E(X") = E(Y") for all n; see
Grimmett and Stirzaker [6] (Chapter 5).

However, if the moment generating function of X is defined on some open inter-
val (—r,r) with r > 0, then Mx () defines the distribution F of X uniquely.

The reason is that in this case, the characteristic function ¢x is holomorphic
on the strip |Im(z)| < r, and then My can extended to that strip to a holomorphic
function such that @y (1) = My (it). Furthermore, the characteristic function @x de-
termines the distribution F of X uniquely. This is a rather deep result which is ba-
sically a version of Fourier inversion. If X is a continuous random variable with
density function f, then

1 1~ .
f0) =5 [ o

for every x for which f is differentiable.
If the distribution F is not given as above, it is still possible to prove the following
result (see Grimmett and Stirzaker [6] (Chapter 5)):

Theorem 6.5. Two random variables X and Y have the same characteristic function
iff they have the same distribution.

As a corollary, if the moment generating functions My and My are defined on
some interval (—r,r) with r > 0 and if Mx = My, then X and Y have the same
distribution. In computer science, this condition seems to be always satisfied.

If X is a discrete random variable that takes integer values, then
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T

1 ,
k :—/ “itk gy (1)dt;
) =52 | e ox()
see Grimmett and Stirzaker [6] (Chapter 5, Exercise 4).

There are also some useful continuity theorems which can be found in Grimmett
and Stirzaker [6] (Chapter 5). In the next section, we use the moment generating
function to obtain bounds on tail distributions.

6.8 Chernoff Bounds

Given a random variable X, it is often desirable to have information about proba-
bilities of the form Pr(X > a) (for some real a). In particular, it may be useful to
know how quickly such a probability goes to zero as a becomes large (in absolute
value). Such probabilities are called zail distributions. It turns out that the moment
generating function My (if it exists) yields some useful bounds by applying a very
simple inequality to Mx known as Markov’s inequality and due to the mathematician
Andrei Markov, a major contributor to probability theory (the inventor of Markov
chains).

Fig. 6.16 Andrei Andreyevich Markov (1856-1922)

Proposition 6.17. (Markov’s Inequality) Let X be a random variable and assume
that X is nonnegative. Then, for every a > 0, we have

E(X)

Pr(X >a) <

Proof. Let I, be the random variable defined so that

I — {1 ifX>a
4 0 otherwise.

Since X > 0, we have

S |3

()
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Also, since I, takes only the values 0 and 1, E(I,) = Pr(X > a). By taking expecta-
tions in (x), we get
E(X
E(l) < S,
a

which is the desired inequality since E(I,) = Pr(X >a). O

If we apply Markov’s inequality to the moment generating function My = E(E™)
we obtain exponential bounds known as Chernoff bounds, after Herman Chernoff.

Fig. 6.17 Herman Chernoff (1923-)

Proposition 6.18. (Chernoff Bounds) Let X be a random variable and assume that
the moment generating function My = E(e'X) is defined. Then, for every a > 0, we
have

Pr(X > a) <mine "My (r)
>0

Pr(X <a) < mine “Mx(t).
<0
Proof. Ift > 0, by Markov’s inequality applied to My (t) = E(e'X), we get
Pr(X > a) = Pr(eX > ¢')

S E(etX)efta

and if r < 0, we get
Pr(X <a) = Pr(e® <¢'9)
< E(et)(’)efta7
which imply both inequalities of the proposition. O

In order to make good use of the Chernoff bounds, one needs to find for which
values of ¢ the function e "My (¢) is minimum. Let us give a few examples.

Example 6.30. If X has a standard normal distribution, then it is not hard to show
that
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_ 22
M(t)=é€"'".
Consequently, for any a > 0 and all # > 0, we get
Pr(X >a) < etael’2,

12 /2—ta

The value ¢ that minimizes e is the value that minimizes 2 /2 — ta, namely

t = a. Thus, for a > 0, we have

Pr(X >a) < /2,
Similarly, for a < 0, we obtain

Pr(X <a) < @2,

The function on the right hand side decays to zero very quickly.

Example 6.31. Let us now consider a random variable X with a Poisson distribution
with parameter A. It is not hard to show that

M(t) =MD,
Applying the Chernoff bound, for any nonnegative integer k and all # > 0, we get
Pr(X >k) < M=) gkt

Using calculus, we can show that the function on the right hand side has a minimum
when A (¢’ — 1) — kt is minimum, and this is when ¢’ = k/A. If k > A and if we let
¢' =k/A in the Chernoff bound, we obtain

k
Pr(X > k) < eMk/A-1) (i) ,

which is equivalent to
e *(ed)k
Kk
Our third example is taken from Mitzenmacher and Upfal [10] (Chapter 4).

Pr(X > k) <

Example 6.32. Suppose we have a sequence of n random variables X,X>, ..., Xy,
such that each X; is a Bernoulli variable (with value 0 or 1) with probability of
success p;, and assume that these variables are independent. Such sequences are
often called Poisson trials. We wish to apply the Chernoff bounds to the random
variable

X=X+ +X,.

We have
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The moment generating function of X; is given by
My, (1) = E(e™)
= pie' +(1—pi)
=1+pi(e —1).
Using the fact that 1 +x < ¢* for all x € R, we obtain the bound
My, (1) < ePild=1)

Since the X; are independent, we know from Section 6.7 that
n
MX(t) = HMXi<t)
i=1

n
< Hem(e’ﬂ)
i=1

— e):,"lzl pi(e'—1)

— hle'=1)

Therefore, l
Mx (1) < e*€=1) " forallz.

The next step is to apply the Chernoff bounds. Using a little bit of calculus, we
obtain the following result proved in Mitzenmacher and Upfal [10] (Chapter 4).

Proposition 6.19. Given n independent Bernoulli variables X1, ..., X, with success
probability p;, ifwelet u =Y | pi and X = X; + - - +X,, then for any & such that

0< 06 <1, we have
2

Pr(X —u|>du) <2e 3.

An an application, if the X; are independent flips of a fair coin (p; = 1/2), then
p = n/2, and by picking § = #22 it is easy to show that

n

n
Prilx—2
(G

This shows that the concentrations of the number of heads around the mean n/2
is very tight. Most of the time, the deviations from the mean are of the order
O(v/nlnn). Another simple calculation using the Chernoff bounds shows that

J

This is a much better bound than the bound provided by the Chebyshev inequality:

1 82 2
> — 6nlnn> §26JLT:7.
2 n

i B
X—=|>= e M.
2= 4)=
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Pr(lx-2{>" <i
2174) ~n

Ross [11] and Mitzenmacher and Upfal [10] consider the situation where a gam-
bler is equally likely to win or lose one unit on every play. Assuming that these
random variables X; are independent, and that

PF(X,‘ = 1) = PI’(X,': —1) = 5,

let S, = Y ; X; be the gamblers’s winning after n plays. It is easy that to see that
the moment generating function of X; is

el +et
MX,.(I) = 5 .

Using a little bit of calculus, one finds that

[S]

L

Mxi(l) <ez.

Since the X; are independent, we obtain
n 2
Mg, (1) = HMXi(t) = (Mxi(t))n <ez, t>0.
i=1
The Chernoff bound yields

2
Pr(S, >a) < e%_m, t>0.

The minimum is achieved for # = a/n, and assuming that a > 0, we get

We leave it as exercise to prove that

Pr(S, > 6) = Pr(gambler wins at least 8 of the first 10 games) = % ~ 0.0547.

Other examples of the use of Chernoff bounds can be found in Mitzenmacher
and Upfal [10] and Ross [12]. There are also inequalities giving a lower bound on
the probability Pr(X > 0), where X is a nonnegative random variable; see Ross [12]
(Chapter 3), which contains other techniques to find bounds on probabilities, and
the Poisson paradigm. Probabilistic methods also play a major role in Motwani and
Raghavan [9].
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6.9 Summary

This chapter provides an introduction to discrete probability theory. We define prob-
ability spaces (finite and countably infinite) and quickly get to random variables. We
emphasize that random variables are more important that their underlying probabil-
ity spaces. Notions such as expectation and variance help us to analyze the behavior
of random variables even if their distributions are not known precisely. We give a
number of examples of computations of expectations, including the coupon collec-
tor problem and a randomized version of quicksort.

The last three sections of this chapter contain more advanced material and are
optional. The topics of these optional sections are generating functions (including
the moment generating function and the characteristic function), the limit theorems
(weak law of lage numbers, central limit theorem, and strong law of large numbers),
and Chernoff bounds.

e We define: a finite discrete probability space (or finite discrete sample space),
outcomes (or elementary events), and events.

e a probability measure (or probability distribution) on a sample space.

e adiscrete probability space.

e ao-algebra.

e independent events.

e  We discuss the birthday problem.

e  We give examples of random variables.

e We present a randomized version of the quicksort algorithm.

e We define: random variables, and their probability mass functions and cumula-
tive distribution functions.

e absolutely continuous random variables and their probability density functions.

e We give examples of: the binomial distribution.

e the geometric distribution.

e We show how the Poisson distribution arises as the limit of a binomial distribu-
tion when n is large and p is small.

e  We define a conditional probability.

e  We present the “Monty Hall Problem.”

e We introduce probablity trees (or trees of possibilities).

e  We prove several of Bayes’ rules.

e  We define: the product of probability spaces.

e independent random variables.

e the joint mass function of two random variables, and the marginal mass func-
tions.

e the expectation (or expected value, or mean) E(X) = p of a random variable X.

e  We prove the linearity of expectation.

e We introduce indicator functions (indicator variables).

e  We define functions of a random variables.

e We compute the expected value of the number of comparsions in the random-

ized version of quicksort.
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We define the variance Var(X) of a random variable X and the standard devia-
tion o of X by o = y/Var(X).

We prove that Var(X) = E(X?) — (E(X))?.

We define the moments and the central moments of a random variable.

We prove that if X and ¥ are uncorrelated random variables, then Var(X +Y) =
Var(X) + Var(Y); in particular, this equation holds if X and ¥ are independent.
We prove: the Cauchy-Schwarz inequality for discrete random variables.
Cheybyshev’s inequality and give some of its applications.

The next three sections are optional.

We state the weak law of large numbers (Bernoulli’s theorem).

We define the normal distribution (or Gaussian distribution).

We sate the central limit theorem and present an application.

We define various notions of convergence, including almost sure convergence
and convergence in probability.

We state Kolmogorov’s strong law of large numbers.

For a random variable that takes nonnegative integer values, we define the prob-
ability generating function, Gx (z) = E(zX). We show how the derivatives of Gx
at z = 1 can be used to compute the mean y and the variance of X.

If X and Y are independent random variables, then Gx1y = GxGy.

We define the moment generating function My (t) = E(e'X) and show that

My (0) = E(x").

If X and Y are independent random variables, then My y = MxMy.

We define: the cumulants of X.

the characteristic function @x (t) = E(e"X) of X and discuss some of its proper-
ties. Unlike the moment generating function, @y is defined for all # € R.

If X and Y are independent random variables, then @xy = @x @y. The distribu-
tion of a random variable is uniquely determined by its characteristic function.

We prove: Markov’s inequality.

the general Chernoff bounds in terms of the moment generating function.

We compute Chernoff bound for various distributions, including normal and
Poisson.

We obtain Chernoff bounds for Poisson trials (independent Bernoulli trials with
success probablity p;).

Problems
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