
Bitwise Operations
Shift left “<<”. For integers, same as multiply by 2 for each bit

shifted. Move all bits left by k positions, add k zeros to the right. Signif-
icant bits can be lost on the left size, still on same n bits. In the example
below we represent an integer a=79 on n = 32 bits

79 = 0000 0000 0100 1111

79 << 1 = 0000 0000 1001 1110

= 158

79 << 2 = 0000 0001 0011 1100

= 316

Shift right “>>”. For integers, same as division by 2 for each bit
shifted. Move all bits right by k positions, add k zeros to the left. Non-
significant bits will be lost on the right size, as result is still on same n bits.

79 = 0000 0000 0100 1111

79 >> 1 = 0000 0000 0010 0111

= 39

79 >> 2 = 0000 0000 0001 0011

= 19

Bitwise AND “&”. Given an integer mask m on 32 bits, the operation
y = m&x performs a bitwise AND: all 0 bits in m produce 0 bits in y, while
all 1-bits in m simply leave the corresponding bit in x to pass to y. For

1



example x=78, m = 5 gives y as:

x = 78 = 0000 0000 0100 1110

m = 5 = 0000 0000 0000 0101 &

−−−−−−−−−−−−−−−−−−−
y = 0000 0000 0000 0100

= 4

This is particularly useful when m = 2k (a power of two), in order to check
if the k-bit in x is one or zero:
if 2k&x==0 then k-th bit in x is 0; otherwise the x k-th bit is one.

Bitwise OR “|”. Given an integer mask m on 32 bits, the operation
y = m|x performs a bitwise OR: all 1-bits in m produce 1-bits in y, while all
0-bits in m simply leave the corresponding bit in x to pass to y. For example
x=78, m = 21 gives y as:

x = 78 = 0000 0000 0100 1110

m = 21 = 0000 0000 0001 0101 |
− − −−−−−−−−−−−−−−−−−

y = 0000 0000 0101 1111

= 95

This is particularly useful when m = 2k (a power of two), in order to make
the k-bit in x one:
if y = 2k|x makes the k-th bit in y one, but leaves all other bits as in x.

2



Exercise. Play with the attached C code “bitwise.cpp”. You dont have
to look into declarations of variables, but rather change the integer values
and see what happens. Being C++ code, you will have to compile and run
it; you can do so with the attached Makefile, on a UNIX-based system, by
simple typing in the terminal window
make FILE=bitwise

which will both compile and run the code. Every edit of the source code have
to be saved and followed by the same make command.

19:13>> make FILE=bitwise

g++ -Wall -pedantic -o bitwise bitwise.cpp

./bitwise

size of int=4

a11=150000 a12=150000 OVERFLOW (32 bits)?

a11*a12=1025163520

a14=79

a15=a14>>1=39

a16=a14<<1=316

a1=79

11110010 00000000 00000000 00000000

a1=39

11100100 00000000 00000000 00000000

a1=316

00111100 10000000 00000000 00000000

a2=316

d1=10234.9

00011101 01111000 10100001 11010111 10001110 10111111 11000011 00000010

result=0001110101111000101000011101011110001110101111111100001100000010

d2=10234.9

3


