
Web Science Doctoral Summer School 2011

Graph and Network
Analysis

Dr. Derek Greene
Clique Research Cluster, University College Dublin

Web Science Summer School 2011

Tutorial Overview

• Practical Network Analysis
• Basic concepts
• Network types and structural properties
• Identifying central nodes in a network

• Communities in Networks
• Clustering and graph partitioning
• Finding communities in static networks
• Finding communities in dynamic networks

• Applications of Network Analysis

2

Web Science Summer School 2011

Tutorial Resources

• NetworkX: Python software for network analysis (v1.5)

http://networkx.lanl.gov

• Python 2.6.x / 2.7.x

http://www.python.org

3

• Gephi: Java interactive visualisation platform and toolkit.

http://gephi.org

• Slides, full resource list, sample networks, sample code
snippets online here:

http://mlg.ucd.ie/summer

http://networkx.lanl.gov/
http://networkx.lanl.gov/
http://networkx.lanl.gov/
http://networkx.lanl.gov/
http://gephi.org/features/
http://gephi.org/features/
http://gephi.org/
http://gephi.org/
http://gephi.org/
http://gephi.org/

Web Science Summer School 2011

Introduction

• Social network analysis - an old field, rediscovered...

4

[Moreno,1934]

Web Science Summer School 2011

Introduction

• We now have the computational resources to perform
network analysis on large-scale data...

5

http://www.facebook.com/note.php?note_id=469716398919

http://www.facebook.com/note.php?note_id=469716398919
http://www.facebook.com/note.php?note_id=469716398919

Web Science Summer School 2011

Basic Concepts

• Graph: a way of representing the relationships among a
collection of objects.

• Consists of a set of objects, called nodes, with certain pairs of
these objects connected by links called edges.

6

A B

C D

Undirected Graph

A B

C D

Directed Graph

• Two nodes are neighbours if they are connected by an edge.

• Degree of a node is the number of edges ending at that node.

• For a directed graph, the in-degree and out-degree of a node
refer to numbers of edges incoming to or outgoing from the node.

Web Science Summer School 2011

NetworkX - Creating Graphs

7

>>> import networkx

>>> g = networkx.Graph()

Import library

Create new undirected graph

>>> g.add_node("John")
>>> g.add_node("Maria")
>>> g.add_node("Alex")
>>> g.add_edge("John", "Alex")
>>> g.add_edge("Maria", "Alex")

Add new nodes with unique IDs.

Add new edges referencing
associated node IDs.

>>> print g.number_of_nodes()
3
>>> print g.number_of_edges()
2
>>> print g.nodes()
['John', 'Alex', 'Maria']
>>> print g.edges()
[('John', 'Alex'), ('Alex', 'Maria')]

Print details of our newly-
created graph.

>>> print g.degree("John")
1
>>> print g.degree()
{'John': 1, 'Alex': 2, 'Maria': 1}

Calculate degree of specific
node, or map of degree for all
nodes.

Web Science Summer School 2011

NetworkX - Directed Graphs

8

>>> g = networkx.DiGraph() Create new directed graph

Edges can be added in
batches.

Nodes can be added to the
graph "on the fly".

>>> g.add_edges_from([("A","B"), ("C","A")])

>>> print g.in_degree(with_labels=True)
{'A': 1, 'C': 0, 'B': 1}
>>> print g.out_degree(with_labels=True)
{'A': 1, 'C': 1, 'B': 0}

>>> print g.neighbors("A")
['B']
>>> print g.neighbors("B")
[]

>>> ug = g.to_undirected()
>>> print ug.neighbors("B")
['A']

Convert to an undirected graph

Web Science Summer School 2011

NetworkX - Loading Existing Graphs

9

• Library includes support for reading/writing
graphs in a variety of file formats.

>>> g = networkx.read_adjlist("test_adj.txt")
>>> print edges()
[('a', 'b'), ('c', 'b'), ('c', 'd'), ('b', 'd')]

Adjacency
List Format

a b
b c d
c d

First label in line is the source node.
Further labels in the line are considered
target nodes.

>>> g = networkx.read_edgelist("test.edges")
>>> print g.edges()
[('a', 'b'), ('c', 'b'), ('c', 'd'), ('b', 'd')]

Edge List
Format

a b
b c
b d
c d

Node pairs, one edge per line.

A B

C D

Web Science Summer School 2011

Weighted Graphs

• Weighted graph: numeric value is associated with each edge.

• Edge weights may represent a concept such as similarity,
distance, or connection cost.

10

conor@deri.org anne@ucd.ie

maria@gmail.commark@yahoo.ie

5

3

2 4

Undirected weighted graph

conor@deri.org anne@ucd.ie

maria@gmail.commark@yahoo.ie

2

2

1

2

3

4

Directed weighted graph

Web Science Summer School 2011

NetworkX - Weighted Graphs

11

g.add_edge("conor@deri.org", "anne@ucd.ie", weight=5)
g.add_edge("conor@deri.org", "mark@yahoo.ie", weight=2)
g.add_edge("conor@deri.org", "maria@gmail.com", weight=4)
g.add_edge("mark@yahoo.ie", "maria@gmail.com", weight=3)

Add weighted edges to graph.

g = networkx.Graph()

Note: nodes can be added to
the graph "on the fly"

estrong = [(u,v) for (u,v,d) in g.edges(data=True) if d["weight"] > 3]

Select the subset of "strongly weighted" edges above a threshold...

>>> print estrong
[('conor@deri.org', 'anne@ucd.ie'), ('conor@deri.org', 'maria@gmail.com')]

conor@deri.org anne@ucd.ie

maria@gmail.commark@yahoo.ie

5

3

2 4

>>> print g.degree("conor@deri.org", weighted=False)
3
>>> print g.degree("conor@deri.org", weighted=True)
11

Weighted degree given by sum of edge weights.

mailto:conor@deri.org
mailto:conor@deri.org
mailto:anne@ucd.ie
mailto:anne@ucd.ie
mailto:conor@deri.org
mailto:conor@deri.org
mailto:mark@yahoo.ie
mailto:mark@yahoo.ie
mailto:conor@deri.org
mailto:conor@deri.org
mailto:maria@gmail.com
mailto:maria@gmail.com
mailto:mark@yahoo.ie
mailto:mark@yahoo.ie
mailto:maria@gmail.com
mailto:maria@gmail.com
mailto:conor@deri.org
mailto:conor@deri.org
mailto:anne@ucd.ie
mailto:anne@ucd.ie
mailto:conor@deri.org
mailto:conor@deri.org
mailto:maria@gmail.com
mailto:maria@gmail.com
mailto:conor@deri.org
mailto:conor@deri.org
mailto:conor@deri.org
mailto:conor@deri.org

Web Science Summer School 2011

Attributed Graphs

• Additional attribute data, relating to nodes and/or edges, is
often available to compliment network data.

12

screen_name peter78

location Galway

time_zone GMT

verified FALSE

screen_name mark763

location London

time_zone GMT

verified FALSE

follow_date 2011-07-07

g.add_node("318064061", screen_name="peter78", location="Galway", time_zone="GMT")
g.add_node("317756843", screen_name="mark763", location="London", time_zone="GMT")

Create new nodes with attribute values

g.add_edge("318064061", "317756843", follow_date=datetime.datetime.now())
Create new edge with attribute values

g.node["318064061"]["verified"] = False
g.node["317756843"]["verified"] = False

Add/modify attribute values for existing nodes

318064061 317756843
FOLLOWS

Web Science Summer School 2011

Ego Networks

• Ego-centric methods really focus on the individual, rather
than on network as a whole.

• By collecting information on the connections among the
modes connected to a focal ego, we can build a picture of the
local networks of the individual.

13

[Newman,2006]

HOPCROFT, J

CALLAWAY, D

TOMKINS, A

KUMAR, S

NEWMAN, M

STROGATZ, S

KLEINBERG, J

LAWRENCE, S

RAJAGOPALAN, S

RAGHAVAN, P

Web Science Summer School 2011

NetworkX - Ego Networks

14

A B

C D

B

C D

>>> g = networkx.read_adjlist("test.adj")

>>> nodes = set([ego])
>>> nodes.update(g.neighbors(ego))
>>> egonet = g.subgraph(nodes)

>>> ego = "d"

>>> print egonet.nodes()
['c', 'b', 'd']
>>> print egonet.edges()
[('c', 'b'), ('c', 'd'), ('b', 'd')]

• We can readily construct an ego network subgraph from a
global graph in NetworkX.

Web Science Summer School 2011

Bipartite Graphs

• In a bipartite graph the nodes can be divided into two
disjoint sets so that no pair of nodes in the same set
share an edge.

15

Collapse actor-movie
graph into single

"co-starred" graph

The Expendables

Terminator 2

The Green Hornet

Actors Movies

Web Science Summer School 2011

NetworkX - Bipartite Graphs

16

• NetworkX does not have a custom bipartite graph class.

➡A standard graph can be used to represent a bipartite graph.

import networkx
from networkx.algorithms import bipartite

Import package for handling
bipartite graphs

g = networkx.Graph()

g.add_edges_from([("Stallone","Expendables"), ("Schwarzenegger","Expendables")])
g.add_edges_from([("Schwarzenegger","Terminator 2"), ("Furlong","Terminator 2")])
g.add_edges_from([("Furlong","Green Hornet"), ("Diaz","Green Hornet")])

Create standard graph, and add
edges.

>>> print bipartite.is_bipartite(g)
True
>>> print bipartite.bipartite_sets(g)
(set(['Stallone', 'Diaz', 'Schwarzenegger', 'Furlong']),
set(['Terminator 2', 'Green Hornet', 'Expendables']))

Verify our graph is
bipartite, with two disjoint
node sets.

>>> g.add_edge("Schwarzenegger","Stallone")
>>> print bipartite.is_bipartite(g)
False

Graph is no longer bipartite!

Web Science Summer School 2011

Multi-Relational Networks

• In many SNA applications there will be multiple kinds of relations
between nodes. Nodes may be closely-linked in one relational network,
but distant in another.

17

Scientific
Research
Network

A B

C D

Co-authorship Graph Citation Graph

B

C D

Content Similarity

A B

C D0.2

0.4 0.10.1

Microblogging
Network

714124665

Follower Graph Reply-To Graph

Content Similarity

Mention Graph

Co-Listed Graph

318064061

317756843

425164622

318064061

425164622

317756843

425164622

318064061

318064061

317756843

425164622

318064061

425164622 714124665

317756843

0.4 0.1

0.3

Web Science Summer School 2011

Graph Connectivity - Components

• A graph is connected if there is a path between every pair of
nodes in the graph.

• A connected component is a subset of the nodes where:
1. A path exists between every pair in the subset.
2. The subset is not part of a larger set with the above property.

18

• In many empirical social networks a larger proportion of all
nodes will belong to a single giant component.

A B

C D E

F

G
H I 3 connected

components

Web Science Summer School 2011

NetworkX - Graph Connectivity

19

g = networkx.Graph()
g.add_edges_from([("a","b"),("b","c"),("b","d"),("c","d")])
g.add_edges_from([("e","f"),("f","g"),("h","i")])

A B

C D E

F

G
H I

Build undirected graph.

>>> comps = networkx.connected_component_subgraphs(g)
>>> print comps[0].nodes()
['a', 'c', 'b', 'd']
>>> print comps[1].nodes()
['e', 'g', 'f']
>>> print comps[2].nodes()
['i', 'h']

Find list of all connected
components.

Each component is a
subgraph with its own
set of nodes and edges.

>>> print networkx.is_connected(g)
False
>>> print networkx.number_connected_components(g)
3

Is the graph just a single
component?

If not, how many
components are there?

Web Science Summer School 2011

Clustering Coefficient

• The neighbourhood of a node is set of nodes connected to it by
an edge, not including itself.

• The clustering coefficient of a node is the fraction of pairs of its
neighbours that have edges between one another.

20

• Locally indicates how concentrated the neighbourhood of a
node is, globally indicates level of clustering in a graph.

• Global score is average over all nodes: C̄C =
1
n

n�

i=1

CC(vi)

A

B

C

D

A

B

C

D

CC =
1
3

CC =
3
3

A

B

C

D

CC =
0
3Node A:

Web Science Summer School 2011

NetworkX - Clustering Coefficient

21

g = networkx.Graph()
g.add_edges_from([("a","b"),("b","c"),("b","d"),("c","d")])

>>> print networkx.clustering(g, "b")
0.333333333333

Calculate coefficient for
specific node.

>>> ccs = networkx.clustering(g)
>>> print ccs
[0.0, 1.0, 0.33333333333333331, 1.0]
>>> print sum(ccs)/len(ccs)
0.583333333333

Calculate global
clustering coefficient.

A B

C D

Build a map of
coefficients for all nodes.

>>> print networkx.clustering(g, with_labels=True)
{'a': 0.0, 'c': 1.0, 'b': 0.33333333333333331, 'd': 1.0}

>>> print networkx.neighbors(g, "b")
['a', 'c', 'd']

Get list of neighbours for
a specific node.

Web Science Summer School 2011

Measures of Centrality

• Degree centrality focuses on individual nodes - it simply counts
the number of edges that a node has.

• Hub nodes with high degree usually play an important role in a
network. For directed networks, in-degree is often used as a
proxy for popularity.

22

• A variety of different measures exist to measure the importance,
popularity, or social capital of a node in a social network.

A

BD

C

E

F

G

H I
J

K

L

MN

O

deg(A)=5

deg(G)=8

Web Science Summer School 2011

Betweenness Centrality

• A path in a graph is a sequence of edges joining one node to another.
The path length is the number of edges.

• Often want to find the shortest path between two nodes.

• A graph's diameter is the longest shortest path over all pairs of nodes.

23

• Nodes that occur on many shortest paths between other nodes in
the graph have a high betweenness centrality score.

BD

C

E

F

H I JA

G

Node "A" has high degree
centrality than "B", as "B"
has few direct connections.

Node "H" has higher
betweenness centrality,
as "H" plays a broker
role in the network.

http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem

Web Science Summer School 2011

Eigenvector Centrality

• The eigenvector centrality of a node proportional to the sum of
the centrality scores of its neighbours.

➡A node is important if it connected to other important nodes.

➡A node with a small number of influential contacts may outrank
one with a larger number of mediocre contacts.

24

• Computation:

1.Calculate the eigendecomposition of the pairwise adjacency matrix
of the graph.

2.Select the eigenvector associated with largest eigenvalue.

3.Element i in the eigenvector gives the centrality of the i-th node.

Web Science Summer School 2011

NetworkX - Measures of Centrality

25

import networkx
from operator import itemgetter

g = networkx.read_adjlist("centrality.edges")

dc = networkx.degree_centrality(g)
print sorted(dc.items(), key=itemgetter(1), reverse=True)

[('a', 0.66666666666666663), ('b', 0.55555555555555558), ('g', 0.55555555555555558), ('c', 0.33333333333333331),
('e', 0.33333333333333331), ('d', 0.33333333333333331), ('f', 0.33333333333333331), ('h', 0.33333333333333331),
('i', 0.22222222222222221), ('j', 0.1111111111111111)]

bc = networkx.betweenness_centrality(g)
print sorted(bc.items(), key=itemgetter(1), reverse=True)

[('h', 0.38888888888888884), ('b', 0.2361111111111111), ('g', 0.2361111111111111), ('i', 0.22222222222222221),
('a', 0.16666666666666666), ('c', 0.0), ('e', 0.0), ('d', 0.0), ('f', 0.0), ('j', 0.0)]

bc = networkx.eigenvector_centrality(g)
print sorted(bc.items(), key=itemgetter(1), reverse=True)

[('a', 0.17589997921479006), ('b', 0.14995290497083508), ('g', 0.14995290497083508), ('c', 0.10520440827586457),
('e', 0.10520440827586457), ('d', 0.10520440827586457), ('f', 0.10520440827586457), ('h', 0.078145778134411939),
('i', 0.020280613919932109), ('j', 0.0049501856857375875)]

BD

C

E

F

H I JA

G

p = 0.05
p = 0.3

Web Science Summer School 2011

Random Networks

• Erdős–Rényi random graph model:
• Start with a collection of n disconnected nodes.
• Create an edge between each pair of nodes with a probability p,

independently of every other edge.

26

g1 = networkx.erdos_renyi_graph(50, 0.05)

g2 = networkx.erdos_renyi_graph(50, 0.3)

Specify number of nodes
to create, and connection
probability p.

Web Science Summer School 2011

Small World Networks

Milgram's Small World Experiment:
• Route a package to a stockbroker in Boston by sending them to random

people in Nebraska and requesting them to forward to someone who might
know the stockbroker.

➡ Although most nodes are not directly connected, each node can be reached
from another via a relatively small number of hops.

27

Six Degrees of Kevin Bacon
• Examine the actor-actor "co-starred" graph from IMDB.
• The Bacon Number of an actor is the number of degrees of

separation he/she has from Bacon, via the shortest path.

http://oracleofbacon.org

S.W.A.T. Murder in
the First

starred in with starred in with

⇒ Bacon Number = 2

http://oracleofbacon.org/
http://oracleofbacon.org/

Web Science Summer School 2011

Small World Networks

• Take a connected graph with a high
diameter, randomly add a small number
of edges, then the diameter tends to
drop drastically.

• Small-world network has many local
links and few long range “shortcuts”.

28

Typical properties:
- High clustering coefficient.
- Short average path length.
- Over-abundance of hub nodes.

[Watts & Strogatz, 1998]

Generating Small World Networks:
1.Create ring of n nodes, each connected to its k nearest neighbours.
2.With probability p, rewire each edge to an existing destination node.

p = 0 p = 1
[Watts & Strogatz, 1998]

Web Science Summer School 2011

NetworkX - Small World Networks

29

n = 50
k = 6
p = 0.3
g = networkx.watts_strogatz_graph(n, k, p)

• NetworkX includes functions to generate graphs according to
a variety of well-known models:

http://networkx.lanl.gov/reference/generators.html

>>> networkx.average_shortest_path_length(g)
2.4506122448979597

http://networkx.lanl.gov/reference/generators.html
http://networkx.lanl.gov/reference/generators.html

Community Finding

Web Science Summer School 2011

Cliques

• A clique is a social grouping where everyone knows everyone
else (i.e. there is an edge between each pair of nodes).

31

• A maximal clique is a clique that is not a subset
of any other clique in the graph.

• A clique with size greater than or equal to that of
every other clique in the graph is called a
maximum clique.

B

D

C

EF

A

>>> cl = list(networkx.find_cliques(g))

Find all maximal cliques in the specified graph:

>>> print cl
[['a', 'b', 'f'], ['c', 'e', 'b', 'f'], ['c', 'e', 'd']]

B

F

A B C

EF

D

C

E

Web Science Summer School 2011

Community Detection

32

1.1. ASPECTS OF NETWORKS 5

Figure 1.4: The links among Web pages can reveal densely-knit communities and prominent
sites. In this case, the network structure of political blogs prior to the 2004 U.S. Presiden-
tial election reveals two natural and well-separated clusters [5]. (Image from http://www-
personal.umich.edu/ ladamic/img/politicalblogs.jpg)

then not only will they appreciate that their outcomes depend on how others behave, but they

will take this into account in planning their own actions. As a result, models of networked

behavior must take strategic behavior and strategic reasoning into account.

A fundamental point here is that in a network setting, you should evaluate your actions

not in isolation, but with the expectation that the world will react to what you do. This

means that cause-effect relationships can become quite subtle. Changes in a product, a Web

site, or a government program can seem like good ideas when evaluated on the assumption

that everything else will remain static, but in reality such changes can easily create incentives

that shift behavior across the network in ways that were initially unintended.

Moreover, such effects are at work whether we are able to see the network or not. When

a large group of people is tightly interconnected, they will often respond in complex ways

that are only apparent at the population level, even though these effects may come from

implicit networks that we do not directly observe. Consider, for example, the way in which

new products, Web sites, or celebrities rise to prominence — as illustrated, for example, by

Figures 1.5 and 1.6, which show the growth in popularity of the social media sites YouTube

• We will often be interested in identifying communities of
nodes in a network...

[Adamic & Glance,2005]

• Example: Two distinct communities of bloggers discussing
2004 US Presidential election.

Web Science Summer School 2011

Community Detection

• A variety of definitions of community/cluster/module exist:
• A group of nodes which share common properties and/or play a

similar role within the graph [Fortunato, 2010].
• A subset of nodes within which the node-node connections are

dense, and the edges to nodes in other communities are less dense
[Girvan & Newman, 2002].

33

[Girvan & Newman, 2002]

Web Science Summer School 2011

Graph Partitioning

• Goal: Divide the nodes in a graph into a user-specified number of
disjoint groups to optimise a criterion related to number of edges cut.

34

cut(A,B) = 3

A B

5

4
4

6

6 4

2

1

5

2

4
4

6

6

1

4

• Min-cut simply involves minimising number
(or weight) of edges cut by the partition.

• Recent approaches use more sophisticated criteria (e.g. normalised
cuts) and apply multi-level strategies to scale to large graphs.

http://www.cs.utexas.edu/users/dml/Software/graclus.htmlGraclus [Dhillon et al, 2007]

Issues: Requirement to pre-specify number of partitions, cut criteria
often make strong assumptions about cluster structures.

http://www.cs.utexas.edu/users/dml/Software/graclus.html
http://www.cs.utexas.edu/users/dml/Software/graclus.html

Web Science Summer School 2011

Hierarchical Clustering

• Construct a tree of clusters to identify groups of nodes with high
similarity according to some similarity measure.

• Two basic families of algorithm...
1.Agglomerative: Begin with each node assigned to a singleton cluster.

Apply a bottom-up strategy, merging the most similar pair of clusters
at each level.

2.Divisive: Begin with single cluster containing all nodes.
Apply a top-down strategy, splitting a chosen cluster into two sub-
clusters at each level.

35

Si
m
ila
rit
y

k = 2
Issues for Community Detection:

- How do we choose among many
different possible clusterings?

- Is there really a hierarchical
structure in the graph?

- Often scales poorly to large graphs.

Web Science Summer School 2011

NetworkX - Hierarchical Clustering

36

• We can apply agglomerative clustering to a NetworkX graph by calling
functions from the NumPy and SciPy numerical computing packages.

g = networkx.read_edgelist("karate.edgelist")
[Zachary, 1977]

import networkx
import numpy, matplotlib
from scipy.cluster import hierarchy
from scipy.spatial import distance

hier = hierarchy.average(sd)		 Apply average-linkage
agglomerative clustering.

path_length=networkx.all_pairs_shortest_path_length(g)
n = len(g.nodes())
distances=numpy.zeros((n,n))
for u,p in path_length.iteritems():
	 for v,d in p.iteritems():
	 	 distances[int(u)-1][int(v)-1] = d
sd = distance.squareform(distances)

Build pairwise distance
matrix based on shortest
paths between nodes.

Web Science Summer School 2011

NetworkX - Hierarchical Clustering

37

hierarchy.dendrogram(hier)
matplotlib.pylab.savefig("tree.png",format="png")

Build the dendrogram,
then write image to disk.

Web Science Summer School 2011

Modularity Optimisation

• Newman & Girvan [2004] proposed measure of partition quality....
➡ Random graph shouldn't have community structure.
➡ Validate existence of communities by comparing actual edge density with

expected edge density in random graph.

38

Q = (number of edges within communities)− (expected number within communities)

• Apply agglomerative technique to iteratively merge groups of nodes to
form larger communities such that modularity increases after merging.

• Recently efficient greedy approaches to modularity maximisation have
been developed that scale to graphs with up to 10^9 edges.

http://findcommunities.googlepages.comLouvain Method [Blondel et al, 2008]

Issues for Community Detection:

- Total number of edges in graph controls the resolution at which
communities are identified [Fortunato, 2010].

- Is it realistic/useful to assign nodes to only a single community?

http://findcommunities.googlepages.com
http://findcommunities.googlepages.com

Web Science Summer School 2011

NetworkX - Modularity Optimisation

• Python implementation of the Louvain algorithm available:

39

http://perso.crans.org/aynaud/communities/community.py

[Zachary, 1977]

g = networkx.read_edgelist("karate.edges")

import community
partition = community.best_partition(g)

Apply Louvain algorithm to the graph

for i in set(partition.values()):
	 print "Community", i
	 members = list_nodes = [nodes for nodes in partition.keys() if partition[nodes] == i]
	 print members

Print nodes assigned to each community in the partition

Community 0
['24', '25', '26', '28', '29', '32']
Community 1
['27', '21', '23', '9', '10', '15', '16', '33', '31', '30', '34', '19']
Community 2
['20', '22', '1', '3', '2', '4', '8', '13', '12', '14', '18']
Community 3
['5', '7', '6', '11', '17']

http://perso.crans.org/aynaud/communities/community.py
http://perso.crans.org/aynaud/communities/community.py

1

2
3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

27

30

3133
34

24

25

26

28

29

32

Web Science Summer School 2011

NetworkX - Modularity Optimisation

40

Community 0
['24', '25', '26', '28', '29', '32']
Community 1
['27', '21', '23', '9', '10', '15', '16', '33', '31', '30', '34', '19']
Community 2
['20', '22', '1', '3', '2', '4', '8', '13', '12', '14', '18']
Community 3
['5', '7', '6', '11', '17']

Community 0

Community 1

Community 2

Community 4

Web Science Summer School 2011

Overlapping v Non-Overlapping

• Do disjoint non-overlapping communities make sense
in empirical social networks?

41

Family Friends Colleagues Sports

++

Web Science Summer School 2011

Overlapping v Non-Overlapping

• Do disjoint non-overlapping communities make sense
in empirical social networks?

42

Family Friends Colleagues Sports

Family

Friends

Colleagues

Overlapping
communities may
exist at different
resolutions.

School
of CSSchool

of Stats

Bio
Institute

Colleagues

Web Science Summer School 2011

Overlapping v Non-Overlapping

• Distinct "non-overlapping" communities rarely exist at large scales
in many empirical networks [Leskovec et al, 2008].

➡Communities overlap pervasively, making it impossible to partition
the networks without splitting communities [Reid et al, 2011].

43

Community overlap at
an ego level

[Ahn et al, 2010]

Community overlap at
a global level

Web Science Summer School 2011

Overlapping Community Finding

• CFinder: algorithm based on the clique percolation method
[Palla et al, 2005].

• Identify k-cliques: a fully connected subgraph k nodes.

• Pair of k-cliques are "adjacent" if they share k−1 nodes.

• Form overlapping communities from maximal union of k-cliques
that can be reached from each other through adjacent k-cliques.

44

Set of overlapping
communities
built from 4-cliques.

http://cfinder.org
[Palla et al, 2005]

Co-authorship Network

http://cfinder.org/
http://cfinder.org/

Web Science Summer School 2011

Overlapping Community Finding

• Greedy Clique Expansion (GCE): identify distinct
cliques as seeds, expands the seeds by greedily
optimising a local fitness function [Lee et al, 2010].

45

https://sites.google.com/site/greedycliqueexpansion

• MOSES: scalable approach for identifying highly-
overlapping communities [McDaid et al, 2010].

- Randomly select an edge, greedily expand a community
around the edge to optimise an objective function.

- Delete "poor quality" communities.

- Fine-tune communities by re-assigning individual nodes.

https://sites.google.com/site/aaronmcdaid/moses

https://sites.google.com/site/greedycliqueexpansion/
https://sites.google.com/site/greedycliqueexpansion/
https://sites.google.com/site/aaronmcdaid/moses
https://sites.google.com/site/aaronmcdaid/moses

Web Science Summer School 2011

NetworkX - Overlapping Communities

• No built-in support for overlapping algorithms, but we can use
the MOSES tool to analyse graphs represented as edge lists.

46

import subprocess
outpath="test_moses.comms"
proc = subprocess.Popen(["/usr/bin/moses", edgepath, outpath])
proc.wait()

Apply MOSES tool to the edge-list file

lines = open(outpath,"r").readlines()
print "Identified %d communities" % len(lines)
for l in lines:
	 print set(lines[i].strip().split(" "))

Parse the output of MOSES

import networkx
g = networkx.watts_strogatz_graph(60, 8, 0.3)
edgepath = "test_moses.edgelist"
networkx.write_weighted_edgelist(g, edgepath)

Build a graph, write it to a
temporary edge-list file.

Nodes assigned to
multiple communities

Web Science Summer School 2011

NetworkX - Overlapping Communities

47

Identified 9 communities
Community 0
set(['48', '49', '46', '47', '45', '51', '50'])
Community 1
set(['54', '56', '51', '53', '52'])
Community 2
set(['39', '38', '37', '42', '40', '41'])
Community 3
set(['20', '21', '17', '16', '19', '18', '15'])
Community 4
set(['33', '32', '36', '35', '34'])
Community 5
set(['48', '46', '44', '45', '43', '40'])
Community 6
set(['59', '58', '56', '0', '3', '2'])
Community 7
set(['24', '25', '26', '27', '31', '30', '28'])
Community 8
set(['10', '5', '4', '7', '6', '9', '8'])

Web Science Summer School 2011

Dynamic Community Finding

48

• In many SNA tasks we will want to analyse how
communities in the network form and evolve over time.

• Often perform this analysis in an "offline" manner by
examining successive snapshots of the network.

A

B

t = 2 t = 3

A ∪BA

t = 1Step

Web Science Summer School 2011

Dynamic Community Finding

49

• We can characterise dynamic communities in terms of key
life-cycle events [Palla et al, 2007; Berger-Wolf et al, 2007]

- Expansion &
Contraction
of communities

Step t→ t + 1

- Birth & Death
of communities

Step t→ t + 1

- Merging &
Splitting
of communities

Web Science Summer School 2011

Dynamic Community Finding

50

• Apply community finding algorithm to each snapshot of the graph.

• Match newly-generated "step communities" with those that have been
identified in the past.

Historic
Communities

Step
Communities

t = 4

?

|C ∩ Fi|
|C ∪ Fi|

> θ

Jaccard Similarity Score

t = 1 t = 2 t = 3

C11

C12

C22

C23

C31

C32

D1

D3

D2

C21

D4

C13

C33

Merge

Split

[Greene et al, 2010]

http://mlg.ucd.ie/dynamic

Dynamic community tracking software

http://mlg.ucd.ie/dynamic
http://mlg.ucd.ie/dynamic

Applications

Web Science Summer School 2011

Application - Mapping Blog Networks

• Motivation: Literary analysis of blogs is difficult when corpus
contains hundreds of blogs and hundreds of thousands of posts.

➡Use a data-driven approach to select a topically representative
set from 635 blogs in the Irish blogosphere during 1997-2011.

52

Multi-Relational Networks
1. Blogroll: unweighted graph with edges

representing permanent or nearly-
permanent links between blogs.

2. Post-link: weighted graph with edges
representing non-permanent post
content links between blogs.

3. Content profile: text content from all
available posts for a given blog.

[Wade et al, 2011]http://mlg.ucd.ie/blogs

http://mlg.ucd.ie/blogs
http://mlg.ucd.ie/blogs

Web Science Summer School 2011

Application - Mapping Blog Networks

• Initially applied centrally
measures to identify
representatives blogs in
blogroll and post-link
graphs.

53

Limitations:

Influential blogs are identified.
But they do not necessarily
provide good coverage of the
wider Irish blogosphere.

Web Science Summer School 2011

Application - Mapping Blog Networks

• Apply text clustering
techniques on content view to
identify clusters of blogs
discussing coherent topics.

• Generated a clustering with
12 distinct communities...

54

• The "Discussion" community
was least coherent in terms of
content, and includes blogs
pertaining to a number of
topics.

Web Science Summer School 2011

Application - Mapping Blog Networks

• Applied GCE overlapping community
finding algorithm to the blogroll and
post-link graphs on the subgraphs
induced by the “Discussion” cluster.

• Identified “stable” communities that
were present in both the blog-roll
and post-link networks.

55

➡ Identified representative blogs as
those with high in-degree in the
blogroll subgraphs for each of the
resulting communities.

Web Science Summer School 2011

Application - Microblogging

• Storyful.com: Journalists struggling to cope with a "tsunami
of user-generated content" on social media networks.

56

Web Science Summer School 2011

Application - Microblogging

• A community of users evolves on Twitter around a
breaking news story.

➡Support the content curation process by augmenting
curated lists by recommending authoritative sources from
the community that are relevant to the news story.

57

Relations:
 Follower links
 Co-listed
 Shared URLs
 Retweets
 Co-location
 Mentions
 Content similarity

Syria
List

ZainSyr

M_akbik

suhairatassi

Follows

Follows

List Member

List Member

Web Science Summer School 2011

Application - Microblogging

58

stephenstarr

FWSyria

DannySeesIt

freesy70

edwardedark

Atoraia

syrianews

hiamgamil

SyrianFront

M_akbik

obeidanahas

Syriana84

eafesooriyah

tvbarada

AnonymousSyria

Bounty87

Kinaniyat

LeShaque

wissamtarif

hkhabbab

Mohammad_Syria

awwo342010

DamascusBureau

mnourullah

MalathAumran

rimamaktabi

ZainSyr

ObaydahGhadban

Levant_News

RulaAmin

razanz

freelancitizen

SyrianJasmine

Syria_Feb5

AbuJadBasha

SyrianFreePress

Shantal7afana

alharriri

RevolutionSyria

ZeinakhodrAljaz

SeekerSK

DominicWaghorn

daraanow

anthonyshadid

Monajed

M_G_S_R

KafaSamtan

Obfares

Anasyria

AlexanderPageSY

Razaniyat

arwaCNN

kellymcevers

okbah

Seleukiden

Tharwacolamus

shaamnews

jfjbowen

fatouhmohammed

rallaf

syrianewsco

M_akbik

hiamgamil

DorothyParvaz

fatouhmohammed

Syriana84

Bounty87

Kinaniyat

obeidanahas
tvbarada

LeShaque

dparvaz

SyrianFront

hkhabbab

rallaf

awwo342010

AnonymousSyria

Atoraia

DamascusBureau

wissamtarif

Mohammad_Syria

mnourullah

rimamaktabi

ObaydahGhadban

Levant_News

RulaAmin

freelancitizen

Syria_Feb5

syrFreedomizer

MalathAumran

ZainSyr

SeekerSK

SyrianFreePress

alharriri

ZeinakhodrAljaz

AbuJadBasha

anthonyshadid

razanz

SyrianJasmine

DominicWaghorn

Monajed

syrianews

RevolutionSyria

chamtimes

Obfares

M_G_S_R

eafesooriyah

Anasyria

bencameraman

AlexanderPageSY

KafaSamtan

Tharwacolamus

daraanow

jfjbowen

Razaniyat

arwaCNN

ghaith112

shaamnews

okbah

DannySeesIt

freesy70

AyatBasma

kellymcevers

stephenstarr

FWSyria

edwardedark

Seleukiden

Shantal7afana

SyRevEye

cnnbrk

Ghonim

waelabbas

Reuters

AJArabic

BBCBreaking

acarvin

suhairatassi
AlArabiya

monaeltahawy

aliferzat

shadi

anasqtiesh

SyriaToday

TrellaLB

tweetsyria

altahawi

Ahedalhendi

all4syria

Ayman_Nour

thisdayinsyria

alhajsaleh

anasonline

SYRtweets

Annidaa

syriahr

syriangavroche

mskayyali

TehranBureau

AJEnglish

kasimf

bacharno1224SyrianHRC

alsayedziad

aabnour

AzzamTamimi

SyTweets

RazanSpeaks

ShaamNN

JKhashoggi

AbdullahAli7

OrientTv

ghosam

khanfarw

ahmadtalk

AliAldafiri

Qurabi

abdulhaykal

livelifeloveMOI

weddady

Dima_Khatib

Arabzy

calperryAJ

GDoumany

aqmme

BSyria
AP

3ayeef

okbahmushaweh

BBCLinaSinjab

Halwasaa

bupkispaulie

Hussam_Arafa
SyriansHandSyrRevo

MayorKhairullah

TheEconomist

BarackObama

Barazi_7urr

ProfKahf

UgaritNEWS

BloggerSeif

FY_Syria

Syrianciticzen

ammar1y

ZetonaXX

HalaGorani

radwanziadeh

AJELive

LaurenBohn

Dhamvch

AlArabiya_Brk

yalzaiat

BreakingNews

1SecularSyrian

hrw

Tadmor_Harvard

freedomtal

cnnarabic

Layal_Mhm

kareem_ho

Zeinobia

MalikAlAbdeh

aljazeeranet

SyrianCenter

RassdNews

BBCKimGhattas

nadimhoury

BBCWorld

SyrianProtests

wikileaks

AmnestyAR

bbcarabic

aaouir

nytimes

FP_Magazine

7oran__Sy

SultanAlQassemi

NickKristof

bencnn

RawyaRageh

arabist

UN

AymanM

RamyRaoof

SherineT

ElBaradei

Sandmonkey

andersoncooper

France24_ar

octavianasr

jilliancyork

waelalwani

SyriaConnect

almudawen

yazanbadran

ysalahi

Lara

ShababLibya

JustAmira

meedan

alaa

3arabawy

husseinghrer

March15Syria

avinunu

sweiddaa

arwa_abdulaziz

sherriecoals

syrianmemory

QueenRania

Syria_Newz

Rank Screen Name Weighting
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

suhairatassi 28.8
aliferzat 28.5
syriangavroche 28.5
Annidaa 28.3
ahmadtalk 27.8
Dhamvch 27.8
bacharno1224 27.8
radwanziadeh 27.7
alhajsaleh 27.5
MalikAlAbdeh 27.5
ZetonaXX 27.2
SyrianHRC 27.1
anasonline 27.0
SyTweets 26.8
AbdullahAli7 26.7

• Performed analysis to recommend additional Twitter
users to augment the "Syria" list curated by Storyful.

Web Science Summer School 2011

Tutorial Resources

• NetworkX: Python software for network analysis (v1.5)

http://networkx.lanl.gov

• Python 2.6.x / 2.7.x

http://www.python.org

59

• Gephi: Java interactive visualisation platform and toolkit.

http://gephi.org

• Slides, full resource list, sample networks, sample code
snippets online here:

http://mlg.ucd.ie/summer

http://networkx.lanl.gov/
http://networkx.lanl.gov/
http://networkx.lanl.gov/
http://networkx.lanl.gov/
http://gephi.org/features/
http://gephi.org/features/
http://gephi.org/
http://gephi.org/
http://gephi.org/
http://gephi.org/

Web Science Summer School 2011

References

• J. Moreno. "Who shall survive?: A new approach to the problem of human interrelations".
Nervous and Mental Disease Publishing Co, 1934.

• D. Easley and J. Kleinberg. "Networks, crowds, and markets". Cambridge Univ Press, 2010.

• R. Hanneman and M. Riddle. "Introduction to social network methods", 2005.

• M. Newman. "Finding community structure in networks using the eigenvectors of
matrices", Phys. Rev. E 74, 036104, 2006.

• L. Adamic and N. Glance. "The political blogosphere and the 2004 U.S. election: Divided
they blog". In Proc. 3rd International Workshop on Link Discovery, 2005.

• S. Fortunato. "Community detection in graphs". Physics Reports, 486(3-5):75–174, 2010.

• M. Girvan and M. Newman. "Community structure in social and biological networks". Proc.
Natl. Acad. Sci., 99(12):7821, 2002.

• I. Dhillon, Y. Guan, and B. Kulis. "Weighted Graph Cuts without Eigenvectors: A Multilevel
Approach". IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007.

• M. Newman and M. Girvan. "Finding and evaluating community structure in networks".
Physical review E, 69(2):026113, 2004.

• D. J. Watts and S. H. Strogatz. "Collective dynamics of ’small-world’ networks". Nature,
393(6684):440–442, 1998.

60

Web Science Summer School 2011

References

• V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. "Fast unfolding of communities in
large networks". J. Stat. Mech, 2008.

• W. W. Zachary. "An information flow model for conflict and fission in small groups", Journal
of Anthropological Research 33, 452-473, 1977.

• J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. "Statistical properties of community
structure in large social and information networks". In Proc. WWW 2008.

• F. Reid, A. McDaid, and N. Hurley. "Partitioning breaks communities". In Proc. ASONAM
2011.

• G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. "Uncovering the overlapping community
structure of complex networks in nature and society". Nature, 2005.

• C. Lee, F. Reid, A. McDaid, and N. Hurley. "Detecting highly overlapping community
structure by greedy clique expansion". In Workshop on Social Network Mining and
Analysis, 2010.

• A. McDaid and N. Hurley. "Detecting highly overlapping communities with Model-based
Overlapping Seed Expansion". In Proc. International Conference on Advances in Social
Networks Analysis and Mining, 2010.

• Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann. "Link communities reveal multiscale complexity in
networks". Nature, June 2010.

61

Web Science Summer School 2011

References

• C. Tantipathananandh, T. Berger-Wolf, and D. Kempe, "A framework for community
identification in dynamic social networks". In Proc. KDD 2007.

• G. Palla, A. Barabasi, and T. Vicsek, "Quantifying social group evolution ". Nature, vol. 446,
no. 7136, 2007.

• D. Greene, D. Doyle, and P. Cunningham. "Tracking the evolution of communities in
dynamic social networks". In Proc. International Conference on Advances in Social
Networks Analysis and Mining, 2010.

• K. Wade, D. Greene, C. Lee, D. Archambault, and P. Cunningham. "Identifying
Representative Textual Sources in Blog Networks". In Proc. 5th International AAAI
Conference on Weblogs and Social Media, 2011.

62

