
Binary Search Trees

Chuck Cusack

Hope College

Spring Semester 2015

Binary Search Trees

◮ A Binary Search Tree is a binary tree with the following
properties: Given a node x in the tree

◮ if y is a node in the left subtree of x , then key [y] ≤ key [x].
◮ if y is a node in the right subtree of x , then key [x] ≤ key [y].

23

17

21

13

10

9

8

7

5

1

3

4

◮ For simplicity, we will assume that all keys are distinct.

Binary Search Tree Operations

◮ Given a binary search tree, there are several operations
we want to perform.

◮ Insert an element
◮ Delete an element
◮ Search for an element
◮ Find the minimum/maximum element
◮ Find the successor/predecessor of a node.

◮ Once we see how these are done, it will be apparent that
the complexity of each of these is O(h), where h is the
height of the tree.

◮ The insert and delete operations are the hardest to
implement.

◮ Finding the minimum/maximum and searching are the
easiest, so we will start with these.

BST: Minimum/Maximum

◮ The minimum element is the left-most node.
◮ The maximum element is the right-most node of the tree.
◮ Here are implementations of these methods:

node Find_Min(x) { node Find_Max(x) {
while(x.left!=null) while(x.right!=null)

x=x.left; x=x.right;
return x; return x;

} }

23

17

21

13

10

9

8

7

5

1

3

4

Minimum

Maximum

BST: Searching
◮ Search finds the node with value k in the tree rooted at x .

node Search(x,k) {
while(x!=null && k !=x.key) {

if(k<x.key)
x=x.left;

else
x=x.right;

}
return x;

}

23

17

21

13

10

9

8

7

5

1

3

4

x

NIL

Search(x,16)Search(x,10)

BST: Successor/Predecessor

◮ Finding the Successor/Predecessor of a node is harder.
◮ To find the successor y of a node x (if it exists)

◮ If x has a nonempty right subtree, then y is the smallest
element in the tree rooted at x .right . Why?

◮ If x has an empty right subtree, then y is the lowest
ancestor of x whose left child is also an ancestor of x .
Clearly.

node Successor(x) {
if(x.right!=null)

return Find_Min(x.right);
y=p[x];
while(y!=null && x=y.right) {

x=y;
y=y.parent;

}
return y;

}

◮ The predecessor operation is symmetric to successor.

BST: Successor Argument

◮ So, why is it that if x has an empty right subtree, then y is
the lowest ancestor of x whose left child is also an
ancestor of x?

◮ Let’s look at it the other way.
◮ Let y be the lowest ancestor of x whose left child is also an

ancestor of x .
◮ What is the predecessor of y?
◮ Since y has a left child, it must be the largest element in

the tree rooted at y .left
◮ If x is not the largest element in the subtree rooted at

y .left , then some ancestor of x (in the subtree) is the left
child of its parent.

◮ But y , which is not in this subtree, is the lowest such node.
◮ Thus x is the predecessor of y , and y is the successor of x .

BST: Successor Examples

23

17

21

13

10

9

8

7

5

1

3

4

23

17

21

13

10

9

8

7

5

1

3

4

Find_Min

y

x1

1

2

2

Successor(7)=8

Successor(10)=13

BST: Insertion

◮ First, search the tree until we find a node whose
appropriate child is null . Then insert the new node there.

◮ Below, T is the tree, and z the node we wish to insert.
Insert(T,z) {

node y=null;
x=T.root;
while(x!=null) {

y=x;
if(z.key<x.key)
x=x.left;

else
x=x.right;

}
z.parent=y;
if(y==null)

T.root=z;
else

if(z.key<y.key)
y.left=z;

else
y.right=z;

}

BST: Insertion Example

178

9

10

178

9

10

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

23

21

13

7

5

1

3

4

6 22

23

21

13

7

5

1

3

4

2218
6

y

y

Insert(T,z)

Insert(T,z)

z

z

BST: Deletion

◮ Deleting a node z is by far the most difficult operation.
◮ There are 3 cases to consider:

◮ If z has no children, just delete it.
◮ If z has one child, splice out z. That is, link z ’s parent and

child.
◮ If z has two children, splice out z ’s successor y , and

replace the contents of z with the contents of y .

◮ The last case works because if z has 2 children, then its
successor has no left child. Why?

◮ Deletion is made worse by the fact that we have to worry
about boundary conditions

◮ To simplify things, we will first define a function called
SpliceOut.

BST: Splice Out

◮ Any node with at most 1 child can be “spliced out”.
◮ Splicing out a node involves linking the parent and child of

a node.
SpliceOut(T,y) {

//Two children--can’t splice out.
if(y.left!=null && y.right!=null) return;

if(y.left!=null) x=y.left;
else if (y.right!=null) x=y.right;
else x=null;

if(x!=null) x.parent=y.parent;

//Set y’s parent’s child to y’s child
if(y.parent==null) x=T.root;
else {

if(y==y.parent.left) y.parent.left=x;
else y.parent.right=x;

}
}

BST: SpliceOut Examples

10

8

7

3

4

23

17

21

13

10

9

8

7

5

1

3

4

z

23

17

21

13

10

9

8

7

1

3

4

23

17

21

13

7

5

1

3

4 10

9

23

17

21

13

10

9

8

7

5

1

3

4
z

13

10

8

7

3

4

z

SpliceOut(T,z)

SpliceOut(T,z)

SpliceOut(T,z)

BST: Deletion Algorithm

◮ Once we have defined the function SpliceOut, deletion
looks simple.

◮ Here is the algorithm to delete z from tree T .
Delete(T,z) {

if(z.left==null || z.right==null)
SpliceOut(T,z);

else {
y=Successor(z);
z.key=y.key;
SpliceOut(T,y);

}
}

BST: Deletion Examples

23

17

21

13

10

8

7

5

1

3

4

23

17

21

13

10

9

8

7

5

1

3

4

z

23

17

21

13

10

9

8

7

5

1

3

4

23

17

21

13

8

7

5

1

3

4

zz 9

23

17

21

13

7

1

3

4

z

8

9

11

12

10

y

23

17

21

13

1

3

4

9

11

12

10

8

Delete(T,z)

Delete(T,z)

Delete(T,z)

BST: Time Complexity

◮ We stated earlier, and have now seen, that all of the BST
operations have time complexity O(h), where h is the
height of the tree.

◮ However, in the worst-case, the height of a BST is O(n),
where n is the number of nodes.

◮ In this case, the BST has gained us nothing.
◮ To prevent this worst-case behavior, we need to develop a

method which ensures that the height of a BST is kept to a
minimum.

◮ Red-Black Trees are binary search trees which have
height Θ(log n).

Red-Black Trees

◮ A red-black tree is a BST with the following properties:
◮ Each node is colored either red or black.
◮ If a node is red, both its children are black.
◮ Every simple path from a node to a descendent leaf has the

same number of black nodes.

1

23

13

83

6

7 415

119

10 27

30

4

Red-Black Trees Fact and Terms

◮ The black-height of a node x is the number of black
nodes, not including x , on a path to any leaf.

◮ A red-black tree with n nodes has height at most
2 log(n + 1).

◮ Since red-black trees are binary search trees, all of the
operations that can be performed on binary search trees
can be performed on them.

◮ Furthermore, the time complexity will be the
same–O(h)–where h is the height.

◮ Unfortunately, insertion and deletion as defined for regular
binary search trees will not work for red-black trees. Why
not?

◮ Fortunately, insertion and deletion can both be modified so
that they work, and still have time complexity O(h).

Insert and Delete in RB Trees

◮ Inserting a node into a red-black tree is not trivial.

Insert(9)

41

24

13

83

7

11

41

24

13

83

7

9

11

41

24

13

83

7

9

11

41

24

13

83

7

9

11

Insert(10)

10 10

?
?

◮ Similar things happen when we try to delete nodes.
◮ We will not discuss in depth these operations.
◮ We will discuss some of the concepts, however.

Red-Black Tree Insertion: Method

◮ To insert a node x into a red-black tree, we do the
following:

◮ Insert x with the standard BST Insert.
◮ Color x red.
◮ If x ’s parent is red, fix the tree.

◮ Notice that x ’s children, null, are black.
◮ Since we colored x red, we have not changed the black

height.
◮ The only problem we have is (possibly) having a red node

with a red child.
◮ Fixing the tree involves re-coloring some of the nodes and

performing rotations.

Left- and Right-Rotations

◮ Rotations are best defined by an illustration:

x

yA

C

x

y

B

C

A B
Left-Rotate(T,x)

Right-Rotate(T,y)

◮ Here, the letters A, B, and C represent arbitrary subtrees.
They could even be empty.

◮ It is not too hard to see that the binary search tree property
will still hold after a rotation.

Rotation Example

23

17

13

23

17

13

10

9

8

7

53

4

x

Right-Rotate(T,x)

7

4

10

9

8

3

5

Rotation Example

23

17

13

7

4

10

9

8

3

5

23

17

13

4

3

7

5

10

8

9

z

Left-Rotate(T,z)

Insertion Example

1

24

13

3

7

11

4 10

9

8 1

24

13

3

7

11

4 10

9

8

41

24

13

83

7

9

11

41

24

13

83

7

9

11

10

x

Recolor

Insert(T,10)

Left-Rotation(T,x)

Red Black Tree Summary

◮ Red-black trees are binary search trees which have height
Θ(log n) guaranteed.

◮ The basic operations can all be implemented in time
O(log n).

◮ Although inserting and deleting nodes only requires time
O(log n), they are nonetheless not trivial to implement.

◮ A regular binary search tree does not guarantee time
complexity of O(log n), only O(h), where h can be as large
as n.

◮ Thus red-black trees are useful if one wants to guarantee
that the basic operations will take O(log n) time.

