Attacks on collaborative recommender systems

Agenda

- Introduction
- Charactarization of Attacks
- Attack models
- Effectivness analysis
- Countermeasures
- Privacy aspects
- Discussion

Introduction / Background

(Monetary) value of being in recommendation lists

- Individuals may be interested to push some items by manipulating the recommender system
- Individuals might be interested to decrease the rank of other items
- Some simply might may want to sabotage the system ..

Manipulation of the "Internet opinion"

- Malevolent users try to influence behavior of recommender systems
 - System should include a certain item very often/seldom in its recommendation list

A simple strategy?

- (Automatically) create numerous fake accounts / profiles
- Issue high or low ratings to the "target item"
 - ⇒ Will not work for neighbor-based recommenders
 - **⇒** More elaborate attack models required
 - ⇒ Goal is to insert profiles that will appear in neighborhood of many

- Assume that a memory-based collaborative filtering is used with:
 - Pearson correlation as similarity measure
 - Neighborhood size of 1
 - Only opinion of most similar user will be used to make prediction

	ltem1	Item2	Item3	Item4	 Target	Pearson
Alice	5	3	4	1	 ?	
User1	3	1	2	5	 5	-0.54
User2	4	3	3	3	 2	0.68
User3	3	3	1	5	 4	-0.72
User4	1	5	5	2	 1	-0.02

- Assume that a memory-based collaborative filtering is used with:
 - Pearson correlation as similarity measure
 - Neighborhood size of 1
 - Only opinion of most similar user will be used to make prediction

	ltem1	Item2	Item3	Item4	 Target	Pearson
Alice	5	3	4	1	 ?	
User1	3	1	2	5	 5	-0.54
User2	4	3	3	3	 2	0.68
User3	3	3	1	5	 4	-0.72
User4	1	5	5	2	 1	-0.02

← User2 most similar to Alice

- Assume that a memory-based collaborative filtering is used with:
 - Pearson correlation as similarity measure
 - Neighborhood size of 1
 - Only opinion of most similar user will be used to make prediction

	Item1	Item2	Item3	ltem4	 Target	Pearson	
Alice	5	3	4	1	 ?		
User1	3	1	2	5	 5	-0.54	
User2	4	3	3	3	 2	0.68	← User2 most similar to Alice
User3	3	3	1	5	 4	-0.72	✓ Attack
User4	1	5	5	2	 1	-0.02	7 1111011
Attack	5	3	4	3	 5	0.87	

- Assume that a memory-based collaborative filtering is used with:
 - Pearson correlation as similarity measure
 - Neighborhood size of 1
 - Only opinion of most similar user will be used to make prediction

	Item1	Item2	Item3	Item4	 Target	Pearson	
Alice	5	3	4	1	 ?		
User1	3	1	2	5	 5	-0.54	
User2	4	3	3	3	 2		← User2 most similar to Alice
User3	3	3	1	5	 4	-0.72	∮ Attack
User4	1	5	5	2	 1	-0.02	711111111
Attack	5	3	4	3	 5	0.87	← Attack most similar to Alice

Characterization of profile insertion attacks

Attack dimensions

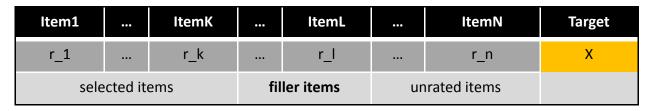
- Push attack:
 - Increase the prediction value of a target item
- Nuke attack:
 - Decrease the prediction value of a target item
- Make the recommender system unusable as a whole
- No technical difference between push and nuke attacks
- Nevertheless Push and Nuke attacks are not always equally effective
- Another differentiation factor between attacks:
 - Where is the focus of an attack? Only on particular users and items?
 - Targeting a subset of items or users might be less suspicious
 - More focused attacks may be more effective (attack profile more precisely defined)

Characterization of profile insertion attacks

- Classification criteria for recommender system attacks include:
 - Cost
 - How costly is it to make an attack?
 - How many profiles have to be inserted?
 - Is knowledge about the ratings matrix required?
 - usually it is not public, but estimates can be made
 - Algorithm dependability
 - Is the attack designed for a particular recommendation algorithm?
 - Detectability
 - How easy is it to detect the attack

The Random Attack

General scheme of an attack profile



Attack models mainly differ in the way the profile sections are filled

Random attack model

- Take random values for filler items
 - Typical distribution of ratings is known, e.g., for the movie domain (Average 3.6, standard deviation around 1.1)
- Idea:
 - generate profiles with "typical" ratings so they are considered as neighbors to many other real profiles
- High/low ratings for target items
- Limited effect compared with more advanced models

The Average Attack

- use the individual item's rating average for the filler items
- intuitively, there should be more neighbors
- additional cost involved: find out the average rating of an item
- more effective than Random Attack in user-based CF
 - But additional knowledge is required
- Quite easy to determine average rating values per item
 - Values explicitly provided when item is displayed

Effectiveness

- By the way: what does effective mean?
- Possible metrics to measure the introduced bias
- Robustness
 - deviation in general accuracy of algorithm
- Stability
 - change in prediction for a target item (before/after attack)
- In addition: rank metrics
 - How often does an item appear in Top-N lists (before/after)

Bandwagon Attack

- Exploits additional information about the community ratings
- Simple idea:
 - Add profiles that contain high ratings for "blockbusters" (in the selected items); use random values for the filler items
 - Will intuitively lead to more neighbors because
 - popular items will have many ratings and
 - rating values are similar to many other user-profiles
- **Example:** Injecting a profile with high rating values for the *Harry Potter* series
- Low-cost attack
 - Set of top-selling items/blockbusters can be easily determined
- Does not require additional knowledge about mean item ratings

Segment Attack

- Designing an attack that aims to push item A
- Find items that are similar to target item,
 - These items probably liked by the same group of people
 - Identify subset of user community that is interested in items similar to A
- Inject profiles that have
 - high ratings for fantasy novels and
 - random or low ratings for other genres
- Thus, item will be pushed within the relevant community
- For example: Push the new Harry Potter book
 - Attacker will inject profile with positive ratings for other popular fantasy books
 - Harry Potter book will be recommended to typical fantasy book reader
- Additional knowledge (e.g. genre of a book) is required

Special nuke attacks

Love/hate attack

- Target item is given the minimum value
- Filler items are given the highest possible rating value
- Serious effect on system's recommendations when goal is to nuke an item
- Other way around (push an item) it is not effective

Reverse bandwagon

- Associate target item with other items that are disliked by many people.
- Selected item set is filled with minimum ratings

Effectiveness analysis

- Effect depends mainly on the attack size (number of fake profiles inserted)
- User-based recommenders:
 - Bandwagon / Average Attack:
 - Bias shift of 1.5 points on a 5-point scale at 3% attack size
 - Average Attack slightly better but requires more knowledge
 - 1.5 points shift is significant; 3% attack size means inserting e.g., 30,000 profiles into one-million rating database ...
- Item-based recommenders
 - Far more stable; only 0.15 points prediction shift achieved
 - Exception: Segment attack successful (was designed for item-based method)
 - Hybrid recommenders and other model-based algorithms cannot be easily biased (with the described/known attack models)

Countermeasures

- Use model-based or hybrid algorithms
 - More robust against profile injection attacks
 - Accuracy comparable with accuracy of memory-based approaches
 - Less vulnerable
- Increase profile injection costs
 - Captchas



Low-cost manual insertion ...

Countermeasures II

Use statistical attack detection methods

- detect groups of users who collaborate to push/nuke items
- monitor development of ratings for an item
 - changes in average rating
 - changes in rating entropy
 - time-dependent metrics (bulk ratings)
- use machine-learning methods to discriminate real from fake profiles

Privacy aspects

- Problem:
 - Store and manage sensitive customer information
- Detailed customer profiles are the basis for market intelligence
 - Such as segmentation of consumers
- Ensuring customer privacy
 - important for success of a recommender system
 - users refrain from using the application if privacy leaks get publicly known

Privacy aspects II

- Main architectural assumption of CF-Recommender system is
 - One central server holding the database and
 - the plain (non-encrypted) ratings are stored in this database
- Once an attacker achieved access to that system, all information can be directly used
- Prevent such privacy breaches by
 - Distributing the information or
 - Avoiding the exchange, transfer or central storage of the raw user ratings.

Data perturbation

- Main Idea: obfuscate ratings by applying random data perturbation
- Server although does not know the exact values of the customer ratings
 - Accurate recommendation can still be made because:
 - The range of data is known
 - Computation based on aggregation of obfuscated data sets
- Tradeoff between degree of obfuscation an accuracy of recommendation
 - The more "noise" in the data,
 - the better users' privacy is preserved
 - the harder the approximation of real data for the server

Data perturbation II

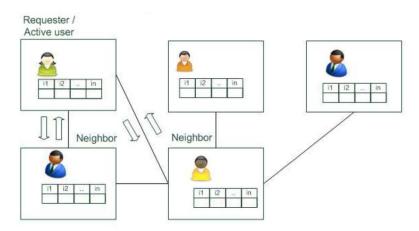
- Vector of numbers $A = (a_1, ..., a_n)$ provided by client
- Disguise A by adding vector $R = (r_1, ..., r_n)$
- r_1, \ldots, r_n taken from uniform distribution $[-\alpha, \alpha]$
- Pertubed vector $A' = (a_1 + r_1, ..., a_n + r_n)$ sent to server
- Server does not know original ratings but
 - If range of distribution is known and
 - enough data are available

good estimation can be made of the sum of the vectors:

$$\sum_{i=1}^{n} (a_i + r_i) = \sum_{i=1}^{n} (a_i) + \sum_{i=1}^{n} (r_i) \approx \sum_{i=1}^{n} (a_1)$$

Distributed collaborative filtering

- Distribute knowledge and avoid storing the information in one central place
- Peer-to-peer (P2P) CF
 - Exchange rating information in a scalable P2P network
 - Active user broadcasts a query (vector of user's item ratings)
 - Peers calculate similarity between recieved and other known vectors
 - If similarity > threshold, known ratings returned to requester
 - If not, query forwarded to the neighboring peers
 - Activ user calculates prediction with recieved ratings



Distributed collaborative filtering with obfuscation

- Combines P2P data exchange and data obfuscation
- Instead of broadcasting the "raw" profile only obfuscated version is published
- Peers received this broadcast return a prediction for target item
- Active user
 - collects these answers and
 - calculates a prediction using standard nearest-neighbor-method
- Obfuscation will help to preserve privacy of participants
- Advisable to perturb only profiles of respondent agents
- Obfuscation of requester profile deteriorates recommendation accuracy

Distributed CF with estimated concordance measures

- Picks up tradeoff problem "privacy vs. accuracy"
- Main idea: Do not use standard similarity measure (like Pearson)
- Instead: concordance measure with comparable accuracy to Pearson etc.
 - Given set of items rated by user A and user B. Determine:
 - number of concordant
 - Items on which both users have the same opinion
 - number of discordant
 - Items on which their disagree
 - number of items for which their ratings are tied
 - Same opinion or not rated item
 - Association between A and B computed by Somers' d measure

$$d_{A,B} = \frac{NbConcordant - NbDiscordant}{NbItemRatingsUsed - NbTied}$$

Community-building and aggregates

- Participants of knowledge communities share information
 - inside the community or
 - with outsiders
- Active user can derive predictions from shared information
- Informations are aggregated based on e.g. SVD
- Individual user ratings are not visible to users outside the community
- Use of cryptographic schemes for secure communication between participants in the network

Discussion & summary

Research on attacks

- Vulnerability of some existing methods shown
- Specially-designed attack models may also exist for up-to-now rather stable methods
- Incorporation of more knowledge-sources /hybridization may help

Practical aspects

- No public information on large-scale real-world attack available
- Attack sizes are still relatively high
- More research and industry-collaboration required