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Tutorial Overview

e Practical Network Analysis
e Basic concepts
e Network types and structural properties
e Identifying central nodes in a network

e Communities in Networks
e Clustering and graph partitioning
e Finding communities in static networks
e Finding communities in dynamic networks

e Applications of Network Analysis
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Tutorial Resources

e NetworkX: Python software for network analysis (v1.5)
http://networkx.lanl.gov

e Python 2.6.x / 2.7.X
http://www.python.org

e Gephi: Java interactive visualisation platform and toolkit.
http://gephi.org

e Slides, full resource list, sample networks, sample code
snippets online here:

http://mlg.ucd.ie/summer
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Introduction

e Social network analysis - an old field, rediscovered...

ORGANIZATION OF SOCIAL ATOM

SOCIOMETRIC GEOGRAPHY OF A COMMUNITY — MAP 1II

ce

[Moreno,1934]

Web Science Summer School 2011




Introduction

e \We now have the computational resources to perform
network analysis on large-scale data...

facebook

http://www. facebook.com/note.php?note_1d=469716398919
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Basic Concepts

e Graph: a way of representing the relationships among a
collection of objects.

e Consists of a set of objects, called nodes, with certain pairs of
these objects connected by links called edges.

T

Undirected Graph Directed Graph

e Two nodes are neighbours if they are connected by an edge.
e Degree of a node is the number of edges ending at that node.

e For a directed graph, the in-degree and out-degree of a node
refer to numbers of edges incoming to or outgoing from the node.
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NetworkX - Creating Graphs

>>> import networkx Import library

>>> g = networkx.Graph() Create new undirected graph
>>> g.add_node("John™) Add new nodes with unique IDs.
>>> g.add_node("Maria")

>>> g.add_node("Alex™") :

~>> g.add_edgeC"John", "Alex") Add new edges referencing

>>> g.add_edge("Maria", "Alex") associated node IDs.

>>> print g.number_of_nodes()

3 Print details of our newly-
>>> print g.number_of_edges() created graph.
2

>>> print g.nodes()
['John', 'Alex', 'Maria']
>>> print g.edges()
[("John', "Alex'), ('Alex', 'Maria')]
Calculate degree of specific
>>> print g.degree("John") node, or map of degree for all

1
>>> print g.degree() nodes.

{"John': 1, 'Alex': 2, 'Maria': 1}
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NetworkX - Directed Graphs

>>> g = networkx.DiGraph() Create new directed graph

>>> g.add_edges_from([C"A","B"), ("C","A"™]) Edges can be added in
batches.

>>> print g.in_degree(with_labels=True) Nodes can be added to the

{'A'": 1, 'C': @, 'B"': 1}
>>> print g.out_degree(with_labels=True)
{'A": 1, 'C': 1, 'B': 0}

graph "on the fly".

>>> print g.neighbors("A")

['B']

>>> print g.neighbors("B")

L]

>>> ug = g.to_undirected() Convert to an undirected graph
>>> print ug.neighbors("B")

['A"]
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NetworkX - Loading Existing Graphs

e Library includes support for reading/writing
graphs in a variety of file formats.

Edge List Node pairs, one edge per line.

Format

Nn © © Q
Q & Nn ©

>>> g = networkx.read_edgelist("test.edges")
>>> print g.edges()
[C'a’, 'b"), ('c’, 'b"), ('c’, 'd"), ('b", "d")]

. ab First label in line is the source node.
Adjacency b c d Further labels in the line are considered

List Format 4 target nodes.

>>> g = networkx.read_adjlist("test_adj.txt")

>>> print edges()
[C'a", 'b'), ('c’, 'D"), ('c’, 'd"), ('b", "d")]
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Weighted Graphs

e Weighted graph: numeric value is associated with each edge.

e Edge weights may represent a concept such as similarity,
distance, or connection cost.

C conor@deri.org ) 5 < anne@ucd.ie > C conor@deri.org

< anne@ucd.ie >

2
I 4 - g -
C mark@yahoo.ie ) kmana@gmaﬂ.com) < mark@yahoo.ie > Cmarla@gmall.com)
3 1

Undirected weighted graph Directed weighted graph

i i
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NetworkX - Weighted Graphs

g = networkx.Graph()

g.add_edge("conor@deri.org", "anne@ucd.ie", weight=5) Add weighted edges to graph.
g.add_edge("conor@deri.org", "mark@yahoo.ie", weight=2)

g.add_edge("conor@deri.org", "maria@gmail.com", weight=4) Note: nodes can be added to
g.add_edge("mark@yahoo.1e", "maria@gmail.com", weight=3) the graph "on the fly"

Select the subset of "strongly weighted" edges above a threshold...
estrong = [(u,v) for (u,v,d) in g.edges(data=True) if d["weight"] > 3]

>>> print estrong

[('conor@deri.org', 'anne@ucd.ie'), ('conor@deri.org', 'maria@gmail.com')]
(conor@deri.org) C anne@ucd.ie >
>>> print g.degree("conor@deri.org", weighted=False) o
3
>>> print g.degree("conor@deri.org", weighted=True) 2
11
Weighted degree given by sum of edge weights. Cmark@vahOO-ieD < )
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Attributed Graphs

e Additional attribute data, relating to nodes and/or edges, is
often available to compliment network data.

\ FOLLOWS
" /{318064061 ) ><317756843) |
follow_date 2011-07-07 Y\
screen_name peter78 screen_name mark763
location Galway location London
time_zone GMT time_zone GMT
verified FALSE verified FALSE

Create new nodes with attribute values

g.add_node("3180064061", screen_name="peter78", location="Galway", time_zone="GMT")
g.add_node("317756843", screen_name="mark763", location="London", time_zone="GMT")

Add/modify attribute values for existing nodes

g.node["318064061" ][ "verified"] = False
g.node["317756843" ][ "verified"] False

Create new edge with attribute values
g.add_edge("318004061", "317756843", follow_date=datetime.datetime.now())
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Ego Networks

e Ego-centric methods really focus on the individual, rather
than on network as a whole.

e By collecting information on the connections among the
modes connected to a focal ego, we can build a picture of the
local networks of the individual.

[Newman,2006]
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NetworkX - Ego Networks

e We can readily construct an ego network subgraph from a
global graph in NetworkX.

>>> g = networkx.read_adjlist("test.adj")
>>> ego = "d"

>>> nodes = set([ego])
>>> nodes.update(g.neighbors(ego))
>>> egonet = g.subgraph(nodes)

>>> print egonet.nodes()
['C', IbI, 'd']
>>> print egonet.edges()

[C'c”, '™, C'c’, "d"), ('b", "d")]
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Bipartite Graphs

e In a bipartite graph the nodes can be divided into two
disjoint sets so that no pair of nodes in the same set
share an edge.

Actors Movies

Collapse actor-movie
graph into single
"co-starred" graph

)

The Expendables >

‘ \< Terminator 2 >

a>The Green Hornet>
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NetworkX - Bipartite Graphs

e NetworkX does not have a custom bipartite graph class.
= A standard graph can be used to represent a bipartite graph.

import networkx Import package for handling
from networkx.algorithms import bipartite bipartite graphs

Create standard graph, and add

g = networkx.Graph()
edges.
g.add_edges_from([("Stallone", "Expendables"), ("Schwarzenegger","Expendables")])
g.add_edges_from([("Schwarzenegger","Terminator 2"), ("Furlong","Terminator 2")])
g.add_edges_from([("Furlong","Green Hornet"), ("Diaz","Green Hornet")])

>>> print bipartite.is_bipartite(g) Verify our graph is
True | | | | bipartite, with two disjoint
>>> print bipartite.bipartite_sets(g) node sets

(set(['Stallone', 'Diaz', 'Schwarzenegger', 'Furlong']),
set(['Terminator 2', 'Green Hornet', 'Expendables']))

>>> g.add_edge("Schwarzenegger", "Stallone")
>>> print bipartite.is_bipartite(g)
False

Graph is no longer bipartite!
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Multi-Relational Networks

e In many SNA applications there will be multiple kinds of relations

between nodes. Nodes may be closely-linked in one relational network,
but distant in another.

Scientific e e /4
R h
Network o © @

Co-authorship Graph Citation Graph Content Similarity

425164622

\'

318064061

!l
I tl

Il | 317756843

() (o)
Microblogging Follower Graph Reply-To Graph Mention Graph

Network

L' ( 425164622 ’ \' ‘ 714124665 )

\l L 714124665
(714124065 o 0
o\ SHI7EEE L @L‘l (317756843 )
Co-Listed Graph Content Similarity
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Graph Connectivity - Components

e A graph is connected if there is a path between every pair of
nodes in the graph.

e A connected component is a subset of the nodes where:
1. A path exists between every pair in the subset.
2. The subset is not part of a larger set with the above property.

@_@ 3 connected
components

e In many empirical social networks a larger proportion of all
nodes will belong to a single giant component.
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NetworkX - Graph Connectivity

g = networkx.Graph() _ _
g.add_edges_from([("a","b"),("b","c"),("b","d"),("c","d")])  Build undirected graph.
g.add_edges_from([("e","f"),("f","g"),("h","1")])

SR o

>>> print networkx.is_connected(g) Is the graph just a single
False component?

>>> print networkx.number_connected_components(g) If not, how many

3 components are there?
>>> comps = networkx.connected_component_subgraphs(g) Find list of all connected
>>> print comps[0].nodes() components.

['a', 'c', 'b', 'd']

>>> print comps[1].nodes()

['e", "g", "f'] Each component is a
>>> print comps[2].nodes() subgraph with its own
['1", 'h'] set of nodes and edges.
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Clustering Coefficient

e The neighbourhood of a node is set of nodes connected to it by
an edge, not including itself.

e The clustering coefficient of a node is the fraction of pairs of its
neighbours that have edges between one another.

A C A (o)

0
CcC = -
3

W |

Node A: Cng CC =

e Locally indicates how concentrated the neighbourhood of a
node is, globally indicates level of clustering in a graph.

. N
e Global score is average over all nodes: CC = EZCC(m)

1=1
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NetworkX - Clustering Coefficient

g = networkx.Graph()
g.add_edges_f'rlom([("a" , llbll),CHb" , "C"),C"b" , "d"),("C" , |Idll)])

>>> print networkx.neighbors(g, "b") Get list of neighbours for
['a', 'c', 'd'] a specific node.

>>> print networkx.clustering(g, "b™) Calculate coefficient for
0.333333333333 specific node.

>>> print networkx.clustering(g, with_labels=True) [3U”d_aln13p of

{'a': 0.0, 'c': 1.0, 'b': 0.33333333333333331, 'd': 1.0} coefficients for all nodes.
>>> ccS = hetworkx.clustering(g) Calculate global

>>> print ccs clustering coefficient.

(0.0, 1.0, 0.33333333333333331, 1.0]
>>> print sum(ccs)/len(ccs)
0.583333333333

Web Science Summer School 2011



Measures of Centrality

e A variety of different measures exist to measure the importance,
popularity, or social capital of a node in a social network.

e Degree centrality focuses on individual nodes - it simply counts
the number of edges that a node has.

Hub nodes with high degree usually play an important role in a
network. For directed networks, in-degree is often used as a
proxy for popularity.
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Betweenness Centrality

e A path in a graph is a sequence of edges joining one node to another.
The path length is the number of edges.

e Often want to find the shortest path between two nodes.
e A graph's diameter is the longest shortest path over all pairs of nodes.

e Nodes that occur on many shortest paths between other nodes in
the graph have a high betweenness centrality score.

Node "A" has high degree
centrality than "B", as "B"
has few direct connections.

Node "H" has higher
betweenness centrality,
as "H" plays a broker
role in the network.
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Eigenvector Centrality

e The eigenvector centrality of a node proportional to the sum of
the centrality scores of its neighbours.

= A node is important if it connected to other important nodes.

= A node with a small number of influential contacts may outrank
one with a larger number of mediocre contacts.

e Computation:

1. Calculate the eigendecomposition of the pairwise adjacency matrix
of the graph.

2. Select the eigenvector associated with largest eigenvalue.
3. Element j in the eigenvector gives the centrality of the /-th node.
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NetworkX - Measures of Centrality

import networkx
from operator import itemgetter

g = networkx.read_adjlist("centrality.edges")

dc = networkx.degree_centrality(g)
print sorted(dc.items(), key=itemgetter(l), reverse=True)

('a', 0.66666666666666663), ('b', ©.55555555555555558), ('g"', 0.55555555555555558), ('c', 0.33333333333333331),
'e' .33333333333333331), ('d', 0.33333333333333331), ('f', 0.33333333333333331), ('h"', 0.33333333333333331),

L
('e', 0
('i', 0.22222222222222221), ('j', ©.1111111111111111)]

bc = networkx.betweenness_centrality(g)
print sorted(bc.items(), key=1itemgetter(l), reverse=True)

[('h', 0.38888888888888884), ('b', 0.2361111111111111), ('g', 0.2361111111111111), ('i', 0.22222222222222221),
('a', 0.16666666666666666), ('c', 0.0), ('e', 0.0), ('d', 0.0), ('f', 0.0), ('j', 0.0)]

bc = networkx.eigenvector_centrality(g)
print sorted(bc.items(), key=1itemgetter(l), reverse=True)

[("a', 0.17589997921479006), ('b', ©0.14995290497083508), ('g', 0.14995290497083508), ('c', 0.10520440827586457),
('e', 0.10520440827586457), ('d', 0.10520440827586457), ('f', 0.10520440827586457), ('h', 0.078145778134411939),
'1', 0.020280613919932109), ('j', 0.0049501856857375875)]
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Random Networks

e Erdos—-Rényi random graph model:
e Start with a collection of n disconnected nodes.

e Create an edge between each pair of nodes with a probability p,
independently of every other edge.

gl = networkx.erdos_renyi_graph(50, 0.05) Specify number of nodes
to create, and connection
g2 = networkx.erdos_renyi_graph(50, 0.3) probability p.
@) o o
Q 7 O - Q o O o
Q © 0 e) VSVONNS
O O © o
O ® : ? < O i o Q) 7 O
O o Q-0 5 Q ) O @)
Q O Q o b Q OO @)
T O O ® O % Q778 & O O
. @) O &S O
O @, & O O
OO g © i Y, O O
O Q o—O O
O © @) @) O @) p — O 3
P = 0.05 Z ’ S
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Small World Networks

Milgram's Small World Experiment:

e Route a package to a stockbroker in Boston by sending them to random
people in Nebraska and requesting them to forward to someone who might
know the stockbroker.

= Although most nodes are not directly connected, each node can be reached
from another via a relatively small number of hops.

Six Degrees of Kevin Bacon
e Examine the actor-actor "co-starred" graph from IMDB.

e The Bacon Number of an actor is the number of degrees of
separation he/she has from Bacon, via the shortest path.

starred in m with
the First

= Bacon Number = 2

http://oracleofbacon.org
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Small World Networks

e Take a connected graph with a high
diameter, randomly add a small number
of edges, then the diameter tends to
drop drastically.

e Small-world network has many local
links and few long range “shortcuts”.

Generating Small World Networks:

Typical properties:

- High clustering coefficient.

- Short average path length.

- Over-abundance of hub nodes.

[Watts & Strogatz, 1998]

1. Create ring of n nodes, each connected to its k nearest neighbours.

2. With probability p, rewire each edge to an

existing destination node.

0 2% OO0 0 9%%
OO O OO OO QO OO
Q O Q O Q O
3 5 o ol o ol

000" OQOOQO OOOOQO
—>
p=0 p=1

[Watts & Strogatz, 1998]
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NetworkX - Small World Networks

e NetworkX includes functions to generate graphs according to
a variety of well-known models:

http://networkx.lanl.gov/reference/generators.html

OQQOOOOOOO
n = 50 O O
k =6 OO OO
p=0.3 O O
g = networkx.watts_strogatz_graph(n, k, p) O O
Q @,
Q @,
>>> networkx.average_shortest_path_length(g) %% E%
2.4506122448979597 O ®
po o
OO OO

H ®
@ ®
0.0'0%6.0.0 0%
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Cliques

e A clique is a social grouping where everyone knows everyone
else (i.e. there is an edge between each pair of nodes).

e A maximal clique is a clique that is not a subset
of any other clique in the graph.

e A clique with size greater than or equal to that of

every other clique in the graph is called a
maximum clique.

Find all maximal cliques in the specified graph:

>>> cl = 1ist( networkx.find_cliques(g) )

>>> print cl
[['a', 'b', '_F'], ['C', 'e', 'b', I_Fl], ['C', IeI, 'd']]

N X
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Community Detection

e \We will often be interested in identifying communities of

nodes in a network...

[Adamic & Glance,2005]

e Example: Two distinct communities of bloggers discussing

2004 US Presidential election.

Web Science Summer School 2011




Community Detection

e A variety of definitions of community/cluster/module exist:

e A group of nodes which share common properties and/or play a
similar role within the graph [Fortunato, 2010].

e A subset of nodes within which the node-node connections are

dense, and the edges to nodes in other communities are less dense
[Girvan & Newman, 2002].

[Girvan & Newman, 2002]
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Graph Partitioning

e Goal: Divide the nodes in a graph into a user-specified number of
disjoint groups to optimise a criterion related to number of edges cut.

e Min-cut simply involves minimising number cut(A, B)
(or weight) of edges cut by the partition. ’

e Recent approaches use more sophisticated criteria (e.g. normalised
cuts) and apply multi-level strategies to scale to large graphs.

Graclus [Dhillon et al, 2007] http://www.cs.utexas.edu/users/dml/Software/graclus.html

Issues: Requirement to pre-specify number of partitions, cut criteria
often make strong assumptions about cluster structures.
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Hierarchical Clustering

e Construct a tree of clusters to identify groups of nodes with high
similarity according to some similarity measure.

e Two basic families of algorithm...

1. Agglomerative: Begin with each node assigned to a singleton cluster.
Apply a bottom-up strategy, merging the most similar pair of clusters
at each level.

2.Divisive: Begin with single cluster containing all nodes.
Apply a top-down strategy, splitting a chosen cluster into two sub-
clusters at each level.

Issues for Community Detection: Y

- How do we choose among many
different possible clusterings?

Similarity

- Is there really a hierarchical
structure in the graph? ‘ ‘

- Often scales poorly to large graphs.
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NetworkX - Hierarchical Clustering

e We can apply agglomerative clustering to a NetworkX graph by calling
functions from the NumPy and SciPy numerical computing packages.

import networkx A ) P9 b
import numpy, matplotlib 5o o0 ©
from scipy.cluster import hierarchy o |9 §>O 5 s
from scipy.spatial import distance O N

O O

[Zachary, 1977]

g = networkx.read_edgelist("karate.edgelist")

path_length=networkx.all_pairs_shortest_path_length(g) BU”d_ pairwise distance
n = len(g.nodes()) matrix based on shortest

distances=numpy.zeros((n,n)) paths between nodes.

for u,p in path_length.iteritems():
for v,d in p.iteritems():
distances[int(u)-1][int(v)-1] = d
sd = distance.squareform(distances)

Apply average-linkage

hier = hierarchy.average(sd) agglomerative clustering
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NetworkX - Hierarchical Clustering

hierarchy.dendrogramChier) Build the dendrogram,
matplotlib.pylab.savefig("tree.png", format="png") then write image to disk.

3.0}

25+

20

1.0} )

0.5}
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Modularity Optimisation

e Newman & Girvan [2004] proposed measure of partition quality....
= Random graph shouldn't have community structure.

= \/alidate existence of communities by comparing actual edge density with
expected edge density in random graph.

() = (number of edges within communities) — (expected number within communities)

e Apply agglomerative technique to iteratively merge groups of nodes to
form larger communities such that modularity increases after merging.

e Recently efficient greedy approaches to modularity maximisation have
been developed that scale to graphs with up to 10”9 edges.

Louvain Method [Blondel et al, 2008] http://findcommunities.googlepages.com

Issues for Community Detection:

- Total number of edges in graph controls the resolution at which
communities are identified [Fortunato, 2010].

- Is it realistic/useful to assign nodes to only a single community?
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NetworkX - Modularity Optimisation

e Python implementation of the Louvain algorithm available:
http://perso.crans.org/aynaud/communities/community.py

O
O

g = networkx.read_edgelist("karate.edges") o o OO

7 Svose ©
Apply Louvain algorithm to the graph o

e O O—0 5 O
import community J J P 6 ©
partition = community.best_partition( g ) o ) (f (Zachary, 19771

O
Print nodes assigned to each community in the partition © 60

for 1 in set(partition.values()):
print "Community", 1i
members = list_nodes = [nodes for nodes in partition.keys() if partition[nodes] == 1]
print members

Community @

['24', '25', '26', '28', '29'
Community 1
['27', '21', '23"
Community 2
['2e', '22', '1', '3', '2', '4'
Community 3

L's', '7', 'e', '11', '17']

, '32']
, '9" '1@" '15" '16" '33l’ '31l’ '3®l’ '34l’ '19']

, '8" l13" '12" l14l’ l18|]
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NetworkX - Modularity Optimisation

Community @

['24', '25', '26', '28', '29', '32']

Community 1

['z2z', '21', '23', '9', 'ie', 'i5', 'ie', '33', '31', '30', '34', '19']
Community 2

['20', '22', '1', '3', '2', '4', '8', '13', '12', '14', '18']
Community 3
['s', '7', '6', '11', '17'] ®
@),
@
Community 0 @ (13 0 o
o
®—®
® Community 4
® 5
©
o
& @ & Community 2
@)

Community 1
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Overlapping v Non-Overlapping

e Do disjoint non-overlapping communities make sense
in empirical social networks?

= X XX
T A B A
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Overlapping v Non-Overlapping

e Do disjoint non-overlapping communities make sense
in empirical social networks?

Colleagues

e
of Stats
e

Bio

Overlapping
communities may
exist at different
resolutions.

_S .

Web Science Summer School 2011



Overlapping v Non-Overlapping

e Distinct "non-overlapping” communities rarely exist at large scales
in many empirical networks [Leskovec et al, 2008].

= Communities overlap pervasively, making it impossible to partition
the networks without splitting communities [Reid et al, 2011].

[Ahn et al, 2010]

Community overlap at Community overlap at
an ego level a global level
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Overlapping Commmunity Finding

e CFinder: algorithm based on the cligue percolation method
[Palla et al, 2005].

e Identify k-cligues: a fully connected subgraph k nodes.
e Pair of k-cliques are "adjacent" if they share k—1 nodes.

e Form overlapping communities from maximal union of k-cliques
that can be reached from each other through adjacent k-cliques.

Co-authorship Network

Set of overlapping
communities
built from 4-cliques.

[Palla et al, 2005]

http://cfinder.org
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Overlapping Commmunity Finding

e Greedy Clique Expansion (GCE): identify distinct
cligues as seeds, expands the seeds by greedily
optimising a local fithness function [Lee et al, 2010].

https://sites.google.com/site/greedycliqueexpansion

e MOSES: scalable approach for identifying highly-
overlapping communities [McDaid et al, 2010].

- Randomly select an edge, greedily expand a community
around the edge to optimise an objective function.

- Delete "poor quality” communities.
- Fine-tune communities by re-assigning individual nodes.

https://sites.google.com/site/aaronmcdaid/moses
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NetworkX - Overlapping Communities

e No built-in support for overlapping algorithms, but we can use
the MOSES tool to analyse graphs represented as edge lists.

import networkx Build a graph, write it to a

g = networkx.watts_strogatz_graph(60, 8, 0.3) temporary edge-list file.

edgepath = "test_moses.edgelist"
networkx.write_weighted_edgelist(g, edgepath)

Apply MOSES tool to the edge-list file

import subprocess

outpath="test_moses.comms™
proc = subprocess.Popen(["/usr/bin/moses", edgepath, outpath])

proc.wait()

Parse the output of MOSES

lines = open(outpath,"r").readlines()
print "Identified %d communities" % len(lines)
for 1 in lines:

print set(lines[i].strip(Q).split(" "))
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NetworkX - Overlapping Communities

Identified 9 communities NOdeS assigned to
Community 0 . Yy
set(['48", '49', '46', '47', '45', '51', '50']) multiple communities

Community 1

set(['54', '56', '51', '53"', '52'])

Community 2

set(['39', '38', '37', '42', '40', '41'])
Community 3

set(['20', '21', '17', 'l1le', '19', '18', '15'])
Community 4

set(['33", '32', "36', '35', '34'])

Community 5

set(['48', '46', '44', '45', '43', '40'])
Community 6

set(['59', '58', '56', '@', '3', '2'])
Community 7

set(['24', '25', '26', '27', '31', '30', '28'])
Community 8

set(['10', '5', '4', '7', 'e', '9', '8'])
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Dynamic Community Finding

e In many SNA tasks we will want to analyse how
communities in the network form and evolve over time.

e Often perform this analysis in an "off

ine" manner by

examining successive snapshots of the network.

Step t=1 > t =2

A A

°<>'
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Dynamic Community Finding

e We can characterise dynamic communities in terms of key
life-cycle events [Palla et al, 2007; Berger-Wolf et al, 2007]

Stept —t+1 Stept —t+1

- Birth & Death
of communities

- Expansion &
Contraction
of communities

- Merging &
Splitting
of communities
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Dynamic Community Finding

e Apply community finding algorithm to each snapshot of the graph.

e Match newly-generated "step communities” with those that have been
identified in the past.

G Jaccard Similarity Score
Historic @ Step

Communities / Communities C'N Fz 9
>
C'UF;
t=1 t =2 t=3
. Merge _ _ _
7 @\ ° Dynamic community tracking software
: http://mlg.ucd.ie/dynamic
s @/"". =) [Greene et al, 2010]
4 T
P @—@

Split
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Applications




Application - Mapping Blog Networks

e Motivation: Literary analysis of blogs is difficult when corpus
contains hundreds of blogs and hundreds of thousands of posts.

= Use a data-driven approach to select a topically representative
set from 635 blogs in the Irish blogosphere during 1997-2011.

Multi-Relational Networks

1. Blogroll: unweighted graph with edges
representing permanent or nearly-
permanent links between blogs.

2. Post-link: weighted graph with edges by
representing non-permanent post s
content links between blogs. 2

3. Content profile: text content from all
available posts for a given blog.

http://mlg.ucd.ie/blogs [Wade et al, 2011]
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Application - Mapping Blog Networks

e Initially applied centrally .
measures to identify
representatives blogs in clide s
blogroll and post-link ceures ooy’ = =

J°h”b@ C&K \ \ mshel :@» cony
graphs. o | PR RS
blog: donegar@scapmg com/\m ' ‘ ‘
trus .ﬁ*%*****w* ** "/ "/‘ A y':: . cedarloung@dpress com
i tcom s .i,/// ‘ the )
- . | bockthc‘er b
odguie Ojal/“raghdoy ogspot.com
- L L b / gaVIn g.com
Limitations: bl fgbes ’/
I N ﬂ uen tl d I b I Og S are | d en t | fl ed . grannyn@%m/blog dawd@:n?aﬁb..mgs ie

But they do not necessarily
provide good coverage of the
wider Irish blogosphere.
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Application - Mapping Blog Networks

e Apply text clustering

player - Sport

techniques on content view to Discussion ™ =
identify clusters of blogs on | wee | Z7POOd
discussing coherent topics. ~ ©2¢"°
e Generated a clustering with - = A\ | ||[TIH e ‘7
12 distinct communities... A
Movies' | icner 9009l
| . oo ~ Technology
Musjc *# > =™ S e
e The "Discussion” community % Photos
was least coherent in terms of wit s . Personal
content, and includes blogs Fashion we. 2%  Beauty
pertaining to a number of
topics.
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Application - Mapping Blog Networks

e Applied GCE overlapping community Politics B
finding algorithm to the blogroll and
post-link graphs on the subgraphs

induced by the “"Discussion” cluster. g o—@
o Identified “stable” communities that =~ Edueation 5 . O

were present in both the blog-roll O o/

and post-link networks. O,/

Humor

= JIdentified representative blogs as ® P

those with high in-degree in the 0/ \rosi

blogroll subgraphs for each of the o /P

resulting communities.
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Application - Microblogging

e Storyful.com: Journalists struggling to cope with a "tsunami
of user-generated content"” on social media networks.

18 Tweets  Curator's Choice  Vital Video ad Community Curate your stories & Pro

Storyfu] ¥ Tweet Recommend 23 4 y @storyful
Storyful Realtime
P . t t o  dailvdish Under The Sea: M)
arvaz: regime wants us 1o cover our ears . Tl sl
syria .
) . ) ) This list's most recently followed accounts - view all
#synma #daraa http storyjul.com
DorothyParvaz - Follo jfibowen - Follow
» Dorothy Parvaz Jeremy Bower
A public list

4

StorvfulPre &’ Follow this list SyRevEye  Follow ZeinakhodrAljaz - Follc
StoryfulPro D Sv Revolution Eve Zeina Khod!

Tweets Following: 69  Followers: 57

More lists by @storyfulpro - view all

£ saudi £ obamavisit
SeekerSK £ dsk £ whitehouse
Q Today in #Homs calling "We want your head Bashar" #Syria = shuttle = pakistan
== http://youtu.be/H1EDxVemP-0 = uganda = afghanistan
£ nigeria £ israel
£ syria £ palestine
I9/;i= ZainSyr £ jpgquake = usweather
o9l 2011-5-22 Laes - s b el L youtube.com/watch?v=H1EDXV... £ libya = bahrain
€7 #syria #15mar #bashar #homs £ iran = yemen
£ egypt £ Haiti

CBC News

Iran, has been set free after 19 days in captivity. 5-22 el 3o el i 24 gl - e [ Lday 2 hittpi//bit.ly/mwBqPW

Al Jazeera journalist Dorothy Parvaz, detained by the Syrian government and then transferret 1 SyRevEye
Syria #Homs Homs_\/\id
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Application - Microblogging

e A community of users evolves on Twitter around a
breaking news story.

= Support the content curation process by augmenting
curated lists by recommending authoritative sources from
the community that are relevant to the news story.

Relations:

O Follower links
Co-listed
Shared URLs
Retweets
Co-location
Mentions

M_akbik
List Member

Follows

| suhairatassi J
|

ZainSyr

List Member

O O O O 0O O

Content similarity
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Application - Microblogging

Performed analysis to recommend additional Twitter

users to augment the "Syria" list curated by Storyful.

LevarfDNews R
AbuJa@Basha s N
okBah SyrianFgeePress } Sel@den Que@enia T ad@re
Syria®Feb5 L Shantélyafana /o L s S yaze@uran . v@ﬂ:yna@\ned @
Fw@/ y S N\ Obfares a@st . 5 s > syi@aay
ria ; .l
i ; ft Ana obehas @ ~ 7 &N 2 octef@hasr Damas@Bureau
arg an
Damas@Bureau alharrivi o@n Sam@”:;a e ol S e rz i ms@aii
tvbavada s wik@Bs ana@eshﬂa T
TrillgB sher@oals
freesyZd Lo, s ObaydaKGhadban R i i - ElE@\dei anaéohline Kafagntan S
Kirlyat Anon@ssyria asc@;kx:]g @r ® syrian@roche ”"@“‘"WGMQ
ar@ami S S"@SEUTMen@smcnal@yAJ |S£Iu®ohn Sa’@mbd@yk;lharw @IamusZe@y thisd4@Dsyria
fatouhmehammed B @ o @ei = o@n @i
Bountys7 r awwo842010 R Y R@P:Sna@hawy @i @ oo O
: iar il ets Syridgewz
. . ' am@uen
v lenie iimapan Rank Screen Name eighting v o o o - s orl
eafes@oriyal )2 . . grani
e S 1 suhairatassi 28.8 Fas - W s s
| V"‘. nie Mgnajed . e 8 S
e 2 aliferzat 28.5 < . .
Syriﬁ\}ront . e s ; g MO all@ria
ol || el s Crsaan e 3 syriangavroche 28.5 i T e @
H R R N S B e T B S SR S s e @sre o @uiont
N/ 4 Annidaa 28.3 @ % B T
DannySeeslt Syrial e i
sellfiéon AlexandérPageSY 5 a h m adta | k 2 7 . 8 e < Raza@::k?h talk ol -l
i 6 Dhamvch 27.8 S e A
. arwaCNN 7 bach 1224 27 8 i A2 i@ -
Syridnagd acharno 7. y Far@e
ZeinakHodrAljaz - N 7 @yr KDyt K@ Ras@ows
ru@in dor@pow » 8 radwanziadeh 27.7 g @it
tephénst . Mayor@hirulah Layi@ihm
stephenstarr 9 alhajsaleh 27.5 S@Ar?‘é& @J . 52 Ak Avdi@haiiz
kellync . - Syidda AnonyraolisSytig:.. e
e 10 | MalikAlAbdeh 27.5 : @v@w@n obeif@nas <.
) S Aoz @i
ifibowen anthongshadid 1 1 Z e t ona XX 27-2 aii@bach iz ZZ;S yria i S i
. @ radw@adse‘?h®'1a nnnnnnnnnn ach4@) i -
12 |SyrianHRC 27.1 . g N
. @ Ai@hfiri oh@m
13  anasonline 27.0 o NG
14  SyTweets 26.8
15 AbdullahAli7 26.7
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Tutorial Resources

e NetworkX: Python software for network analysis (v1.5)
http://networkx.lanl.gov

e Python 2.6.x / 2.7.X
http://www.python.org

e Gephi: Java interactive visualisation platform and toolkit.
http://gephi.org

e Slides, full resource list, sample networks, sample code
snippets online here:

http://mlg.ucd.ie/summer
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