
 

3.1 Structure of a Proof by Induction   
 

Induction can be used to a prove that a given proposition, P(n), holds for all integers n ≥ n0, where n0 is some 
fixed integer. The proof consists of two steps: 
 

1. Base Step:  Prove directly that the proposition P(n0) is true. 

2. Induction Step: Prove ∀n ≥ n0: P(n)→ P(n+1). In other words, for an arbitrary n (where n ≥ n0) we assume 
that P(n) is true and show as a consequence that P(n+1) is true. The left side of the implication is called 
the induction hypothesis, since it is what is assumed in the induction step. 

Note: The induction step is also equivalent to: Prove ∀n > n0: P(n−1)→P(n). 

A proof by induction is akin to climbing a ladder (having an infinite number of steps). One is able to climb all 
the steps of a ladder if both of the following are true: 

1. He is able to climb to the first step; this is the base step. 

2. From an arbitrary step n, he is able to climb one step higher; this is the induction step. 

 
Note that climbing to the second step is implied by the preceding steps 1 and 2 with n=1. Applying step 2 again 
with n=2, enables climbing to the third step, and so on. This shows that the proof method is sound and that the 
induction hypothesis is not something coming out of thin air; rather, it is being gradually established for each 
successive value of n.  
 
The preceding form of induction is known as weak induction. For strong induction., we use a slightly different 
induction step with a stronger induction hypothesis.  

Induction Step for Strong Induction:  Prove ∀n ≥ n0: (∀k • n: P(n)) → P(n+1). That is, we assume that P(k) is 
true for all k in the range n0 ≤ k ≤ n, and then prove as a consequence that P(n+1) is true.  An equivalent form of 
this is to assume that P(k) is true for all k in the range n0 ≤ k < n, and then prove as a consequence that P(n) is 
true. 
 
3.1.1 Examples of Induction Proofs 
 
We start with a classical example of an induction proof. 

Example  3.1 Show that 1+2+ … +n = n(n+1)/2  for all n ≥ 1. 
 
Solution:  
 
Base Step:  We are to show P(n) for n=1. In this case, LHS = 1 and RHS = 1(1+1)/2 = 1.  Thus, the proposition 
is true for n=1. 
 
Induction Step:  We are to show that, for n ≥ 1, P(n) → P(n+1). Thus, we assume (induction hypothesis) the 
following: 

 1+2+ … +n = n(n+1)/2    ( 3.1)
 
We proceed to show P(n+1). We are to show that  
 

1+2+ … + n+(n+1) = (n+1)((n+1)+1)/2      ( 3.2)
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LHS of ( 3.2) = 1+2+ … +n+(n+1) = n(n+1)/2 + (n+1), where the sum of the first n terms is replaced by RHS of 
( 3.1).  The latter expression = (n+1)(n/2+1) = (n+1)(n/2+2/2) = (n+1)(n+2)/2 = RHS of ( 3.2). 
 

Example  3.2 Show that 1+a+a2+ … +an = (an+1–1)/(a–1) for all n ≥ 0. Assume a ≠ 1.  

Note: The terms in this sum form a geometric progression, where every term is obtained from the previous term 
by multiplying by some fixed factor a. 
Solution: 

Base Step: We show P(0). LHS = 1; RHS = (a – 1)/(a–1) = 1.  Thus, the proposition is true for n=0. 

Induction Step: Assume P(n) for n ≥ 0 and show P(n+1).  Thus, assume (induction hypothesis) the following:   

 1+a+a2+ … +an = (an+1 –1)/(a–1)                    ( 3.3)
 
We proceed to show P(n+1). We are to show that 

 1+a+a2 + … +an+1 = (an+2 –1)/(a–1)    ( 3.4)
 
LHS of ( 3.4) = 1+a+a2+ … +an+an+1 = [(an+1 –1)/(a–1)] + an+1, where the sum of the terms up to an is replaced 
by RHS of ( 3.3). The latter expression gives: 1/(a–1) [an+1 –1 + (a–1) an+1] = (an+2 –1)/(a–1) = RHS of ( 3.4).  
  
Note:  A special case of a geometric progression is when summing powers of 2: 1+2+ 22 + … + 2n = 2n+1 –1.  
 
Example  3.3  Find a formula for 1/2+ 1/4 + … + 1/2n and prove your claim. 

Solution: The sum of the first two terms is 3/4; the sum of the first three terms = 3/4+1/8 = 7/8.  Thus, we guess 
that the sum of the first k terms is (2k –1)/2k, and because there are n terms (noting that the denominator goes 
from 21 to 2n), we guess that the expression evaluates to (2n –1)/2n. Next, we use induction to prove this guess. 
We only show the induction step. 
 
Induction Step:  Assume P(n) for n ≥ 1 and show P(n+1).  Thus assume   
  

 1/2+1/4+  … +1/2n = (2n –1)/2n                      ( 3.5)
 
We proceed to show P(n+1). We are to show that  
 

1/2+1/4 + … +1/2n+1 = (2n+1 –1)/2n+1      ( 3.6)
 
LHS of ( 3.6) = 1/2+1/4 + … + 1/2n+1 = [(2n –1)/2n]+ 1/2n+1 = (1/2n+1) (2(2n –1)+1) = (2n+1–1)/2n+1 = RHS of ( 3.6).  
 
Note: A direct way to establish P(n) in Example  3.3 is to note that the given expression is a geometric 
progression and utilize the formula of Example  3.2 with a =1/2. Alternatively, multiply (and divide) the given 
expression by 2n to get, (2n-1 + … +1)/2n = (2n –1)/2n. 
 



 

is shown in Figure  3.1(b) — making the induction hypothesis P(n) inapplicable! We are stuck, and properly so, 
since the claim is false.  
 
 
3.1.3 Using Induction for Counting 
 
Because induction is about recursive definitions, it becomes handy in solving counting problems. The idea is to 
parameterize a definition. For example, if we let fn denote the number of binary strings of length n satisfying 
some condition C then, by definition, fn-1 will be the number of binary strings of length n–1 satisfying the same 
condition C. 
  
Example  3.7 Let fn denote the number of ways to cover the squares of a 2×n grid using plain dominos. Then it is 
easy to see, as illustrated by Figure  3.2,  that f1=1, f2=2, and f3=3. Derive a recurrence equation for fn.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  3.2 Ways of covering the squares of a 2×n grid with plain dominos for n=1,2 and 3. 

 
Solution: The top-right square of the board can be covered by a domino that is either laid horizontally or 
vertically. 
  

• If covered by a vertically-laid domino, this leaves a 2×(n–1) grid that can be covered in fn-1 ways. 

• If covered by a horizontally-laid domino, the domino below it must also lie horizontally. This leaves a 
2×(n–2) grid that can be covered in fn-2 ways.  

Because these are all the cases, we have proven that fn = fn-1 + fn-2. 
 
In Section  4.1, we discuss methods for solving a system of recurrence equations such as the one given 
previously. Interestingly, we can use induction for this; a solution can be guessed and then induction can be used 
to verify that the guess is correct.  
 
When analyzing the running time of a recursive algorithm, recurrence equations can be used to quantify the 
number of operations executed by an algorithm. Then, induction can be used to solve the resulting equations.   
 
Example  3.8 Let fn be specified by the recurrence, fn = fn-1 + fn-1 for n ≥ 3; f1 =1, f2 =1. Use induction to show that 
fn ≥ αn-2 for all integers n ≥ 3, where α=(1+ 5 /2). Based on this, quantify fn using the proper big-O notation.   
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3.5 The Coin Change Problem 
 
The coin change problem calls for finding the number of ways of making a change for a given amount of n 
cents, using a given set of denominations {d1, d2, ..., dm}. The problem is formulated as follows:  
 
Given a positive integer n, and a set of positive integers {d1, d2, ..., dm}, in how many ways can we express n as 
a linear combination of {d1, d2, ..., dm} with nonnegative integer coefficients?  
 
In other words, if we are to make change for an amount of n cents using an infinite supply of each of  d1−dm  
valued coins, in how many ways can we make the change (order of coins does not matter, {1,2,1}={1,1,2}= 
{2,1,1})?  For example, if n=4 and d={1,2,3}, we have a total of 4 ways, namely: {1,1,1,1}, {1,1,2}, {2,2}, 
{1,3}.  
 
Here, we consider a special case of the coin-change problem, where we are given two denominations, and the 
problem is to determine whether there is a solution for all values of n ≥ n0. 
 
Coin Change Problem. Show that any integer amount ≥ 60 cents can be changed using 6-cent and 11-cent coins. 
Equivalently, any integer n ≥ 60 can be expressed as n = 6a + 11b, where a and b are nonnegative integers. 
 
Proof by Induction:  Let P(n) denote the proposition that an amount of n cents can be changed using 6-cent and 
11-cent coins. In other words, P(n):  n = 6a + 11b where a, b are nonnegative integers. 
 
Base Step:  For n = 60, 60 = 6 (10) + 11 (0). Thus, P(60) is true.  
 
Induction Step: We assume P(n) (for n ≥ 60) and consider how to extend P(n) to P(n+1). If P(n) uses at least one 
11-cent coin, then replace one 11-cent coin with two 6-cent coins. On the other hand, if P(n) does not use any 
11-cent coins, then because n ≥ 60, P(n) must use at least nine 6-cent coins.  In this case, replace nine 6-cent 
coins with five 11-cent coins. 
 
Listing  3.6 shows the corresponding recursive algorithm.  
 
 

 
Input: an integer n; assume n ≥ 60 
Output: a pair of integers (we can use a 2-element integer array for this) 
 
integer_pair CoinChange(int n)   
{  if (n==60)  // base case  
      return (10,0); 
   else 
   { (a,b) = CoinChange(n-1);   
     if (b > 0) return (a+2,b-1); 
    else return (a-9,b+5); 
  } 
} 

 
Listing  3.6  A recursive algorithm for the coin-change problem.  

 
 
Exercise  3.9  Convert the recursive algorithm for the coin-change problem given in Listing  3.6 into an iterative 
algorithm, then go one step further and write it as a CSharp program method.  
 



 

Exercise  3.10   Derive the order of running time for the coin-change algorithm given in Listing  3.6. Hint: Write a 
recurrence equation for the number of elementary operations performed by the algorithm.  
 

3.5.1 Using Strong Induction for the Coin-Change Problem  
 
Let us return to the problem of changing an amount of n cents (n ≥ 60) using 6-cent and 11-cent coins, but this 
time we try to use strong induction. 
 
A Faulty Inductive Proof 
 
Base Step:  For n = 60, 60 = 6 (10) + 11 (0).  
  
Induction Step (using strong induction): Assume any amount k ≤ n is expressible in terms of 6 and 11. Then, 
since n+1 = (n−5)+6, we can add a 6-cent coin to the change corresponding to P(n−5). This establishes P(n+1).  
 
To see why the preceding proof is faulty, consider using it to show P(61). In this case, P(61): 61=(60−5)+6. This 
rests on the assumption that “(60−5)” is expressible in terms of 6 and 11, but the value “(60−5)” falls below the 
base-step value. How do we fix such a proof? Answer: Provide enough base cases. For n−5 not to fall below the 
base-step value, we have to provide additional base cases and have the induction step apply to n having values 
beyond those specified as base cases. 
 
A Valid Inductive Proof 

Base Step:   60 = 6 (10) + 11 (0);  61 = 6 (1) + 11 (5);  62 = 6 (3) + 11 (4);   
        63 = 6 (5) + 11 (3);   64 = 6 (7) + 11 (2);  65 = 6 (9) + 11 (1);   
 
Induction Step: We assume that k (where 60 ≤ k ≤ n) is expressible in terms of 6 and 11 then the amount n+1 
(where n+1 > 65) is expressible in terms of 6 and 11, since  n+1 = (n−5) + 6. 

 

 
Important Observation 
 
In a strong induction proof where the induction step expresses P(n+1) in terms of P(n−k),  the base step 
must be established for k+1 values: n0, n0+1, …, n0+k. (Note: k = 0 corresponds to weak induction.)  For 
divide-and-conquer algorithms (e.g. Binary search, Mergesort), we normally express P(n) in terms of 
P(⌊n/2⌋) (and/or P(⌈n/2⌉)). In such cases, P(1) is never bypassed; therefore, it suffices to provide P(1) as 
a base step.  
 

 
 
 
Exercise  3.11  Write recursive and iterative program methods for the coin-change algorithm described by the 
preceding induction proof.  Also, draw the tree of recursive calls for (the input) n=100.   


