Inclusion-Exclusion Principle and Turan’s Theorem

LEUNG Tat-Wing

For a finite set A, the cardinality |A| denote its number of elements. If there are two finite sets A and
B, let AU B denote the union of A and B. (It includes the elements in A or B.) Let AN B denote the
intersection of A and B. (Tt includes the elements in both A and B.) Everybody knows that if A and B do
not have any common element, then |A U B| = |A]| + | B|. However, if A and B have a common element z,
then in counting the elements of A, # will be counted once, but in counting the elements of B, x will be
counted once more. In order to avoid such repetition, in computing |A U B|, we have to subtract the number
of repetitions, namely |[AN B|. So |[AU B| = |A|+ |B| —|AN B|.

For the union AU BUC of three sets, we can first compute the cardinalities of A, B and . Adding them,
we find it is too big. So we have to subtract the cardinalities of some intersections. Now the intersection of
any two of A, B and C can be AN B, ANC or BNC. When we subtract the number of elements in these
intersections, we find it becomes too small. Finally we have to add the number of elements in the intersection
of the three sets. At the end [AUBUC| = |A|+ |B|+|C|-|ANB|—|ANC|—|BNC|+|ANnBNC].

n
In general, if we have n finite sets Ay, Ao, ..., A,, then |[AjUAU---UA,| = Z |A;| — Z |4, A+
i=1 1<i<j<n
Z |A; NA; N Agl — -+ (=D)AL N Ay N - N Ay, where the first sum on the right side is the
1<i<j<k<n
total of the cardinalities of Ay to A,, the second sum is the total of the cardinalities of the intersection of
every two sets and so on until we get to the intersection of A1, Ao, ..., A,.

The equation above is generally called the Inclusion-Exclusion Principle, whose name is obvious. It
can be proved by mathematical induction. Moreover it can also be proved by binomial theorem like the
following. For x belongs to A1 U AsU---U A, let @ belongs to k A; (k > 1), say for convenience, z belongs
to A1, As, ..., Ag, but does not belong to Axy1,..., An. Then the “contribution” of  in A1 U Ay---U A,
is 1. In the first sum on right side, the “contribution” of x is k = C¥. In the second sum, as z appears

in Ay, Ag, ..., Ag, © will appear in the intersesection of every two of them. So the “contribution” in the
second sum is C¥. Analyzing these further, we will find the sum of all “contributions” of x on the right side
is OF —Ch +C5 — - 4+ (=1)**1CF =1 — (1 — 1)* = 1. Note we have used the binomial theorem. As the

contribution of x on both sides are equal, we have obtained a proof of the Inclusion-Exclusion Principle.

Furthermore the binomial coefficients have the following properties. When m < %, Ck increases. When
k > £ it decreases. (For example, when k = 5, we have Cf < C} < C§ = C§ > C§ > C2, C3, reaches
maximum when k = 2,3. When k =6, C§ < C} < C% < C§ > Cf > C§ > Cf, Cf, reaches maximum when
k = 3.) Using this relation, the reader can prove that if in the right side of the inclusion-exclusion formula,
deleting a positive term and all other terms that follow it, the left side will become greater than the right
side. This is because the contribution by & on the right will become nonpositive. Or the contribution in
the deleted terms is nonnegative. Similarly, if in the right side of the inclusion-exclusion formula, deleting a
negative term and all other terms that follow it, the left side will become less than the right side. This is a

useful estimate.

The use of the Inclusion-Exclusion Principle in computing the sizes of sets appears often, with a wide
range of applications.

Example 1: This is a classical problem. Take a rearrangement of the numbers 1,2,... n. If no number
occupied the same position as before, then we say it is a derangement. (For example, 4321 is a derangement,
but 4213 is not.) Now, how many derangements are there?

Solution: Obviously, there are n! = n x (n — 1) x --- x 1 rearrangements. If we try to find the number of
derangement directly, this is not easy. So for 1 < ¢ < n, we define A; to be the set of rearrangements having
i in the correct position. It is easy to see that |A4;| = (n — 1)!, similarly, |4; N A;| = (n — 2)!, here i # j, and
so on. Hence

[AUA U UAL =D A= D JANA I+ Y JANANA =+ (=1 A N AN N A
i=1 1<i<j<n 1<i<j<k<n
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1 n 1 n 1 n—1 1 n! n! n—ln!
=nn—-I0=C3n=2)14C5(n=3)1—--- 4+ (=1) 1:n.—§—|—§—~~—|—(—1) —

Finally, the number of derangements is n! — |[A; U Ay U ---U A, | = n'(% — % 4o (=)L),

n!

n!’

Example 2: (TIMO 1991) Let S = {1,2,...,280}. Find the smallest natural number n such that every n
element subset of S contains 5 pairwise relatively prime numbers.

Solution: First we use the inclusion-exclusion principle to get n > 217. Let Ay, Aa, Az, A4 be the subsets of
S containing multiples of 2,3,5,7, respectively. Then |A1]| = 140, |As| = 93, |As| = 56, |A4| = 40, A1 N A,
= 46, |A1 N A3| = 28, |A1 N A4| = 20, |A2 N A3| = 18, |A2 N A4| = 13, |A3 N A4| = 8, |A1 N Az N A3| = 9,
[ATNAsNA =6, ]A1NAsN A =4, [AaNAsN A =2, |4 NANAsN Ayl = 1. So |A1NAs N Az N Ayl =
140+ 934+ 56+40—-46—-28 —20—18 - 13 —-84+94+6+4+2—1 = 216. For this 216 element set, among
any b numbers, there must be two both belong to Ay, Ao, Az or A4, hence not relatively prime. According
to the problem, we must have n > 217.

Now we prove that every 217 element subset of S must have 5 pairwise relatively prime numbers. The
idea is to construct proper “pigeonholes”. Here i1s an elegant construction. Let A be a subset of S with
|A] > 217. Define By = {1 or prime numbers in S}, |B1| = 60, By = {2%,3%,5%, 7%, 11%,13%},|Ba| = 6, B3 =
{2x131,3x89,5x53,7x37,11x23,13x 19}, |Bs| = 6,B4 = {2x127,3x87,5x47,7x31,11x19,13x17},|Ba4| =
6,Bs = {2x113,3x79,5x43,7Tx 27,11 x 17},|Bs| = 5, B¢ = {2x109,3 x73,5x41,7x 23,11 x 13}, |Bs| = 5.
It is easy to see By and Bg are disjoint. Also |B; U By U BsU B4U B3 U Bg| = 88. Removing these 88 numbers,
S still has 280 — 88 = 192 numbers. Now A has at least 217 elements, 217 — 192 = 25, that is, there are at
least 25 elements in A that belong to By to Bs. Obviously it cannot be that every B; only contains 4 or less
elements of A. That is, there are at least 5 elements of A belong to the same B;, hence are relatively prime.
Notwe we have used another principle: pigeonhole principle.

Example 3: (1989 IMO) Let n be a positive integer. We say a permutation (z1, 2, ..., 22,) of {1,2,...,2n}
has property P if and only if there is at least one ¢ in {1,2,... 2n — 1} such that |z; — 2;41| = n holds.
Prove that there are more permutations with property P than those permutations without property P.

Solution: Note if |#; — x;41| = n, then one of z; or ;11 must be less than n 4+ 1. For k = 1,2,... n,
define Ag to be the set of all permutations having & and & 4+ n next to each other. It is easy to see that
|Ak| = 2 x (2n— 1)L (This is because k and k + n are grouped together, their positions may be interchanged,
think of them as one “number”, there are 2n — 2 others, and so (2n — 2) + 1 positions for any number.) Also
|[Ap N AR =22 x (2n —2)1,1 <k < h <n, (k and k + n are grouped as one “number” and h and h + n are
grouped as one “number”.) So the number of permutations with property P is

[ATUA U U A > Akl = D AN Apl=2x (2n = 1)l x n— CF x 2% x (2n — 2)!
k=1 1<k<h<n
n

=2 2n — 2)! = (2n)!
nx (2n Mxn (n)XQn—l

1
2n)! x —.
>(n)><2

This number is more than half of (2n)!. So the permutations with property P is more than those permutations
without property P. (Years ago this problem was considered difficult, but with inclusion-exclusion relations,
this becomes easy.)

Example 4: Let n and k be positive integers, n > 3, 5 < k < n. There are n points on the plane, every
three of them are not collinear. If every point is connected to at least k other points by segments, then there
are three segments forming a triangle.

Solution: Since n > 3,k > 3, so k > 2. Hence among the n points, there are two points vy and vs that are

connected by a segments. Consider the remaining points. Let A be the set of points connected to v; and B

be the set of points connected to vy, then |A| >k —1,|B| > k — 1. Also,
n—2>|AUB|=|A|+|B|-|ANB|>2k—-2-|AN B|,

that is |A N B| > 2k —n > 0. So there exists a point vz connected to v; and vy forming a triangle.
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Example 5: There was 1990 mathematicians participated in a meeting. Every one of them has collaborated
with at least 1327 others. Prove that we can find 4 mathematicians, every pair of them collaborated with
each other.

Solution: Consider the mathematicians as points of a set. Connect pairs that collaborated with an edge
to yield a graph. As the above example, for vy and wvs that collaborated, they are connected. For the
remaining points, let A be the set of collaborators of vy and B be the set of collaborators of vs. Then

|A] > 1326, |B| > 1326. Similarly,
|[ANB|=]A|+|B|—|AUB| > 2 x 1326 — 1998 = 664 > 0,

that is, we can find a mathematician v that collaborated with vy and vs. Let C be the set of mathematicians
that collaborated with vs excluding v and vs. That is |C] > 1325. Also

1998 > [(ANB)UC| = |[ANB|+|C| - [ANBNC

that is [ANBNC| > |[ANB|+|C|— 1988 > 664 4+ 1325 — 1998 = 1 > 0. So AN BN C' is nonempty. Take
vg € ANBNC. Then vy, vy, vz, v4 collaborated.

In graph theory terminologies, examples 4 and 5 can be interpreted as giving a graph of n vertices, to
determine the least number of edges that will gaurantee the existence of a triangle (K3) or a K4 (a subgraph
with four vertices, every two vertices are connected by an edge). Putting it in another way, for a graph of
n vertices with no triangle, to determine the maximum number of its edges. This area of graph theory is
called extremal graph theory. The first result is the following:

Mantel’s Theorem (1907): For a simple graph with n vertices containing no K3, the maximum number
2

of edges is [%]

(Here [x] is the greatest integer less than or equal to . In example four, the number of edges is greater than
n 1

(5) XnXgz> [2—2], then the result follows immediately.)

A more delicate result is the following:

2
n

4q(q — )

Theorem: If a graph with n vertices has ¢ edges, then the graph has at least triangles.

Example 6: There are 21 points on a circle. Among the angles formed by extending pairs of points to the
center, there are at most 110 of these are greater than 120°.

Solution: If the angle formed by extending two points to the center is greater than 120°, then connect these
two points by an edge. This yields a graph. The graph has no triangles. So the number of edges is at most
[%] = [%] = 110, or there can be at most 110 such angles greater than 120°.

As above, define K, to be a p vertices complete graph, that is any two of the p vertices are connected
by an edge. For a graph G with n vertices, if it does not contain any K, then what is the maximum number
of edges G can have?

Turan’s Theorem (1941): If a graph G with n vertices does not contain any K, then that graph has

p—2 5 rp—1-r
n?—

Lo 2Ap—1) 2p—1) o

situation of Mantel’s theorem, this is a starting point of extremal graph theory.

at most edges, where r is defined by n = k(p — 1)+ 7,0 < r < p— 1. As in the

Paul Turan (1910-1976) was a Jewish Hungarian. At the time he was considering these kinds of problems;
he was in a concentration camp!



