3 Countable and Uncountable Sets

A set A is said to be finite, if A is empty or there is $n \in \mathbb{N}$ and there is a bijection $f:\{1, \ldots, n\} \rightarrow A$. Otherwise the set A is called infinite. Two sets A and B are called equinumerous, written $A \sim B$, if there is a bijection $f: X \rightarrow Y$. A set A is called countably infinite if $A \sim \mathbb{N}$. We say that A is countable if $A \sim \mathbb{N}$ or A is finite.

Example 3.1. The sets $(0, \infty)$ and \mathbb{R} are equinumerous. Indeed, the function $f: \mathbb{R} \rightarrow(0, \infty)$ defined by $f(x)=e^{x}$ is a bijection.

Example 3.2. The set \mathbb{Z} of integers is countably infinite. Define $f: \mathbb{N} \rightarrow \mathbb{Z}$ by

$$
f(n)=\left\{\begin{array}{cl}
n / 2 & \text { if } n \text { is even } \\
-(n-1) / 2 & \text { if } n \text { is odd }
\end{array}\right.
$$

Then f is a bijection from \mathbb{N} to \mathbb{Z} so that $\mathbb{N} \sim \mathbb{Z}$.
If there is no bijection between \mathbb{N} and A, then A is called uncountable.
Theorem 3.3. There is no surjection from a set A to $\mathcal{P}(A)$.
Proof. Consider any function $f: A \rightarrow \mathcal{P}(A)$ and let

$$
B=\{a \in A \mid a \notin f(a)\} .
$$

We claim that there is no $b \in A$ such that $f(b)=B$. Indeed, assume $f(b)=B$ for some $b \in A$. Then either $b \in B$ hence $b \notin f(b)$ which is a contradiction, or $b \notin B=f(b)$ implying that $b \in B$ which is again a contradiction. Hence the map f is not surjective as claimed.

As a corollary we have the following result.
Corollary 3.4. The set $\mathcal{P}(\mathbb{N})$ is uncountable.
Proposition 3.5. Any subset of a countable set is countable.
Proof. Without loss of generality we may assume that A is an infinite subset of \mathbb{N}. We define $h: \mathbb{N} \rightarrow A$ as follows. Let $h(1)=\min A$. Since A is infinite, A is nonempty and so $h()$ is well-defined. Having defined $h(n-1)$, we define $h(n)=\min (A \backslash\{h(1), \ldots, h(n-1)\})$. Again since A is infinite the set $(A \backslash\{h(1), \ldots, h(n-1)\})$ is nonempty, $h(n)$ is well-defined. We claim that h is a bijection. We first show that h is an injection. To see this we prove that $h(n+k)>h(n)$ for all $n, k \in \mathbb{N}$. By construction $h(n+1)>h(n)$
for all $n \in \mathbb{N}$. Then setting $B=\{k \in \mathbb{N} \mid h(n+k)>h(n)\}$ we see that $1 \in B$ and if $h(n+(k-1))>h(n)$, then $h(n+k)>h(n+(k-1))>h(n)$. Consequently, $B=\mathbb{N}$. Since n was arbitrary, $h(n+k)>h(n)$ for all $n, k \in \mathbb{N}$. Now taking distinct $n, m \in \mathbb{N}$ we may assume that $m>n$ so that $m=n+k$. By the above $h(m)=h(n+k)>h(n)$ proving that h is an injection. Next we show that h is a surjection. To do this we first show that $h(n) \geq n$. Let $C=\{n \in \mathbb{N} \mid h(n) \geq n\}$. Clearly, $1 \in C$. If $k \in C$, then $h(k+1)>h(k) \geq n$ so that $h(k+1) \geq k+1$. Hence $k+1 \in C$ and by the principle of mathematical induction $C=\mathbb{N}$. Now take $n_{0} \in A$. We have to show that $h\left(m_{0}\right)=n_{0}$ for some $m_{0} \in \mathbb{N}$. If $n_{0}=1$, then $m_{0}=1$. So assume that $n_{0} \geq 2$. Consider the set $D=\left\{n \in A \mid h(n) \geq n_{0}\right\}$. Since $h\left(n_{0}\right) \geq n_{0}$, the set D is nonempty and by the well-ordering principle D has a minimum. Let $m_{0}=\min D$. If $m_{0}=1$, then $h\left(m_{0}\right)=\min A \leq n_{0} \leq h\left(m_{0}\right)$ and hence $h\left(m_{0}\right)=n_{0}$. So we may also assume that $n_{>} \min A$. Then $h\left(m_{0}\right) \geq$ $n_{0}>h\left(m_{0}-1\right)>\ldots>h(1)$ in view of definitions of m_{0} and h. Since $h\left(m_{0}\right)=\min \left(A \backslash\left\{h(1), \ldots, h\left(m_{0}-1\right)\right\}\right)$ and $n_{0} \in A \backslash\left\{h(1), \ldots, h\left(m_{0}-1\right)\right\}$ and $h\left(m_{0}\right) \geq n_{0}$, it follows that $h\left(m_{0}\right)=n_{0}$. This proves that h is also a surjection.

Proposition 3.6. Let A be a non-empty set. Then the following are equivalent.
(a) A is countable.
(b) There exists a surjection $f: \mathbb{N} \rightarrow A$.
(c) There exists an injection $g: A \rightarrow \mathbb{N}$.

Proof. (a) \Longrightarrow (b) If A is countably infinite, then there exists a bijection $f: \mathbb{N} \rightarrow A$ and then (b) follows. If A is finite, then there is bijection $h:\{1, \ldots, n\} \rightarrow A$ for some n. Then the function $f: \mathbb{N} \rightarrow A$ defined by

$$
f(i)= \begin{cases}h(i) & 1 \leq i \leq n, \\ h(n) & i>n .\end{cases}
$$

is a surjection.
$(b) \Longrightarrow(c)$. Assume that $f: \mathbb{N} \rightarrow A$ is a surjection. We claim that there is an injection $g ; A \rightarrow \mathbb{N}$. To define g note that if $a \in A$, then $f^{-1}(\{a\}) \neq \emptyset$. Hence we set $\left.g(a)=\min f^{-1}((a)\}\right)$. Now note that if $a \neq a^{\prime}$, then the sets $f^{-1}(\{a\}) \cap f^{-1}\left(\left\{a^{\prime}\right\}\right)=\emptyset$ which implies $\min ^{-1}(\{a\}) \neq \min ^{-1}\left(\left\{a^{\prime}\right\}\right)$. Hence $g(a) \neq g\left(a^{\prime}\right)$ and $g: A \rightarrow \mathbb{N}$ is an injective.
$(c) \Rightarrow(a)$. Assume that $g: A \rightarrow \mathbb{N}$ is an injection. We want to show that A
is countable. Since $g: A \rightarrow g(A)$ is a bijection and $g(A) \subset \mathbb{N}$, Proposition 3.5 implies that A is countable.

Corollary 3.7. The set $\mathbb{N} \times \mathbb{N}$ is countable.
Proof. By Proposition 3.6 it suffices to construct an injective function f : $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$. Define $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ by $f(n, m)=2^{n} 3^{m}$. Assume that $2^{n} 3^{m}=2^{k} 3^{l}$. If $n<k$, then $3^{m}=2^{k-n} 3^{l}$. The left side of this equality is an odd number whereas the right is an even number implying $n=k$ and $3^{m}=3^{l}$. Then also $m=l$. Hence f is injective.

Proposition 3.8. If A and B are countable, then $A \times B$ is countable.
Proof. Since A and B are countable, there exist surjective functions $f: \mathbb{N} \rightarrow$ A and $g: \mathbb{N} \rightarrow B$. Define $h: \mathbb{N} \times \mathbb{N} \rightarrow A \times B$ by $F(n, m)=(f(n), g(m))$. The function F is surjective. Since $\mathbb{N} \times \mathbb{N}$ is countably infinite, there is a bijection $h: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$. Then $G: \mathbb{N} \times A \times B$ defined by $G=F \circ h$ is a surjection. By part (c) of Proposition 3.6, the set $A \times B A \times B$ is countable.

Corollary 3.9. The set \mathbb{Q} of all rational numbers is countable.
Proposition 3.10. Assume that the set I is countable and A_{i} is countable for every $i \in I$. Then $\bigcup_{i \in I} A_{i}$ is countable.

Proof. For each $i \in I$, there exists a surjection $f_{i}: \mathbb{N} \rightarrow A_{i}$. Moreover, since I is countable, there exists a surjection $g: \mathbb{N} \rightarrow I$. Now define $h: \mathbb{N} \times \mathbb{N} \rightarrow$ $\bigcup_{i \in I} A_{i}$ by $F(n, m)=f_{g(n)}(m)$ and let $h: \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ be a bijection. Then F is a surjection and the composition $G=F \circ h: \mathbb{N} \rightarrow \bigcup_{i \in I} A_{i}$ is a surjection. By Proposition 3.6, $\bigcup_{i \in i} A_{i}$ is countable.

Proposition 3.11. The set of real numbers \mathbb{R} is uncountable.
The proof will be a consequence of the following result about nested intervals.

Proposition 3.12. Assume that $\left(I_{n}\right)_{n \in \mathbb{N}}$ is a countable collection of closed and bounded intervals $\left.I_{n}=a_{n}, b_{n}\right]$ satisfying $I_{n+1} \subset I_{n}$ for all $n \in \mathbb{N}$. Then $\bigcap_{n \in \mathbb{N}} I_{n} \neq \emptyset$.

Proof. Since $\left[a_{n+1}, b_{n+1}\right] \subset\left[a_{n}, b_{n}\right]$ for all n, it follows that $a_{n} \leq b_{k}$ for all $n, k \in \mathbb{N}$. So, the set $A=\left\{a_{n} \mid n \in \mathbb{N}\right\}$ is bounded above by every b_{k} and consequently $a:=\sup A \leq b_{k}$ for all $k \in \mathbb{N}$. But this implies that the set $B=\left\{b_{k} \mid k \in \mathbb{N}\right\}$ is bounded below by a so that $a \leq b:=\inf B$. Hence $\bigcap_{n \in \mathbb{N}} I_{n}=[a, b]$.

Proof of Proposition 3.11. Arguing by contradiction assume that \mathbb{R} is countable. Let $x_{1}, x_{2}, x_{3}, \ldots$ be enumeration of \mathbb{R}. Choose a closed bounded interval I_{1} such that $x_{1} \notin I_{1}$. Having chosen the closed intervals $I_{1}, I_{2}, \ldots, I_{n-1}$, we choose the closed interval I_{n} to be a subset of I_{n-1} such that $x_{n} \notin I_{n}$. Consequently, we have a countable collection of closed bounded intervals $\left(I_{n}\right)$ such that $I_{n+1} \subset I_{n}$ and $x_{n} \notin I_{n}$. Then by the above proposition, $\bigcap_{n \in \mathbb{N}} I_{n} \neq \emptyset$. Observe that if x belongs to this intersection, then x is not on the list x_{1}, x_{2}, \ldots, contradiction.

