
Fast Inverse Square Root

Bingyu Wang

September 15, 2017

The goal is calcultae

y =
1√
x

(1)

,where the denominator is an Euclidean norm of a vector. Sum of square is fast enough to calculate, but the
main problem is to calculate the inverse square root(see equation (1)).

Single-precision floating-point format

which contains three part: sign : bit(31); exponent : bit(23 − 30); fraction : bit(0 − 22). And its value
can be written as1

x = (−1)b31 × (1 + 0.b22b21 · · · b0)2 × 2(b30b29···b23)2−127 (2)

= (−1)b31 × (1 + f)× 2e (3)

= (1 + f)× 2e (4)

since x is a norm, always positive and where:

f = (0.b22b21 · · · b0)2

=
(b22b21 · · · b0)2

223

=
F

L
(5)

where F transform the fraction into integer, and L is a constant(223).

e = (b30b29 · · · b23)2 − 127

= E −B (6)

where E is the bits format for exponent 8-bits, and B is a constant(127).
Floating-point format to Integer-Format What if we transform the floating-point format(see in the

figure) into integer bit using (5) and (6), which can be easily written as:

Integer(x) = (b22b21 · b0)2 + (b30b29 · b23)2 × 223 (7)

= F + EL (8)

1https://en.wikipedia.org/wiki/Single-precision_floating-point_format

1

https://en.wikipedia.org/wiki/Single-precision_floating-point_format

First Step Approximation
Take a log based on 2 for equation (1):

log2(y) = −
1

2
log2(x) (9)

⇒ log2 [(1 + fy)× 2ey] = −1

2
log2 [(1 + fx)× 2ex] (10)

⇒ log2 (1 + fy) + ey = −1

2
[log2(1 + fx) + ex] (11)

There is an approximation for log2(1 + x) if x ∈ [0, 1), which is x + σ, where σ is pre-defined con-
stant2(see the following picture)

Therefore equation(11) can be further inferred:

fy + σ + ey ≈ −
1

2
(fx + σ + ex) (12)

⇒ Fy

L
+ σ + Ey −B ≈ −

1

2
(
Fx

L
+ σ + Ex −B) using (5), (6) (13)

⇒ 3

2
L(σ −B) + Fy + EyL ≈ −

1

2
(Fx + ExL) (14)

⇒ 3

2
L(σ −B) + Integer(y) ≈ −1

2
Integer(x) using (8) (15)

⇒ Integer(y) ≈ −1

2
Integer(x) + magic-number (16)

where magic-number is −3
2L(σ −B).

In the algorithm, step
i = ∗(long∗)&y;

is trying to transform floating into integer format and then (16) is corresponding to the algorithm step:

i = 0x5F3759DF− (i >> 1); (17)

where i >> 1 is divided by 2.
2https://en.wikipedia.org/wiki/Fast_inverse_square_root

2

https://en.wikipedia.org/wiki/Fast_inverse_square_root

Second Step Approximation So far, the first step approximation already did a pretty good job, but there
is a way we could improve it even further, which is using Newton method. (1) can be written as function of
y:

f(y) =
1

y2
− x (18)

easily to get the first derivation is:

f ′(y) = − 2

y3
(19)

According to Newton method

yn+1 = yn −
f(yn)

f ′(yn)
(20)

= yn +
1

2
yn −

1

2
xy3n (21)

=
3

2
yn −

1

2
xy3n (22)

where yn is the first step approximation in equation (16), and x is the original input x, which explains the
last step in the algorithm:

ynew = yold ∗ (
3

2
− x

2
∗ y2old); //Newton iteration

3

