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The goal is calcultae
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,where the denominator is an Euclidean norm of a vector. Sum of square is fast enough to calculate, but the
main problem is to calculate the inverse square root(see equation (TJ)).
Single-precision floating-point format
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which contains three part: sign : bit(31); exponent : bit(23 — 30); fraction : bit(0 — 22). And its value
can be written adl]
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since x is a norm, always positive and where:
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where F' transform the fraction into integer, and L is a constant(223).
e = (b30b29 s 523)2 — 127
=F—-B (6)

where F is the bits format for exponent 8-bits, and B is a constant(127).
Floating-point format to Integer-Format What if we transform the floating-point format(see in the
figure) into integer bit using (5) and (6), which can be easily written as:

Integer(a:) = (bgzbgl . bo)g + (bgobgg . bgg)g X 223 (7)
= F+EL 8)
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First Step Approximation
Take a log based on 2 for equation (I)):

1
logy(y) = —§1ogz(x) )
1
= logy [(1+ f,) x 2%] = —5 log, (1 + fe) x 2%] (10)
1
= logy (1+fy)+ey = _5[10g2(1+fx)+6x] (11)

There is an approximation for loga(1 + z) if © € [0,1), which is = + o, where ¢ is pre-defined con-
stanlEksee the following picture)
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Therefore equation(IT]) can be further inferred:
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fy+0+€y%_§(fm+0'+ez) (12)
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= SL(o = B)+ F, + E,L ~ —(F, + E,L) (14)
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= §L(0 — B) + Integer(y) = —ilnteger(x) using (8) (15)
1
= Integer(y) ~ —§Integer(m’) + magic-number (16)

where magic-number is —3L(o — B).
In the algorithm, step
i = *(long*)&y;

is trying to transform floating into integer format and then (I6)) is corresponding to the algorithm step:
i = 0x5F3759DF — (i >> 1); 17

where 7 >> 1 is divided by 2.
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Second Step Approximation So far, the first step approximation already did a pretty good job, but there
is a way we could improve it even further, which is using Newton method. (I)) can be written as function of

Yy

fly) = 2 (18)
easily to get the first derivation is:
2
fly)=-= (19)
Yy
According to Newton method
fy
Ynt1 = Yn — f’((yz)) (20)
1 1
= Yn + 5¥n — 570 1)
3 1
= 5Un — ixyz (22)

where v, is the first step approximation in equation (16), and x is the original input x, which explains the
last step in the algorithm:

3 =z . .
Ynew = Yold * (5 —g* y%4); //Newton iteration



