Fast Inverse Square Root

Bingyu Wang
September 15, 2017

The goal is calcultae

= — 1
Yy NG (1)
,where the denominator is an Euclidean norm of a vector. Sum of square is fast enough to calculate, but the
main problem is to calculate the inverse square root(see equation (TJ)).
Single-precision floating-point format

sign exponent (8 bits) fraction (23 bits)
| I |

ofol1|1]1]1[1]ololol1]0|o]o|o|olofo]ololololo]lo|o]lofo]lolo]olo]o
31 30 2322 (bit index) 0

which contains three part: sign : bit(31); exponent : bit(23 — 30); fraction : bit(0 — 22). And its value
can be written adl]

T = (—l)b31 X (1 + 0.bgobay - - - b0)2 % 2(b30b29~~-b23)2—127 2)
— (_1)631 % (1 +f) % 9¢€ (3)
=(1+f)x2°)

since x is a norm, always positive and where:

J = (0.ba2bay1 - - - bg)2
(bazba1 - - - bo)2

223
F
=7)
where F' transform the fraction into integer, and L is a constant(223).
e = (b30b29 s 523)2 — 127
=F—-B (6)

where F is the bits format for exponent 8-bits, and B is a constant(127).
Floating-point format to Integer-Format What if we transform the floating-point format(see in the
figure) into integer bit using (5) and (6), which can be easily written as:

Integer(a:) = (bgzbgl . bo)g + (bgobgg . bgg)g X 223 (7)
= F+EL 8)

"https://en.wikipedia.org/wiki/Single-precision_floating-point_format

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

First Step Approximation
Take a log based on 2 for equation (I)):

1
logy(y) = —§1ogz(x))
1
= logy [(1+ f,) x 2%] = —5 log, (1 + fe) x 2%] (10)
1
= logy (1+fy)+ey = _5[10g2(1+fx)+6x] (11)

There is an approximation for loga(1 + z) if © € [0,1), which is = + o, where ¢ is pre-defined con-
stanlEksee the following picture)

1 B In2(1+x)
B o
0.75
0.5
0.25
0
0 0.2 0.4 0.6 0.8

Therefore equation(IT]) can be further inferred:

1
fy+0+€y%_§(fm+0'+ez) (12)
F, 1 F, .
:>f+a+Ey—B%—§(T+J+Ex—B)usmg@),(]§|) (13)
3 1
= SL(o = B)+ F, + E,L ~ —(F, + E,L) (14)
3 1
= §L(0 — B) + Integer(y) = —ilnteger(x) using (8) (15)
1
= Integer(y) ~ —§Integer(m’) + magic-number (16)

where magic-number is —3L(o — B).
In the algorithm, step
i = *(long*)&y;

is trying to transform floating into integer format and then (I6)) is corresponding to the algorithm step:
i = 0x5F3759DF — (i >> 1); 17

where 7 >> 1 is divided by 2.

Znttps://en.wikipedia.org/wiki/Fast_inverse_square_root

https://en.wikipedia.org/wiki/Fast_inverse_square_root

Second Step Approximation So far, the first step approximation already did a pretty good job, but there
is a way we could improve it even further, which is using Newton method. (I)) can be written as function of

Yy

fly) = 2 (18)
easily to get the first derivation is:
2
fly)=-= (19)
Yy
According to Newton method
fy
Ynt1 = Yn — f’((yz)) (20)
1 1
= Yn + 5¥n — 570 1)
3 1
= 5Un — ixyz (22)

where v, is the first step approximation in equation (16), and x is the original input x, which explains the
last step in the algorithm:

3 =z . .
Ynew = Yold * (5 —g* y%4); //Newton iteration

