CS1802 Week 7 Honors: Sequences, Series, Induction

1 Series and sequences

1. Recognize the following sequence and write it in concise form. Compute a close-form summation of the first n terms. $5,7,9,11,13,15,17, \ldots$

Solution: Arithmetic progression $2 x+3$ for $x=1,2,3,4,5 \ldots$

$$
\sum_{k=1}^{n}(2 k+3)=2 \sum_{k=1}^{n} k+3 n=2 \frac{n(n+1)}{2}+3 n=n(n+1)+3 n=n(n+4)
$$

2. Recognize the following sequence and write it in concise form. Compute a close-form summation of the first n terms.
$3,9,19,33,51,73,99, \ldots$
Solution: Quadratic progression $2 x^{2}+1$ for $x=1,2,3,4,5 \ldots$

$$
\begin{gathered}
\sum_{k=1}^{n}\left(2 k^{2}+1\right)=2 \sum_{k=1}^{n} k^{2}+n=2 \frac{n(n+1)(2 n+1)}{6}+n= \\
=\frac{n(n+1)(2 n+1)+3 n}{3}=\frac{n\left(2 n^{2}+3 n+1\right)+3 n}{3}=\frac{n\left(2 n^{2}+3 n+4\right)}{3}
\end{gathered}
$$

3. Recognize the following sequence and write it in concise form. Compute a close-form summation of the first n terms.
$48,96,192,384,768,1536, \ldots$
Solution: Geometric progression $24 * 2^{x}$ for $x=1,2,3,4,5 \ldots$

$$
\sum_{k=1}^{n}\left(24 * 2^{k}\right)=24 \sum_{k=1}^{n} 2^{k}=24\left(\sum_{k=0}^{n} 2^{k}-1\right)=24\left(\frac{2^{n+1}-1}{2-1}-1\right)=24\left(2^{n+1}-2\right)=48\left(2^{n}-1\right)
$$

4. (More challenging) Prove that $\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}} \ldots+\frac{1}{n^{2}}<1$ for any natural number n.

Solution:

$$
\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}} \ldots+\frac{1}{n^{2}}<\frac{1}{1 * 2}+\frac{1}{2 * 3}+\frac{1}{3 * 4} \ldots+\frac{1}{(n-1) * n}<\sum_{k=1}^{n}\left(\frac{1}{k}-\frac{1}{k+1}\right)=1-\frac{1}{n+1}
$$

2 Series Formula by Induction

1. $S_{n}=\sum_{k=1}^{n} k^{3}=\left(\sum_{k=1}^{n} k\right)^{2}$

Solution: Base case $n=1: S_{1}=1^{3}=(1)^{2}$
Base case $n=2: S_{2}=1^{3}+2^{3}=(1+2)^{2}$ Induction Step: Given S_{n} formula, we want to prove $S_{n+1}=\sum_{k=1}^{n+1} k^{3}=\left(\sum_{k=1}^{n+1}\right)^{2}$

$$
\begin{gathered}
S_{n+1}=S_{n}+(n+1)^{3}=\left(\sum_{k=1}^{n}\right)^{2}+(n+1)^{3}=\left(\frac{n(n+1)}{2}\right)^{2}+(n+1)^{3}= \\
\left.=\frac{n^{2}(n+1)^{2}}{4}+\frac{4(n+1)^{3}}{4}=\frac{(n+1)^{2}}{4}\left(n^{2}+4 n+4\right)\right)=\frac{(n+1)^{2}}{4}(n+2)^{2}= \\
=\left(\frac{(n+1)(n+2)}{2}\right)^{2}=\left(\sum_{k=1}^{n+1}\right)^{2}
\end{gathered}
$$

2. $S_{n}=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right) \ldots .\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n}$

Solution: Base case $n=2: S_{2}=\left(1-\frac{1}{4}\right)=\frac{2+1}{2 * 2}$
Inductive Step : Given S_{n} formula, we want to prove $S_{n}=\frac{n+1+1}{2(n+1)}$

$$
S_{n+1}=S_{n} *\left(1-\frac{1}{(n+1)^{2}}\right)=\frac{n+1}{2 n} * \frac{(n+1)^{2}-1}{(n+1)^{2}}=\frac{(n+1-1)(n+1+1)}{2 n(n+1)}=\frac{(n+1+1)}{2(n+1)}
$$

3. $S_{n}=\sum_{k=1}^{n}(3 n-2)^{2}=n\left(6 n^{2}-3 n-1\right) / 2$

Solution: Base case $n=1:(3-2)^{2}=1(6-3-1) / 2$
Inductive Step: Given S_{n} formula, we want to prove $S_{n+1}=(n+1)\left(6(n+1)^{2}-3(n+1)-1\right) / 2$

$$
\begin{gathered}
S_{n+1}=S_{n}+(3(n+1)-2)^{2}=n\left(6 n^{2}-3 n-1\right) / 2+\left(9 n^{2}+1+6 n\right)=\frac{1}{2}\left(6 n^{3}-3 n^{2}-n+18 n^{2}+2+12 n\right)= \\
=\frac{1}{2}\left(6 n^{3}+6 n^{2}+9 n^{2}+9 n+2 n+2\right)=\frac{1}{2}(n+1)\left(6 n^{2}+9 n+2\right)= \\
=\frac{1}{2}(n+1)\left(6 n^{2}+12 n+6-3 n-3-1\right)=\frac{1}{2}(n+1)\left(6(n+1)^{2}-3(n+1)-1\right)
\end{gathered}
$$

4. $S_{n}=1 * 2+2 * 2^{2}+3 * 2^{3}+4 * 2^{4}+\ldots+n * 2^{n}=2+(n-1) 2^{n+1}$.

Solution: Base case $n=1: S_{1}=1 * 2=2+(1-1) 2^{1+1}$
Inductive Step Given S_{n} formula, we want to prove $S_{n+1}=2+n * 2^{n+2}$
$S_{n+1}=S_{n}+(n+1) 2^{n+1}=2+(n-1) 2^{n+1}+(n+1) 2^{n+1}=2+2^{n+1}(n-1+n+1)=2+2 n * 2^{n+1}=2+n * 2^{n+2}$
5. $S_{n}=\sum_{k=1}^{n} k * k!=(n+1)!-1$

Solution: Base case $n=1: S_{1}=1 * 1$! $=2$! -1 Inductive Step Given S_{n} formula, we want to prove $S_{n+1}=(n+2)$!-1 $S_{n+1}=S_{n}+(n+1)(n+1)!=(n+1)!-1+(n+1)(n+1)!=(n+1)!(n+1+1)-1=(n+2)!-1$
6. $S_{n}=\sum_{k=1}^{n}(2 k-1)^{2}=n\left(4 n^{2}-1\right) / 3$

Solution: Base case $n=1: S_{1}=(2-1)^{2}=1=1\left(4 * 1^{2}-1\right) / 3$
Induction step: give S_{n} formula, we want to prove that $S_{n+1}=(n+1)\left(4(n+1)^{2}-1\right) / 3$

$$
\begin{gathered}
S_{n+1}=S_{n}+(2(n+1)-1)^{2}=n\left(4 n^{2}-1\right) / 3+(2 n+1)^{2}=n(2 n-1)(2 n+1) / 3+3(2 n+1)^{2} / 3= \\
=\frac{1}{3}(2 n+1)(n(2 n-1)+3(2 n+1))=\frac{1}{3}(2 n+1)\left(2 n^{2}-n+6 n+3\right)=\frac{1}{3}(2 n+1)\left(2 n^{2}+2 n+3 n+3\right)= \\
=\frac{1}{3}(2 n+1)(2 n(n+1)+3(n+1))=\frac{1}{3}(n+1)(2 n+1)(2 n+3)=\frac{1}{3}(n+1)\left(4 n^{2}+8 n+3\right)= \\
\quad=\frac{1}{3}(n+1)\left(4 n^{2}+4 n+4-1\right)=\frac{1}{3}(n+1)\left(4(n+1)^{2}-1\right)
\end{gathered}
$$

7. $S_{n}=\sum_{i=1}^{n}(-1)^{i} * i^{2}=(-1)^{n} \frac{1}{2} n(n+1)$

Solution: Base case $n=1:(-1) 1^{2}=(-1) \frac{1 *(1+1)}{2}$

Induction step: assuming S_{n} true, we want to prove $S_{n+1}=(-1)^{n+1} \frac{1}{2}(n+1)(n+2)$

$$
\begin{gathered}
S_{n+1}=S_{n}+(-1)^{n+1}(n+1)^{2}=(-1)^{n} \frac{1}{2} n(n+1)+(-1)^{n+1}(n+1)^{2}= \\
=(-1)^{n} \frac{1}{2}(n+1)(n-2(n+1))=(-1)^{n} \frac{1}{2}(n+1)(-n-2)=(-1)^{n+1} \frac{1}{2}(n+1)(n+2)
\end{gathered}
$$

8. Prove that $n!>3^{n}>2^{n}>n^{2}>n \log _{2}(n)>n>\log _{2}(n)$ for $n \geq 7$

Solution: Base case $n=7$:
$7!=5040>3^{7}=2187>2^{7}=128>7^{2}=49>7 * \log _{2}(7)=19.65>7>\log _{2}(7)=2.81$
Induction step: using inequalities for n, we want to prove that
$(n+1)!>3^{n+1}>2^{n+1}>(n+1)^{2}>(n+1) \log _{2}(n+1)>n+1>\log _{2}(n+1)$
We start from the left side:

$$
\begin{gathered}
(n+1)!=n!(n+1)>3^{n}(n+1)>3^{n} * 3=3^{n+1}=3^{n} * 3>2^{n} * 3>2^{n} * 2=2^{n+1} \\
2^{n+1}=2^{n} * 2>n^{2} * 2=n^{2}+n^{2} \geq n^{2}+7 n=n^{2}+2 n+5 n>n^{2}+2 n+1=(n+1)^{2}
\end{gathered}
$$

We have proved so far the first three inequalities. Here is the proof for the last one: $2^{n+1}>n^{2} \Rightarrow n+1>\log _{2}\left(n^{2}\right) \geq \log _{2}(7 n)=\log _{2}(n+6 n)>\log _{2}(n+1)$

Finally the inequalities fourth and fifth:
$n+1>\log _{2}(n+1) \Rightarrow(n+1)^{2}>(n+1) \log _{2}(n+1)>(n+1) \log _{2}(7)>n+1$

3 Induction proofs

PB 1 Show that 5 divides $8^{n}-3^{n}$ for any natural number n.
Solution: Base case $n=0: 8^{0}-3^{0}=1-1=0$ is a multiple of 5
Induction Step : Assuming $8^{n}-3^{n}=5 k$ we want to prove that $5 \mid\left(8^{n+1}-3^{n+1}\right)$
$8^{n+1}-3^{n+1}=8 * 8^{n}-3 * 3^{n}=5 * 8^{n}+3\left(8^{n}-3^{n}\right)=5 * 8^{n}+5 k=5\left(8^{n}+k\right)$ thus multiple of 5
Solution without induction:
$8^{n+1}-3^{n+1}=(8-3) \sum_{k=0}^{n} 8^{k} * 3^{n-k}$
which is a multiple of 5 due to the first factor.

PB 2 Binary trees height Prove that depth (height) of a binary tree with n nodes is at least $\left\lfloor\log _{2}(n)\right\rfloor$ (depth is the max number of edges on a path from root to a leaf).

Solution: Base case $n=1$, depth $=0 \geq \log (1)=0$
Base case $n=2$, depth $=1 \geq \log (2)=1$
Strong Induction Step: Will assume the property is true for any $k<n$, and will prove it for n. In particular the k-s for which we are going to need it are the number of nodes in the Left and Right subtrees.

Lets say the root of the binary tree has a left subtree with p nodes and a right subtree with q nodes. Then $n=1+p+q$. Lets assume (without loss of generality) that $p \geq q$. $p<n$ so by induction hypothesis we know depth $h_{L} \geq\left\lfloor\log _{2}(p)\right\rfloor$
depth $=1+\max \left(\right.$ depth $_{L}$, depth $\left._{R}\right) \geq 1+$ depth $_{L} \geq$
$1+\left\lfloor\log _{2}(p)\right\rfloor=1+\left\lfloor\log _{2}\left(\frac{2 p}{2}\right)\right\rfloor=1+\left\lfloor\log _{2}(2 p)-1\right\rfloor=\left\lfloor\log _{2}(2 p)\right\rfloor$
If n is even then $p \geq q=n-p-1 \Rightarrow 2 p>n \Rightarrow\left\lfloor\log _{2}(2 p)\right\rfloor \geq\left\lfloor\log _{2}(n)\right\rfloor$
If n is odd then $\left\lfloor\log _{2}(n-1)\right\rfloor=\left\lfloor\log _{2}(n)\right\rfloor$
and $p \geq q=n-p-1 \Rightarrow 2 p \geq n-1 \Rightarrow\left\lfloor\log _{2}(2 p)\right\rfloor \geq\left\lfloor\log _{2}(n-1)\right\rfloor=\left\lfloor\log _{2}(n)\right\rfloor$

PB 3 Polygon sum of angles Prove that the sum of the interior angles of a convex polygon with n sides is $(n-2) \pi$. You can assume known that the sum of angles of any triangle is π

Solution: Base case is the triangle $n=3$ for which the property is given as known : sum of triangle angles is $(3-2) \pi=\pi$.

Induction step : given the property holds for a convex polygon with n sides, we want to prove it for a convex polygon with $n+1$ sides. If $\mathrm{P}=\mathrm{ABDC} . .$. is the polygon with $n+1$ sides, cutting a triangle ABC out of it results in a convex polygon with n sides.

So we can sum the angles of P as the sum of angels in triangle ABC plus the sum of angles of n-sides-polygon ACDE.... Applying induction hypothesis we get
$\pi+(n-1-2) \pi=(n-2) \pi$

PB 5 Will everyone get the same grade? Jimmy found a proof that every student in CS1800 will get the same exact grade, by induction over the number n of students in the class:

- Define the statement $P_{n}=$ "in a class of size n, all students get the same grade"
- Base step $n=1, P_{n}$ is true, since there is only one student
- Inductive step: If a the class has size n, consider all n subsets of size $n-1$. Since P_{n-1} is true, then all these subsets of students will get the same grade (per subset). But the subsets intersect, so it means all students will get the same grade, or P_{n} is true.

Where is Jimmy wrong?
Solution: Jimmy is wrong in Inductive Step, specifically $P_{1} \Rightarrow P_{2}$ (the other implications, and the best case do hold true). For $n=2$ there are two subsets of $n-1=1$ each; they DO NOT OVERLAP (INTERSECT) so the argument is flawed.

PB 6 Sum of Perfect Squares. Prove that for all natural number $n, 10^{n}$ can be written as a sum of two perfect squares ($10^{n}=a^{2}+b^{2}$ for some a, b positive integers).

