
3 Countable and Uncountable Sets

A set A is said to be finite, if A is empty or there is n ∈ N and there is a
bijection f : {1, . . . , n} → A. Otherwise the set A is called infinite. Two
sets A and B are called equinumerous, written A ∼ B, if there is a bijection
f : X → Y . A set A is called countably infinite if A ∼ N. We say that A is
countable if A ∼ N or A is finite.

Example 3.1. The sets (0,∞) and R are equinumerous. Indeed, the func-
tion f : R → (0,∞) defined by f(x) = ex is a bijection.

Example 3.2. The set Z of integers is countably infinite. Define f : N → Z

by

f(n) =

{

n/2 if n is even;

−(n − 1)/2 if n is odd.

Then f is a bijection from N to Z so that N ∼ Z.

If there is no bijection between N and A, then A is called uncountable.

Theorem 3.3. There is no surjection from a set A to P(A).

Proof. Consider any function f : A → P(A) and let

B = {a ∈ A| a 6∈ f(a)}.

We claim that there is no b ∈ A such that f(b) = B. Indeed, assume
f(b) = B for some b ∈ A. Then either b ∈ B hence b 6∈ f(b) which is
a contradiction, or b 6∈ B = f(b) implying that b ∈ B which is again a
contradiction. Hence the map f is not surjective as claimed. �

As a corollary we have the following result.

Corollary 3.4. The set P(N) is uncountable.

Proposition 3.5. Any subset of a countable set is countable.

Proof. Without loss of generality we may assume that A is an infinite subset
of N. We define h : N → A as follows. Let h(1) = minA. Since A is infinite,
A is nonempty and so h() is well-defined. Having defined h(n − 1), we
define h(n) = min(A\{h(1), . . . , h(n−1)}). Again since A is infinite the set
(A \ {h(1), . . . , h(n − 1)}) is nonempty, h(n) is well-defined. We claim that
h is a bijection. We first show that h is an injection. To see this we prove
that h(n + k) > h(n) for all n, k ∈ N. By construction h(n + 1) > h(n)
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for all n ∈ N. Then setting B = {k ∈ N|h(n + k) > h(n)} we see that
1 ∈ B and if h(n + (k − 1)) > h(n), then h(n + k) > h(n + (k − 1)) > h(n).
Consequently, B = N. Since n was arbitrary, h(n + k) > h(n) for all
n, k ∈ N. Now taking distinct n,m ∈ N we may assume that m > n so that
m = n + k. By the above h(m) = h(n + k) > h(n) proving that h is an
injection. Next we show that h is a surjection. To do this we first show that
h(n) ≥ n. Let C = {n ∈ N|h(n) ≥ n}. Clearly, 1 ∈ C. If k ∈ C, then
h(k + 1) > h(k) ≥ n so that h(k + 1) ≥ k + 1. Hence k + 1 ∈ C and by the
principle of mathematical induction C = N. Now take n0 ∈ A. We have to
show that h(m0) = n0 for some m0 ∈ N. If n0 = 1, then m0 = 1. So assume
that n0 ≥ 2. Consider the set D = {n ∈ A|h(n) ≥ n0}. Since h(n0) ≥ n0,
the set D is nonempty and by the well-ordering principle D has a minimum.
Let m0 = minD. If m0 = 1, then h(m0) = min A ≤ n0 ≤ h(m0) and
hence h(m0) = n0. So we may also assume that n> minA. Then h(m0) ≥
n0 > h(m0 − 1) > . . . > h(1) in view of definitions of m0 and h. Since
h(m0) = min(A \ {h(1), . . . , h(m0 − 1)}) and n0 ∈ A \ {h(1), . . . , h(m0 − 1)}
and h(m0) ≥ n0, it follows that h(m0) = n0. This proves that h is also a
surjection. �

Proposition 3.6. Let A be a non-empty set. Then the following are equiv-
alent.

(a) A is countable.

(b) There exists a surjection f : N → A.

(c) There exists an injection g : A → N.

Proof. (a) =⇒ (b) If A is countably infinite, then there exists a bijection
f : N → A and then (b) follows. If A is finite, then there is bijection
h : {1, . . . , n} → A for some n. Then the function f : N → A defined by

f(i) =

{

h(i) 1 ≤ i ≤ n,

h(n) i > n.

is a surjection.
(b) =⇒ (c). Assume that f : N → A is a surjection. We claim that there is
an injection g;A → N. To define g note that if a ∈ A, then f−1({a}) 6= ∅.
Hence we set g(a) = min f−1((a)}). Now note that if a 6= a′, then the sets
f−1({a}) ∩ f−1({a′}) = ∅ which implies min−1({a}) 6= min−1({a′}). Hence
g(a) 6= g(a′)and g : A → N is an injective.
(c) ⇒ (a). Assume that g : A → N is an injection. We want to show that A
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is countable. Since g : A → g(A) is a bijection and g(A) ⊂ N, Proposition
3.5 implies that A is countable. �

Corollary 3.7. The set N × N is countable.

Proof. By Proposition 3.6 it suffices to construct an injective function f :
N × N → N. Define f : N × N → N by f(n,m) = 2n3m. Assume that
2n3m = 2k3l. If n < k, then 3m = 2k−n3l. The left side of this equality is
an odd number whereas the right is an even number implying n = k and
3m = 3l. Then also m = l. Hence f is injective. �

Proposition 3.8. If A and B are countable, then A × B is countable.

Proof. Since A and B are countable, there exist surjective functions f : N →
A and g : N → B. Define h : N×N → A×B by F (n,m) = (f(n), g(m)). The
function F is surjective. Since N×N is countably infinite, there is a bijection
h : N → N × N. Then G : N × A × B defined by G = F ◦ h is a surjection.
By part (c) of Proposition 3.6, the set A × B A × B is countable. �

Corollary 3.9. The set Q of all rational numbers is countable.

Proposition 3.10. Assume that the set I is countable and Ai is countable
for every i ∈ I . Then

⋃

i∈I Ai is countable.

Proof. For each i ∈ I, there exists a surjection fi : N → Ai. Moreover, since
I is countable, there exists a surjection g : N → I. Now define h : N × N →
⋃

i∈I Ai by F (n,m) = fg(n)(m) and let h : N → N×N be a bijection. Then F
is a surjection and the composition G = F ◦h : N →

⋃

i∈I Ai is a surjection.
By Proposition 3.6,

⋃

i∈i Ai is countable. �

Proposition 3.11. The set of real numbers R is uncountable.

The proof will be a consequence of the following result about nested
intervals.

Proposition 3.12. Assume that (In)n∈N is a countable collection of closed
and bounded intervals In = an, bn] satisfying In+1 ⊂ In for all n ∈ N. Then
⋂

n∈N
In 6= ∅.

Proof. Since [an+1, bn+1] ⊂ [an, bn] for all n, it follows that an ≤ bk for all
n, k ∈ N. So, the set A = {an|n ∈ N} is bounded above by every bk and
consequently a := supA ≤ bk for all k ∈ N. But this implies that the set
B = {bk| k ∈ N} is bounded below by a so that a ≤ b := inf B. Hence
⋂

n∈N
In = [a, b]. �
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Proof of Proposition 3.11. Arguing by contradiction assume that R is count-
able. Let x1, x2, x3, . . . be enumeration of R. Choose a closed bounded inter-
val I1 such that x1 6∈ I1. Having chosen the closed intervals I1, I2, . . . , In−1,
we choose the closed interval In to be a subset of In−1 such that xn 6∈ In.
Consequently, we have a countable collection of closed bounded intervals
(In) such that In+1 ⊂ In and xn 6∈ In. Then by the above proposition,
⋂

n∈N
In 6= ∅. Observe that if x belongs to this intersection, then x is not

on the list x1, x2, . . ., contradiction.
�
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