# Fast Inverse Square Root 

Bingyu Wang

September 15, 2017

The goal is calcultae

$$
\begin{equation*}
y=\frac{1}{\sqrt{x}} \tag{1}
\end{equation*}
$$

,where the denominator is an Euclidean norm of a vector. Sum of square is fast enough to calculate, but the main problem is to calculate the inverse square root(see equation (1)).

## Single-precision floating-point format


which contains three part: sign : bit(31); exponent : bit $(23-30)$; fraction : bit $(0-22)$. And its value can be written as ${ }^{11}$

$$
\begin{align*}
x & =(-1)^{b_{31}} \times\left(1+0 . b_{22} b_{21} \cdots b_{0}\right)_{2} \times 2^{\left(b_{30} b_{29} \cdots b_{23}\right)_{2}-127}  \tag{2}\\
& =(-1)^{b_{31}} \times(1+f) \times 2^{e}  \tag{3}\\
& =(1+f) \times 2^{e} \tag{4}
\end{align*}
$$

since $x$ is a norm, always positive and where:

$$
\begin{align*}
f & =\left(0 . b_{22} b_{21} \cdots b_{0}\right)_{2} \\
& =\frac{\left(b_{22} b_{21} \cdots b_{0}\right)_{2}}{2^{23}} \\
& =\frac{F}{L} \tag{5}
\end{align*}
$$

where $F$ transform the fraction into integer, and $L$ is a constant $\left(2^{23}\right)$.

$$
\begin{align*}
e & =\left(b_{30} b_{29} \cdots b_{23}\right)_{2}-127 \\
& =E-B \tag{6}
\end{align*}
$$

where $E$ is the bits format for exponent 8 -bits, and $B$ is a constant(127).
Floating-point format to Integer-Format What if we transform the floating-point format(see in the figure) into integer bit using (5) and (6), which can be easily written as:

$$
\begin{align*}
\operatorname{Integer}(x) & =\left(b_{22} b_{21} \cdot b_{0}\right)_{2}+\left(b_{30} b_{29} \cdot b_{23}\right)_{2} \times 2^{23}  \tag{7}\\
& =F+E L \tag{8}
\end{align*}
$$

[^0]
## First Step Approximation

Take a $\log$ based on 2 for equation (1):

$$
\begin{align*}
\log _{2}(y) & =-\frac{1}{2} \log _{2}(x)  \tag{9}\\
\Rightarrow \quad \log _{2}\left[\left(1+f_{y}\right) \times 2^{e_{y}}\right] & =-\frac{1}{2} \log _{2}\left[\left(1+f_{x}\right) \times 2^{e_{x}}\right]  \tag{10}\\
\Rightarrow \quad \log _{2}\left(1+f_{y}\right)+e_{y} & =-\frac{1}{2}\left[\log _{2}\left(1+f_{x}\right)+e_{x}\right] \tag{11}
\end{align*}
$$

There is an approximation for $\log _{2}(1+x)$ if $x \in[0,1)$, which is $x+\sigma$, where $\sigma$ is pre-defined con$\operatorname{stan} t^{2}$ see the following picture)


Therefore equation (11) can be further inferred:

$$
\begin{align*}
f_{y}+\sigma+e_{y} & \approx-\frac{1}{2}\left(f_{x}+\sigma+e_{x}\right)  \tag{12}\\
\Rightarrow \frac{F_{y}}{L}+\sigma+E_{y}-B & \approx-\frac{1}{2}\left(\frac{F_{x}}{L}+\sigma+E_{x}-B\right) \text { using (5), (6) }  \tag{13}\\
\Rightarrow \frac{3}{2} L(\sigma-B)+F_{y}+E_{y} L & \approx-\frac{1}{2}\left(F_{x}+E_{x} L\right)  \tag{14}\\
\Rightarrow \frac{3}{2} L(\sigma-B)+\operatorname{Integer}(y) & \approx-\frac{1}{2} \operatorname{Integer}(x) \text { using (8) }  \tag{15}\\
\Rightarrow \operatorname{Integer}(y) & \approx-\frac{1}{2} \operatorname{Integer}(x)+\text { magic-number } \tag{16}
\end{align*}
$$

where magic-number is $-\frac{3}{2} L(\sigma-B)$.
In the algorithm, step

$$
i=*(l o n g *) \& y
$$

is trying to transform floating into integer format and then 16 is corresponding to the algorithm step:

$$
\begin{equation*}
i=0 \times 5 \mathrm{~F} 3759 \mathrm{DF}-(i \gg 1) \tag{17}
\end{equation*}
$$

where $i \gg 1$ is divided by 2 .

[^1]Second Step Approximation So far, the first step approximation already did a pretty good job, but there is a way we could improve it even further, which is using Newton method. (1) can be written as function of $y$ :

$$
\begin{equation*}
f(y)=\frac{1}{y^{2}}-x \tag{18}
\end{equation*}
$$

easily to get the first derivation is:

$$
\begin{equation*}
f^{\prime}(y)=-\frac{2}{y^{3}} \tag{19}
\end{equation*}
$$

According to Newton method

$$
\begin{align*}
y_{n+1} & =y_{n}-\frac{f\left(y_{n}\right)}{f^{\prime}\left(y_{n}\right)}  \tag{20}\\
& =y_{n}+\frac{1}{2} y_{n}-\frac{1}{2} x y_{n}^{3}  \tag{21}\\
& =\frac{3}{2} y_{n}-\frac{1}{2} x y_{n}^{3} \tag{22}
\end{align*}
$$

where $y_{n}$ is the first step approximation in equation (16), and $x$ is the original input $x$, which explains the last step in the algorithm:

$$
y_{\text {new }}=y_{o l d} *\left(\frac{3}{2}-\frac{x}{2} * y_{o l d}^{2}\right) ; / / \text { Newton iteration }
$$


[^0]:    https://en.wikipedia.org/wiki/Single-precision_floating-point_format

[^1]:    $\sqrt[2]{\text { https://en.wikipedia.org/wiki/Fast_inverse_square_root }}$

