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Binary Search Trees

◮ A Binary Search Tree is a binary tree with the following
properties: Given a node x in the tree

◮ if y is a node in the left subtree of x , then key [y ] ≤ key [x ].
◮ if y is a node in the right subtree of x , then key [x ] ≤ key [y ].
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◮ For simplicity, we will assume that all keys are distinct.



Binary Search Tree Operations

◮ Given a binary search tree, there are several operations
we want to perform.

◮ Insert an element
◮ Delete an element
◮ Search for an element
◮ Find the minimum/maximum element
◮ Find the successor/predecessor of a node.

◮ Once we see how these are done, it will be apparent that
the complexity of each of these is O(h), where h is the
height of the tree.

◮ The insert and delete operations are the hardest to
implement.

◮ Finding the minimum/maximum and searching are the
easiest, so we will start with these.



BST: Minimum/Maximum

◮ The minimum element is the left-most node.
◮ The maximum element is the right-most node of the tree.
◮ Here are implementations of these methods:

node Find_Min(x) { node Find_Max(x) {
while(x.left!=null) while(x.right!=null)

x=x.left; x=x.right;
return x; return x;

} }
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BST: Searching
◮ Search finds the node with value k in the tree rooted at x .

node Search(x,k) {
while(x!=null && k !=x.key) {

if(k<x.key)
x=x.left;

else
x=x.right;

}
return x;

}
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BST: Successor/Predecessor

◮ Finding the Successor/Predecessor of a node is harder.
◮ To find the successor y of a node x (if it exists)

◮ If x has a nonempty right subtree, then y is the smallest
element in the tree rooted at x .right . Why?

◮ If x has an empty right subtree, then y is the lowest
ancestor of x whose left child is also an ancestor of x .
Clearly.

node Successor(x) {
if(x.right!=null)

return Find_Min(x.right);
y=p[x];
while(y!=null && x=y.right) {

x=y;
y=y.parent;

}
return y;

}

◮ The predecessor operation is symmetric to successor.



BST: Successor Argument

◮ So, why is it that if x has an empty right subtree, then y is
the lowest ancestor of x whose left child is also an
ancestor of x?

◮ Let’s look at it the other way.
◮ Let y be the lowest ancestor of x whose left child is also an

ancestor of x .
◮ What is the predecessor of y?
◮ Since y has a left child, it must be the largest element in

the tree rooted at y .left
◮ If x is not the largest element in the subtree rooted at

y .left , then some ancestor of x (in the subtree) is the left
child of its parent.

◮ But y , which is not in this subtree, is the lowest such node.
◮ Thus x is the predecessor of y , and y is the successor of x .



BST: Successor Examples
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BST: Insertion

◮ First, search the tree until we find a node whose
appropriate child is null . Then insert the new node there.

◮ Below, T is the tree, and z the node we wish to insert.
Insert(T,z) {

node y=null;
x=T.root;
while(x!=null) {

y=x;
if(z.key<x.key)
x=x.left;

else
x=x.right;

}
z.parent=y;
if(y==null)

T.root=z;
else

if(z.key<y.key)
y.left=z;

else
y.right=z;

}



BST: Insertion Example
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BST: Deletion

◮ Deleting a node z is by far the most difficult operation.
◮ There are 3 cases to consider:

◮ If z has no children, just delete it.
◮ If z has one child, splice out z. That is, link z ’s parent and

child.
◮ If z has two children, splice out z ’s successor y , and

replace the contents of z with the contents of y .

◮ The last case works because if z has 2 children, then its
successor has no left child. Why?

◮ Deletion is made worse by the fact that we have to worry
about boundary conditions

◮ To simplify things, we will first define a function called
SpliceOut.



BST: Splice Out

◮ Any node with at most 1 child can be “spliced out”.
◮ Splicing out a node involves linking the parent and child of

a node.
SpliceOut(T,y) {

//Two children--can’t splice out.
if(y.left!=null && y.right!=null) return;

if(y.left!=null) x=y.left;
else if (y.right!=null) x=y.right;
else x=null;

if(x!=null) x.parent=y.parent;

//Set y’s parent’s child to y’s child
if(y.parent==null) x=T.root;
else {

if(y==y.parent.left) y.parent.left=x;
else y.parent.right=x;

}
}



BST: SpliceOut Examples
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BST: Deletion Algorithm

◮ Once we have defined the function SpliceOut, deletion
looks simple.

◮ Here is the algorithm to delete z from tree T .
Delete(T,z) {

if(z.left==null || z.right==null)
SpliceOut(T,z);

else {
y=Successor(z);
z.key=y.key;
SpliceOut(T,y);

}
}



BST: Deletion Examples
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BST: Time Complexity

◮ We stated earlier, and have now seen, that all of the BST
operations have time complexity O(h), where h is the
height of the tree.

◮ However, in the worst-case, the height of a BST is O(n),
where n is the number of nodes.

◮ In this case, the BST has gained us nothing.
◮ To prevent this worst-case behavior, we need to develop a

method which ensures that the height of a BST is kept to a
minimum.

◮ Red-Black Trees are binary search trees which have
height Θ(log n).



Red-Black Trees

◮ A red-black tree is a BST with the following properties:
◮ Each node is colored either red or black.
◮ If a node is red, both its children are black.
◮ Every simple path from a node to a descendent leaf has the

same number of black nodes.
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Red-Black Trees Fact and Terms

◮ The black-height of a node x is the number of black
nodes, not including x , on a path to any leaf.

◮ A red-black tree with n nodes has height at most
2 log(n + 1).

◮ Since red-black trees are binary search trees, all of the
operations that can be performed on binary search trees
can be performed on them.

◮ Furthermore, the time complexity will be the
same–O(h)–where h is the height.

◮ Unfortunately, insertion and deletion as defined for regular
binary search trees will not work for red-black trees. Why
not?

◮ Fortunately, insertion and deletion can both be modified so
that they work, and still have time complexity O(h).



Insert and Delete in RB Trees

◮ Inserting a node into a red-black tree is not trivial.
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◮ Similar things happen when we try to delete nodes.
◮ We will not discuss in depth these operations.
◮ We will discuss some of the concepts, however.



Red-Black Tree Insertion: Method

◮ To insert a node x into a red-black tree, we do the
following:

◮ Insert x with the standard BST Insert.
◮ Color x red.
◮ If x ’s parent is red, fix the tree.

◮ Notice that x ’s children, null, are black.
◮ Since we colored x red, we have not changed the black

height.
◮ The only problem we have is (possibly) having a red node

with a red child.
◮ Fixing the tree involves re-coloring some of the nodes and

performing rotations.



Left- and Right-Rotations

◮ Rotations are best defined by an illustration:
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yA

C

x

y
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C

A B
Left-Rotate(T,x)

Right-Rotate(T,y)

◮ Here, the letters A, B, and C represent arbitrary subtrees.
They could even be empty.

◮ It is not too hard to see that the binary search tree property
will still hold after a rotation.



Rotation Example
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Rotation Example
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Insertion Example
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Red Black Tree Summary

◮ Red-black trees are binary search trees which have height
Θ(log n) guaranteed.

◮ The basic operations can all be implemented in time
O(log n).

◮ Although inserting and deleting nodes only requires time
O(log n), they are nonetheless not trivial to implement.

◮ A regular binary search tree does not guarantee time
complexity of O(log n), only O(h), where h can be as large
as n.

◮ Thus red-black trees are useful if one wants to guarantee
that the basic operations will take O(log n) time.


