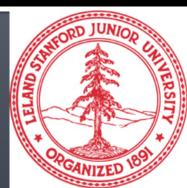
Announcement:

Class on Tuesday and Jure's OH on Wed are cancelled. We will post a link to the video on Piazza. We will also show the video in class and TAs will answer questions.

Recommender Systems: Latent Factor Models

CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu



The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005

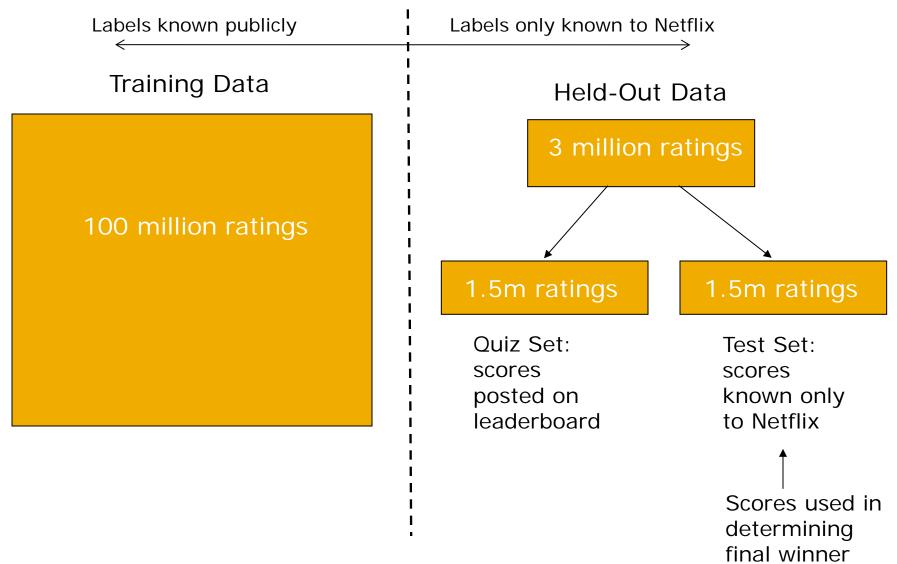
Test data

- Last few ratings of each user (2.8 million)
- Evaluation criterion: Root Mean Square Error (RMSE)

$$= \frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2}$$

- Netflix's system RMSE: 0.9514
 Competition
 - 2,700+ teams
 - \$1 million prize for 10% improvement on Netflix

Competition Structure



The Netflix Utility Matrix R

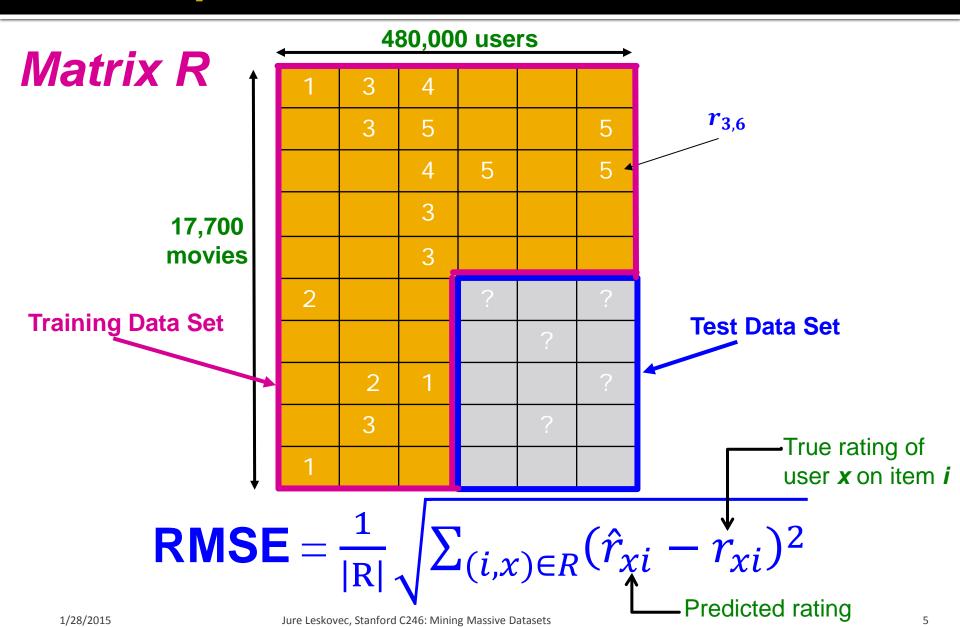
480,000 users

Matrix R

17,700 movies

1	1	3	4			
6		3	5			5
			4	5		5
			3			
			3			
	2			2		2
					5	
		2	1			1
		3			3	
	1					

Utility Matrix R: Evaluation



BellKor Recommender System

- The winner of the Netflix Challenge
- Multi-scale modeling of the data: Combine top level, "regional" modeling of the data, with a refined, local view:
 - Global:
 - Overall deviations of users/movies
 - Factorization:
 - Addressing "regional" effects
 - Collaborative filtering:
 - Extract local patterns

Global effects

Factorization

Collaborative

filtering

Modeling Local & Global Effects

Global:

- Mean movie rating: 3.7 stars
- *The Sixth Sense* is **0.5** stars above avg.
- Joe rates 0.2 stars below avg.

 ⇒ Baseline estimation:
 Joe will rate The Sixth Sense 4 stars

 Local neighborhood (CF/NN):
 Joe didn't like related movie Signs
 - ⇒ Final estimate: Joe will rate The Sixth Sense 3.8 stars

Recap: Collaborative Filtering (CF)

- Earliest and most popular collaborative filtering method
- Derive unknown ratings from those of "similar" movies (item-item variant)
- Define similarity measure s_{ii} of items i and j
- Select k-nearest neighbors, compute the rating
 - N(i; x): items most similar to i that were rated by x

$$\hat{r}_{xi} = \frac{\sum_{j \in N(i;x)} S_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} S_{ij}}$$

s_{ij}... similarity of items i and j
r_{xj}...rating of user x on item j
N(i;x)... set of items similar to
item i that were rated by x

Modeling Local & Global Effects

In practice we get better estimates if we model deviations:

$$\hat{r}_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for *r_{xi}*

$$b_{xi} = \mu + b_x + b_i$$

- μ = overall mean rating
- $\boldsymbol{b}_{\boldsymbol{x}}$ = rating deviation of user \boldsymbol{x}
 - = (avg. rating of user \mathbf{x}) $\boldsymbol{\mu}$
- $\boldsymbol{b}_i = (avg. rating of movie \boldsymbol{i}) \boldsymbol{\mu}$

Problems/Issues:

- 1) Similarity measures are "arbitrary"
- 2) Pairwise similarities neglect
- interdependencies among users
- **3)** Taking a weighted average can be restricting
- **Solution:** Instead of s_{ij} use w_{ij} that we estimate directly from data

Idea: Interpolation Weights w_{ij}

Use a weighted sum rather than weighted avg.:

$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

A few notes:

- N(i; x) ... set of movies rated by user x that are similar to movie i
- w_{ij} is the interpolation weight (some real number)

• We allow: $\sum_{j \in N(i,x)} w_{ij} \neq 1$

w_{ij} models interaction between pairs of movies (it does not depend on user *x*)

Idea: Interpolation Weights w_{ij}

•
$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i,x)} w_{ij} (r_{xj} - b_{xj})$$

How to set w_{ij}?

• Remember, error metric is: $\frac{1}{|R|} \sqrt{\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2}$ or equivalently SSE: $\sum_{(i,x)\in R} (\hat{r}_{xi} - r_{xi})^2$

- Find w_{ij} that minimize SSE on training data!
 - Models relationships between item *i* and its neighbors *j*
- w_{ij} can be learned/estimated based on x and all other users that rated i

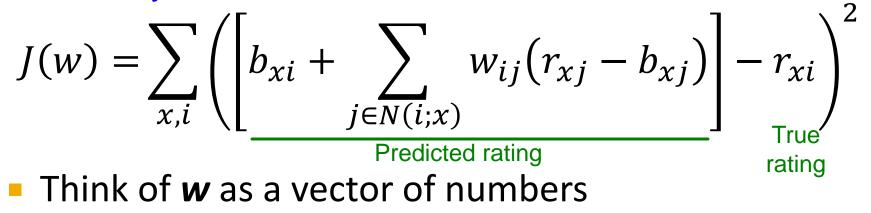
Why is this a good idea?

Recommendations via Optimization

- Goal: Make good recommendations
 - Quantify goodness using RMSE:
 Lower RMSE ⇒ better recommendations
 - Want to make good recommendations on items that user has not yet seen. Can't really do this!
 - Let's set build a system such that it works well on known (user, item) ratings
 And hope the system will also predict well the unknown ratings

Recommendations via Optimization

- Idea: Let's set values w such that they work well on known (user, item) ratings
- How to find such values w?
- Idea: Define an objective function and solve the optimization problem
- Find w_{ij} that minimize SSE on training data!



Detour: Minimizing a function

- A simple way to minimize a function f(x):
 - Compute the take a derivative ∇f
 - Start at some point y and evaluate $\nabla f(y)$
 - Make a step in the reverse direction of the gradient: $y = y \nabla f(y)$
 - Repeat until converged

 $f(y) + \nabla f(y)$

Interpolation Weights

We have the optimization problem, now what?
Gradient decent:

$$J(w) = \sum_{x} \left(\left[b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj}) \right] - r_{xi} \right)^2$$

- Iterate until convergence: $w \leftarrow w \eta \nabla_w J$ $\eta \dots$ learning rate
- where $\nabla_w J$ is the gradient (derivative evaluated on data): $\nabla_w J = \left[\frac{\partial J(w)}{\partial w_{ij}}\right] = 2 \sum_{x,i} \left(\left[b_{xi} + \sum_{k \in N(i;x)} w_{ik}(r_{xk} - b_{xk}) \right] - r_{xi} \right) (r_{xj} - b_{xj})$ for $j \in \{N(i; x), \forall i, \forall x\}$ else $\frac{\partial J(w)}{\partial w_{ij}} = 0$
- Note: We fix movie *i*, go over all r_{xi} , for every movie $j \in N(i; x)$, we compute $\frac{\partial J(w)}{\partial w_{ij}}$ while $|w_{new} w_{old}| > \varepsilon$:

$$w_{old} = w_{new}$$
$$w_{new} = w_{old} - \eta \cdot \nabla w_{old}$$

Jure Leskovec, Stanford C246: Mining Massive Datasets

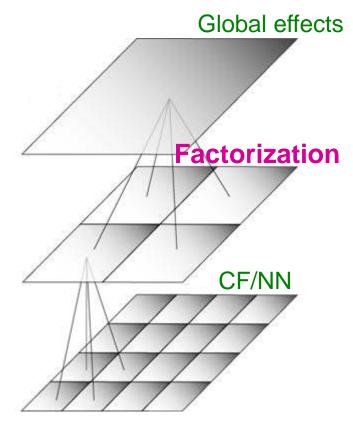
Interpolation Weights

• So far:
$$\widehat{r_{xi}} = b_{xi} + \sum_{j \in N(i;x)} w_{ij} (r_{xj} - b_{xj})$$

- Weights *w_{ij}* derived based on their role; no use of an arbitrary similarity measure (*w_{ij}* ≠ *s_{ij}*)
- Explicitly account for interrelationships among the neighboring movies

Next: Latent factor model

Extract "regional" correlations



Performance of Various Methods

Basic Collaborative filtering: 0.94 CF+Biases+learned weights: 0.91 Global average: 1.1296

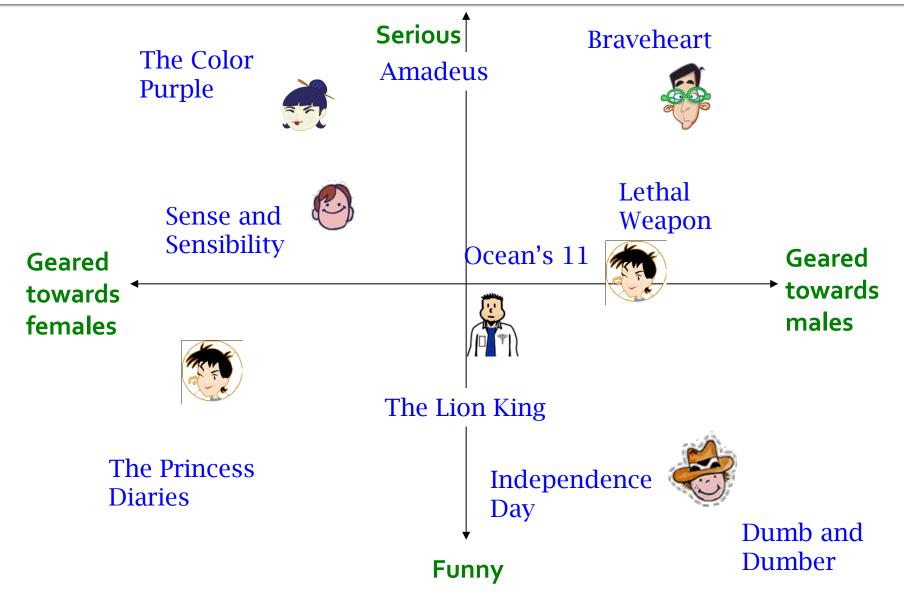
User average: 1.0651

Movie average: 1.0533

Netflix: 0.9514

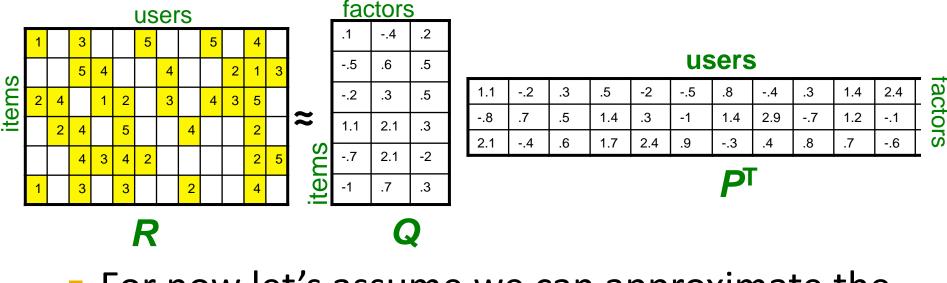
Grand Prize: 0.8563

Latent Factor Models (e.g., SVD)



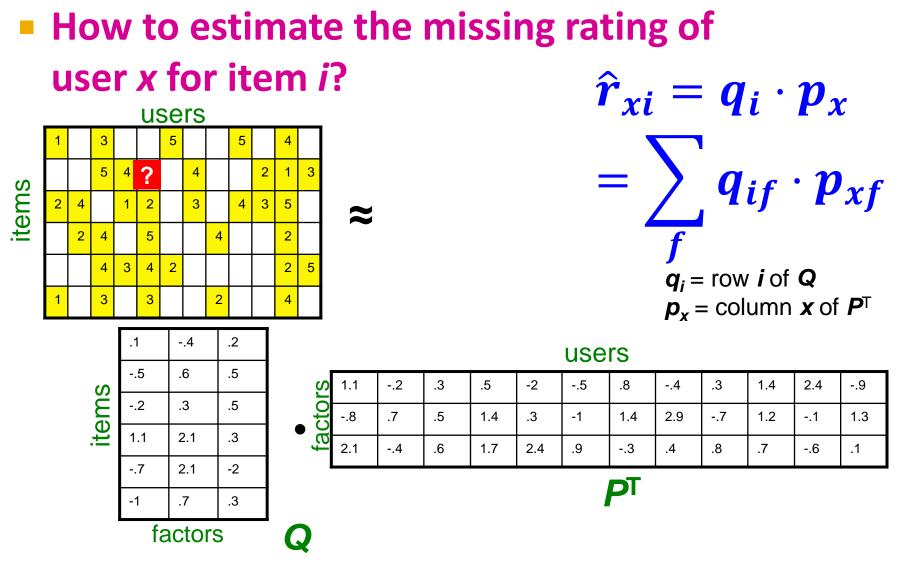
SVD: $A = U \Sigma V^T$

"SVD" on Netflix data: R ≈ Q · P^T

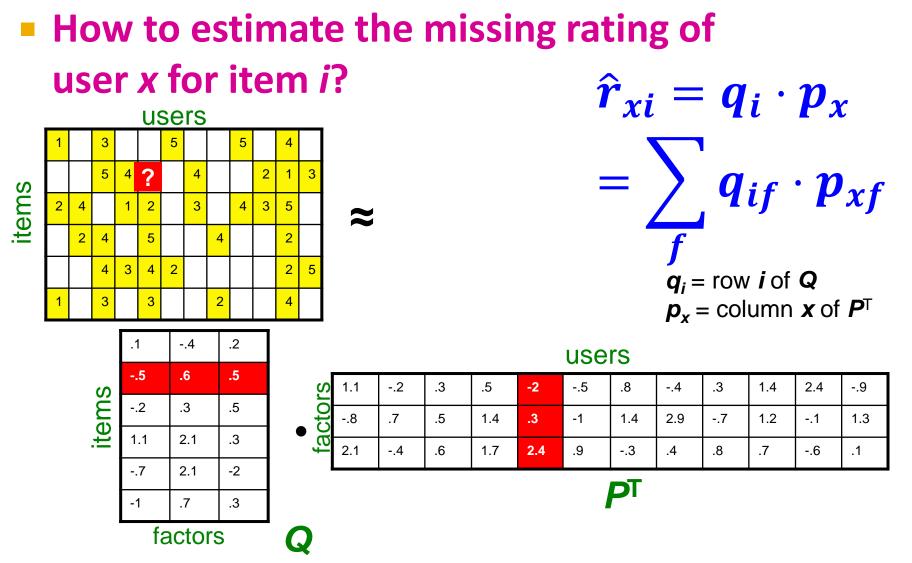


- For now let's assume we can approximate the rating matrix *R* as a product of "thin" *Q* · *P*^T
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

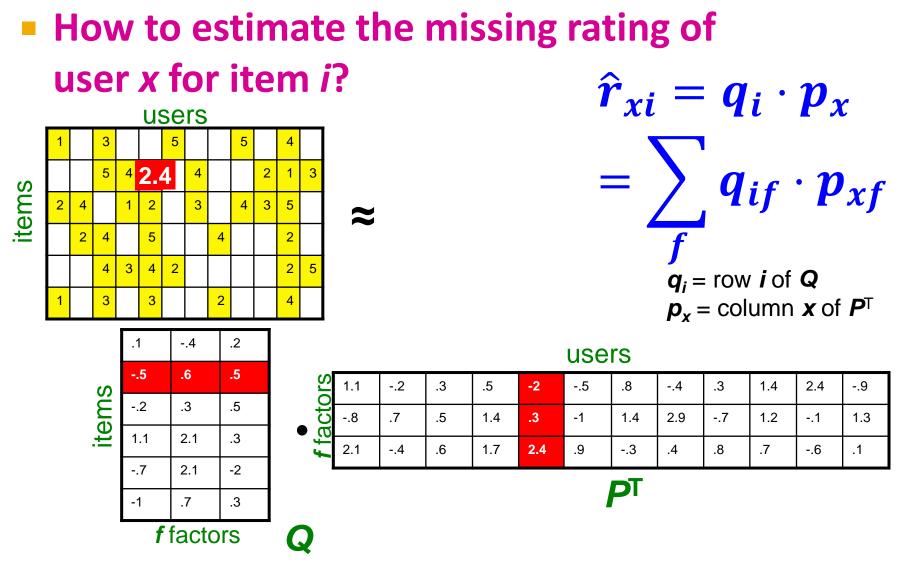
Ratings as Products of Factors



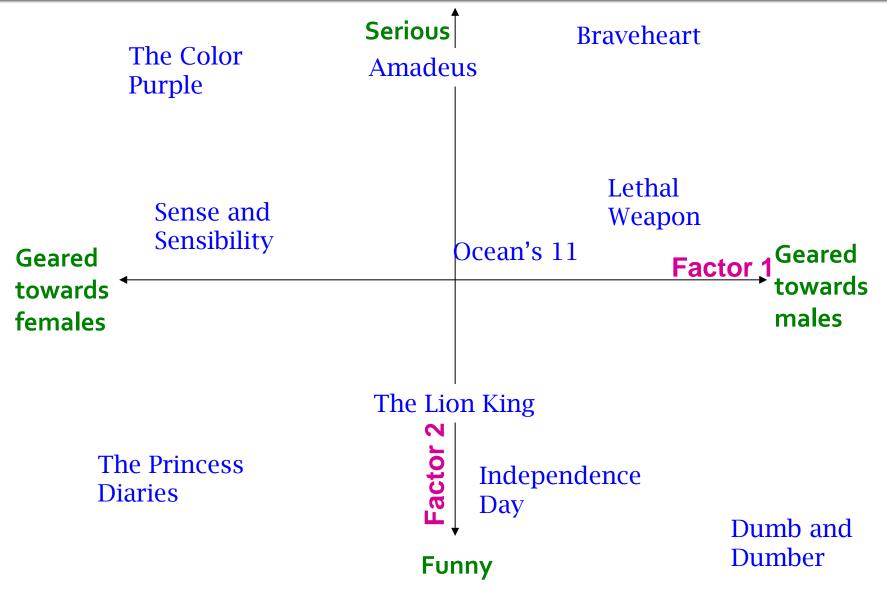
Ratings as Products of Factors



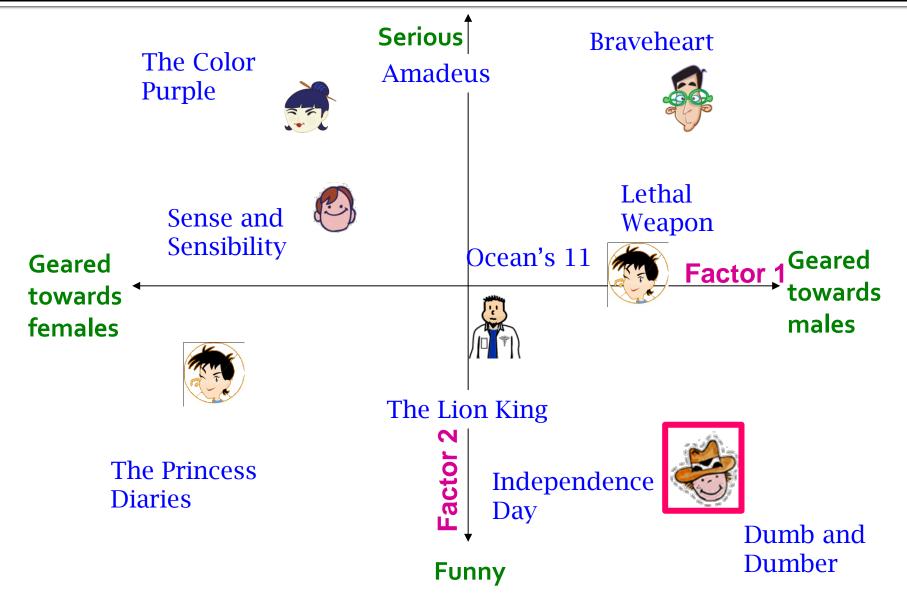
Ratings as Products of Factors



Latent Factor Models



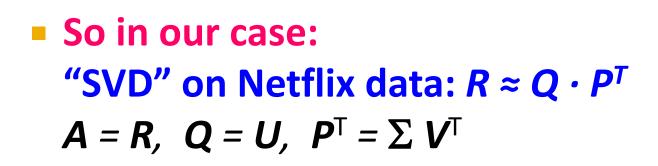
Latent Factor Models

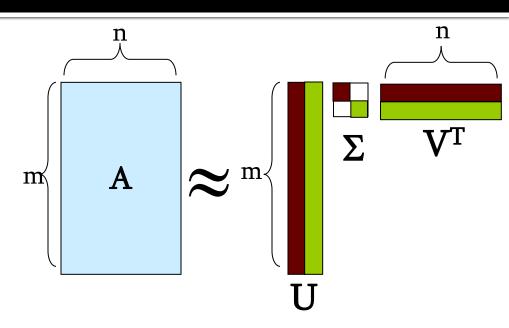


Recap: SVD

Remember SVD:

- A: Input data matrix
- U: Left singular vecs
- V: Right singular vecs
- Σ: Singular values





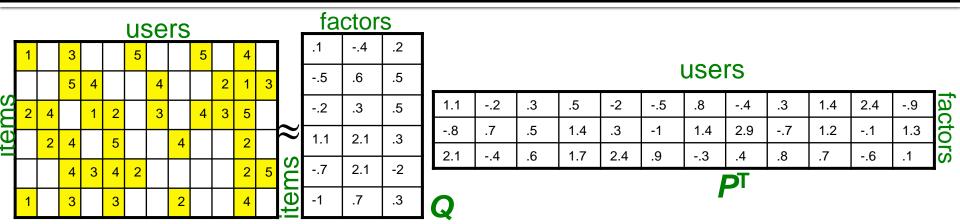
SVD: More good stuff

We already know that SVD gives minimum reconstruction error (Sum of Squared Errors):

$$\min_{U,V,\Sigma} \sum_{ij\in A} \left(A_{ij} - [U\Sigma V^{\mathrm{T}}]_{ij} \right)^2$$

- Note two things:
 - SSE and RMSE are monotonically related:
 - $RMSE = \frac{1}{c}\sqrt{SSE}$ Great news: SVD is minimizing RMSE
 - Complication: The sum in SVD error term is over all entries (no-rating in interpreted as zero-rating). But our *R* has missing entries!

Latent Factor Models



SVD isn't defined when entries are missing!
Use specialized methods to find P, Q

$$\min_{P,Q} \sum_{(i,x)\in\mathbb{R}} (r_{xi} - q_i \cdot p_x)^2 \qquad \hat{r}_{xi} = q_i \cdot p_x$$

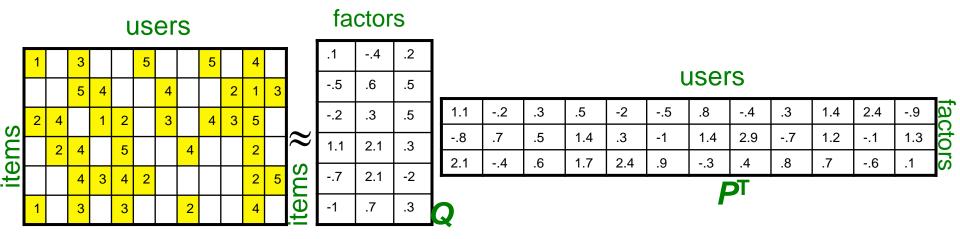
- Note:
 - We don't require cols of P, Q to be orthogonal/unit length
 - P, Q map users/movies to a latent space
 - The most popular model among Netflix contestants

Finding the Latent Factors

Latent Factor Models

Our goal is to find P and Q such tat:

$$\min_{P,Q}\sum_{(i,x)\in R}(r_{xi}-q_i\cdot p_x)^2$$

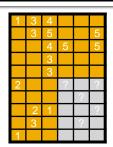


Back to Our Problem

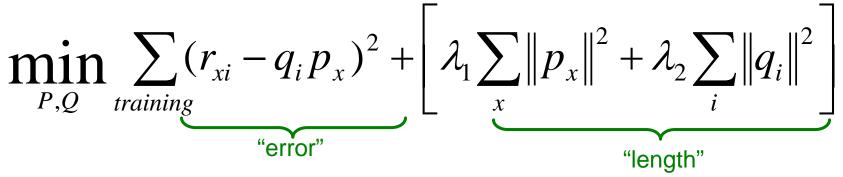
- Want to minimize SSE for unseen test data
- Idea: Minimize SSE on <u>training</u> data
 - Want large k (# of factors) to capture all the signals
 - But, SSE on <u>test</u> data begins to rise for k > 2
- This is a classical example of overfitting:
 - With too much freedom (too many free parameters) the model starts fitting noise
 - That is it fits too well the training data and thus not generalizing well to unseen test data

Dealing with Missing Entries

To solve overfitting we introduce regularization:



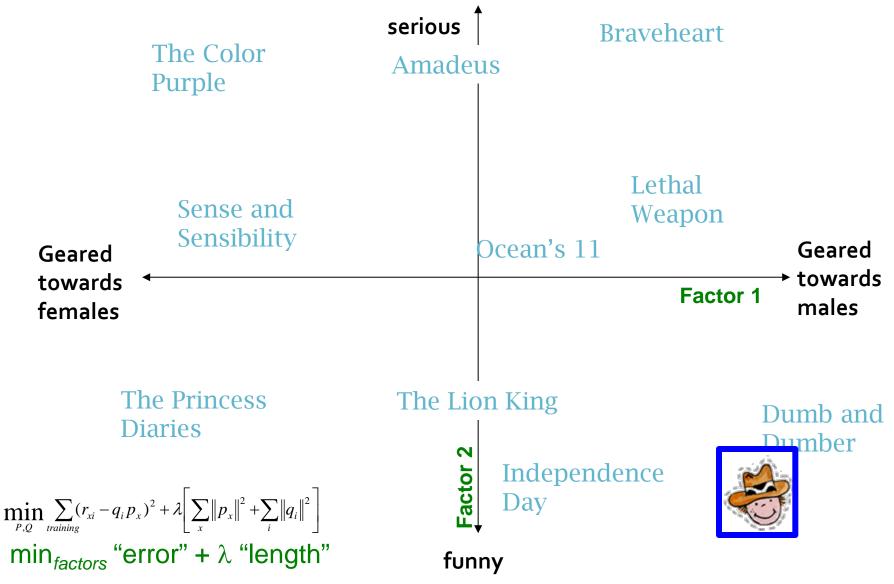
- Allow rich model where there are sufficient data
- Shrink aggressively where data are scarce



 $\lambda_1, \lambda_2 \ldots$ user set regularization parameters

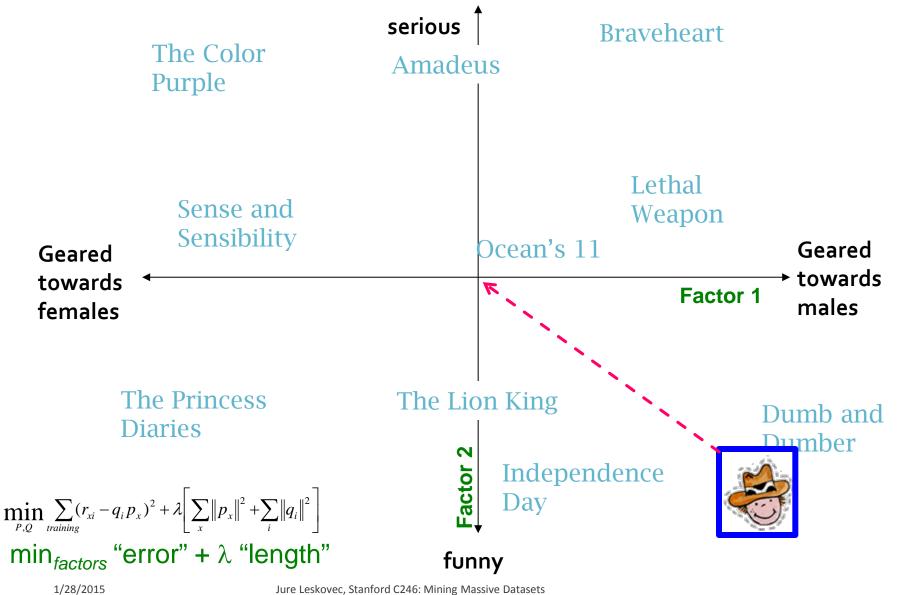
Note: We do not care about the "raw" value of the objective function, but we care in P,Q that achieve the minimum of the objective

Jure Leskovec, Stanford C246: Mining Massive Datasets

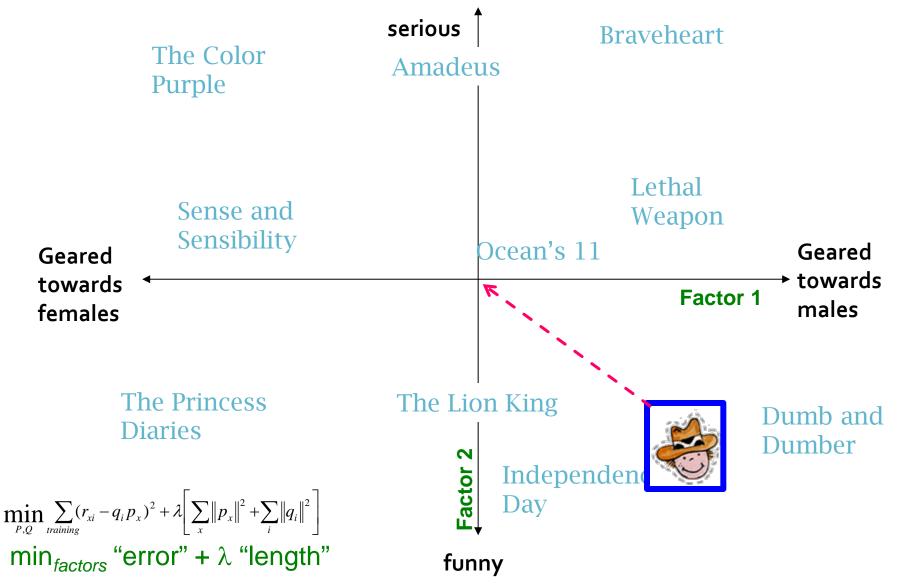


1/28/2015

Jure Leskovec, Stanford C246: Mining Massive Datasets

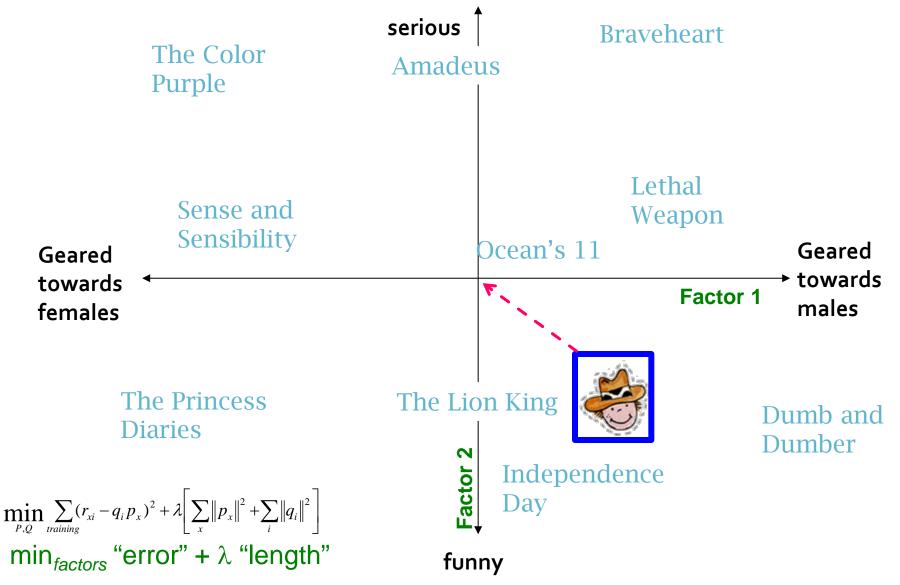


33



1/28/2015

Jure Leskovec, Stanford C246: Mining Massive Datasets



1/28/2015

Jure Leskovec, Stanford C246: Mining Massive Datasets

Stochastic Gradient Descent

Want to find matrices <u>P</u> and Q:

$$\min_{P,Q} \sum_{training} (r_{xi} - q_i p_x)^2 + \left[\lambda_1 \sum_x \|p_x\|^2 + \lambda_2 \sum_i \|q_i\|^2 \right]$$

Gradient decent:

- Initialize P and Q (using SVD, pretend missing ratings are 0)
- Do gradient descent:

•
$$P \leftarrow P - \eta \cdot \nabla P$$

•
$$Q \leftarrow Q - \eta \cdot \nabla Q$$

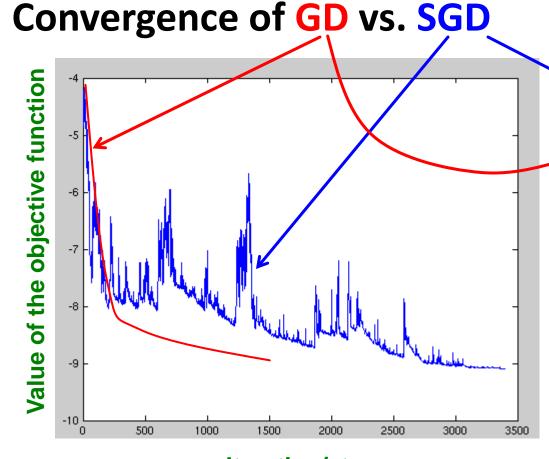
How to compute gradient of a matrix? Compute gradient of every element independently!

- where ∇Q is gradient/derivative of matrix Q: $\nabla Q = [\nabla q_{if}]$ and $\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_i p_x)p_{xf} + 2\lambda_2 q_{if}$
 - Here q_{if} is entry f of row q_i of matrix Q
- Observation: Computing gradients is slow!

Stochastic Gradient Descent

- Gradient Descent (GD) vs. Stochastic GD
 - **Observation**: $\nabla Q = [\nabla q_{if}]$ where $\nabla q_{if} = \sum_{x,i} -2(r_{xi} - q_{if}p_{xf})p_{xf} + 2\lambda q_{if} = \sum_{x,i} \nabla Q(r_{xi})$
 - Here q_{if} is entry f of row q_i of matrix Q
 - Q = Q -

SGD vs. GD



Iteration/step

GD improves the value of the objective function at every step. **SGD** improves the value but in a "noisy" way. **GD** takes fewer steps to converge but each step takes much longer to compute. In practice, **SGD** is much faster!

Stochastic Gradient Descent

Stochastic gradient decent:

- Initialize P and Q (using SVD, pretend missing ratings are 0)
- Then iterate over the ratings (multiple times if necessary) and update factors:

For each *r_{xi}*:

$$\bullet \varepsilon_{xi} = 2(r_{xi} - q_i \cdot p_x)$$

- $q_i \leftarrow q_i + \mu_1 \left(\varepsilon_{xi} p_x \lambda_2 q_i \right)$
- $p_x \leftarrow p_x + \mu_2 (\varepsilon_{xi} q_i \lambda_1 p_x)$ • 2 for loops:
 - For until convergence:
 - For each r_{xi}
 - Compute gradient, do a "step"

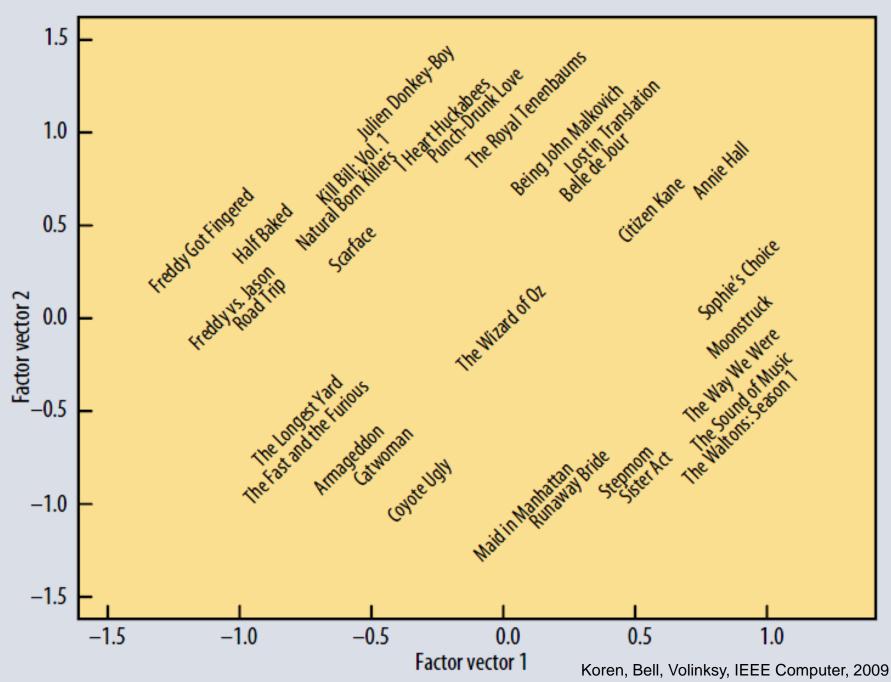
1/28/2015

(derivative of the "error")

(update equation)

(update equation)

 μ ... learning rate



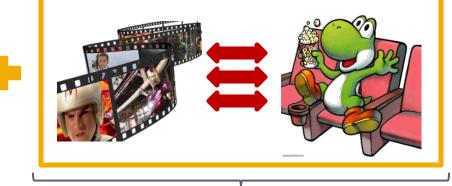
Extending Latent Factor Model to Include Biases

Modeling Biases and Interactions

Baseline predictor

- Separates users and movies
- Benefits from insights into user's behavior
- Among the main practical contributions of the competition

user-movie interaction



User-Movie interaction

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations

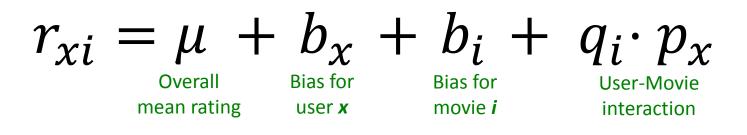
Baseline Predictor

We have expectations on the rating by user x of movie i, even without estimating x's attitude towards movies like i

- Rating scale of user x
- Values of other ratings user gave recently (day-specific mood, anchoring, multi-user accounts)

- (Recent) popularity of movie *i*
- Selection bias; related to number of ratings user gave on the same day ("frequency")

Putting It All Together



Example:

- Mean rating: μ = 3.7
- You are a critical reviewer: your ratings are 1 star lower than the mean: b_x = -1
- Star Wars gets a mean rating of 0.5 higher than average movie: b_i = + 0.5
- Predicted rating for you on Star Wars:
 = 3.7 1 + 0.5 = 3.2

Fitting the New Model

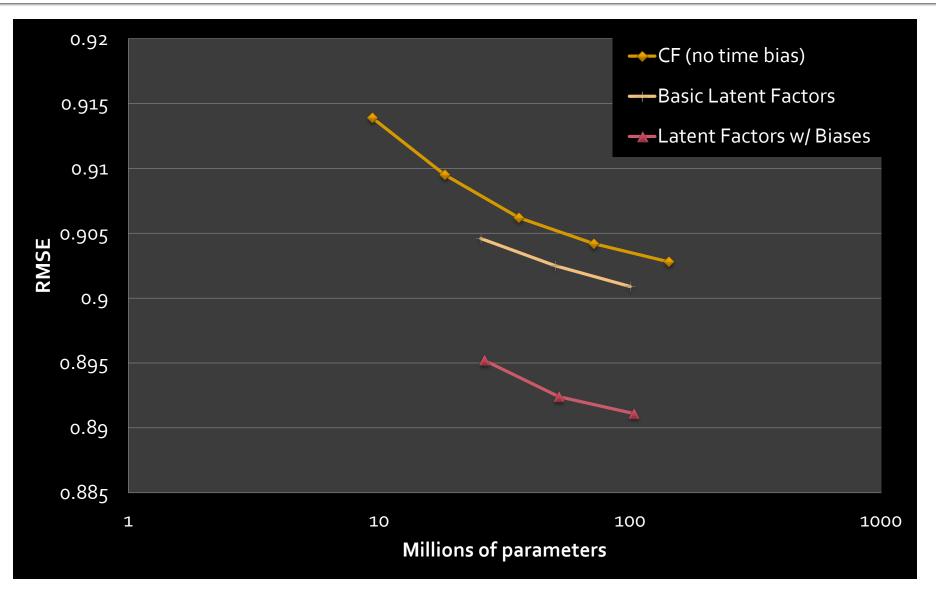
• Solve:

$$\min_{Q,P} \sum_{(x,i)\in R} (r_{xi} - (\mu + b_x + b_i + q_i p_x))^2$$
goodness of fit
$$+ \left(\lambda_1 \sum_i ||q_i||^2 + \lambda_2 \sum_x ||p_x||^2 + \lambda_3 \sum_x ||b_x||^2 + \lambda_4 \sum_i ||b_i||^2 \right)$$
A is selected via grid-search on a validation set

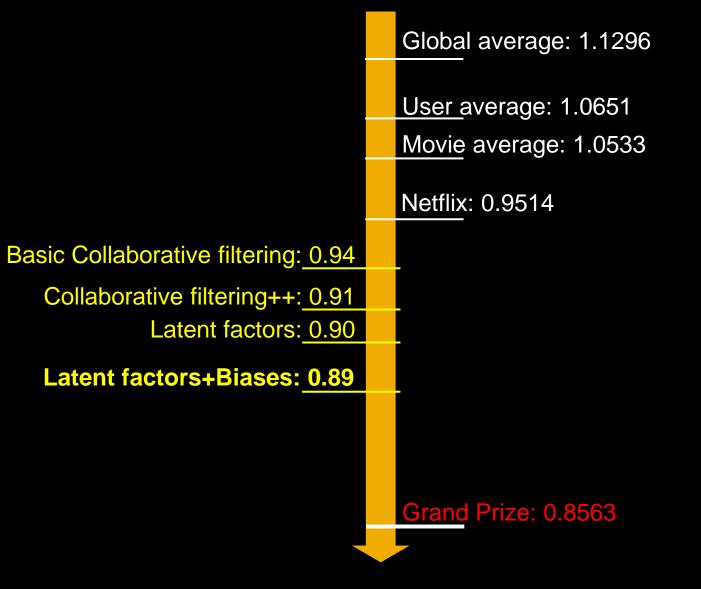
Stochastic gradient decent to find parameters

Note: Both biases b_x, b_i as well as interactions q_i, p_x are treated as parameters (we estimate them)

Performance of Various Methods



Performance of Various Methods



The Netflix Challenge: 2006-09

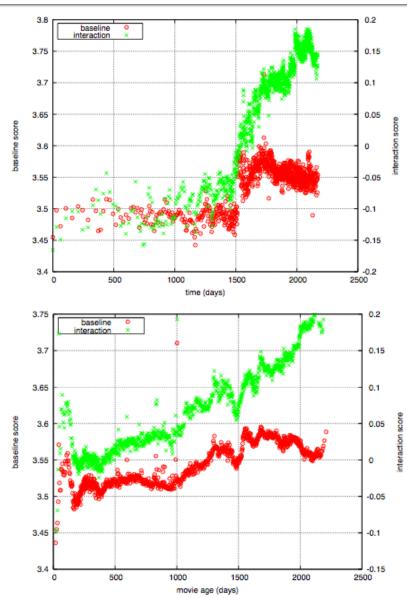
Temporal Biases Of Users

- Sudden rise in the average movie rating (early 2004)
 - Improvements in Netflix
 - GUI improvements
 - Meaning of rating changed

Movie age

- Users prefer new movies without any reasons
- Older movies are just inherently better than newer ones

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09



Temporal Biases & Factors

Original model:

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

• Add time dependence to biases: $r_{xi} = \mu + b_x(t) + b_i(t) + q_i \cdot p_x$

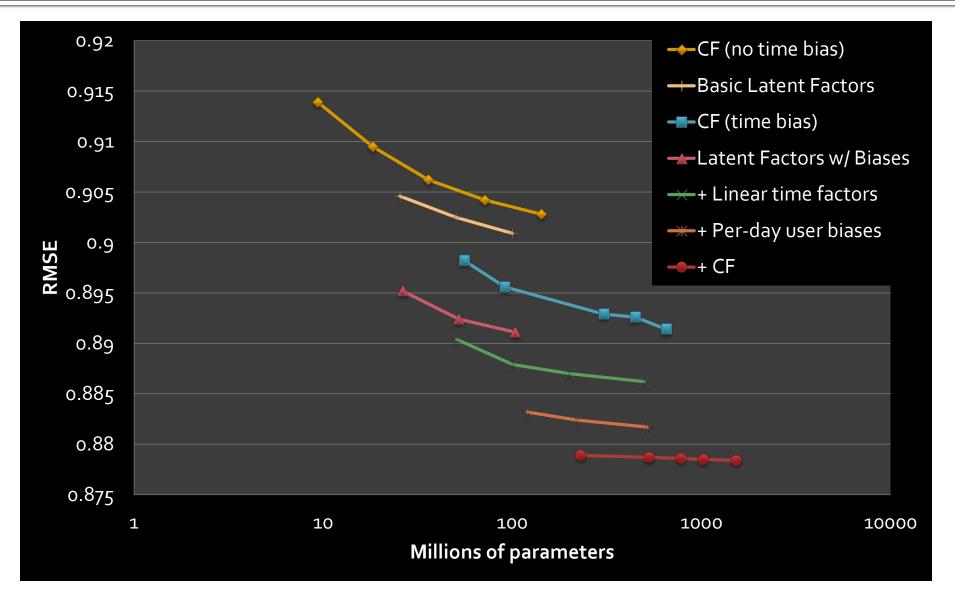
- Make parameters b_x and b_i to depend on time
- (1) Parameterize time-dependence by linear trends
 (2) Each bin corresponds to 10 consecutive weeks
 $b_i(t) = b_i + b_{i,\text{Bin}(t)}$

Add temporal dependence to factors

p_x(t)... user preference vector on day t

Y. Koren, Collaborative filtering with temporal dynamics, KDD '09 Jure Leskovec, Stanford C246: Mining Massive Datasets

Adding Temporal Effects



Performance of Various Methods

Basic Collaborative filtering: 0.94 Collaborative filtering++: 0.91 Latent factors: 0.90

Latent factors+Biases: 0.89

Latent factors+Biases+Time: 0.876

Global average: 1.1296

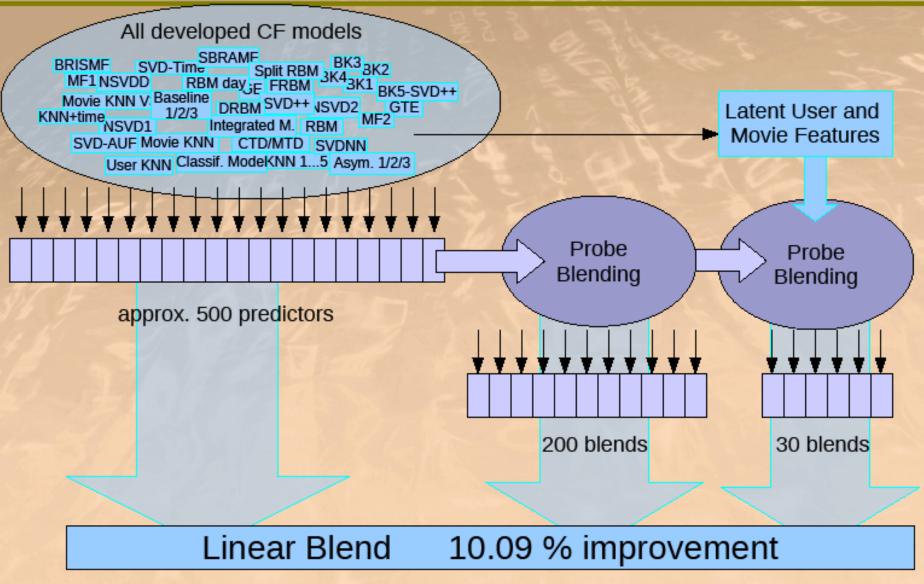
<u>User</u> average: 1.0651 Movie average: 1.0533

Netflix: 0.9514

Still no prize! ③ Getting desperate. Try a "kitchen sink" approach!

Grand Prize: 0.8563

The big picture Solution of BellKor's Pragmatic Chaos



Michael Jahrer /sAndreas Transperastive Deams BigChaos - September 21, 2009

Standing on June 26th 2009

TFLIX Netflix Prize e Rules Leaderboard Register Update Submit Download						
Rank	Team Name	Best Score	% Improvement	Last Submit Time		
1	BellKor's Pragmatic Chaos	0.8558	10.05	2009-06-26 18:42:37		
Grand	Prize - RMSE <= 0.8563					
2	PragmaticTheory	0.8582	9.80	2009-06-25 22:15:51		
3	BellKor in BigChaos	0.8590	9.71	2009-05-13 08:14:09		
4	Grand Prize Team	0.8593	9.68	2009-06-12 08:20:24		
5	Dace	0.8604	9.56	2009-04-22 05:57:03		
6	BigChaos	0.8613	9.47	2009-06-23 23:06:52		
Progra	<u>:ss Prize 2008</u> - RMSE = 0.8	616 - Winning Te	eam: BellKor in BigC	haos		
7	BellKor	0.8620	9.40	2009-06-24 07:16:02		
8	Gravity	0.8634	9.25	2009-04-22 18:31:32		
9	Opera Solutions	0.8638	9.21	2009-06-26 23:18:13		
10	BruceDengDaoCiYiYou	0.8638	9.21	2009-06-27 00:55:55		
11	pengpengzhou	0.8638	9.21	2009-06-27 01:06:43		
			0.00	0000 00 00 10 10 01		
12	xivector	0.8639	9.20	2009-06-26 13:49:04		

June 26th submission triggers 30-day "last call"

The Last 30 Days

Ensemble team formed

- Group of other teams on leaderboard forms a new team
- Relies on combining their models
- Quickly also get a qualifying score over 10%

BellKor

- Continue to get small improvements in their scores
- Realize they are in direct competition with team Ensemble

Strategy

- Both teams carefully monitoring the leaderboard
- Only sure way to check for improvement is to submit a set of predictions
 - This alerts the other team of your latest score

24 Hours from the Deadline

Submissions limited to 1 a day

Only 1 final submission could be made in the last 24h

24 hours before deadline...

 BellKor team member in Austria notices (by chance) that Ensemble posts a score that is slightly better than BellKor's

Frantic last 24 hours for both teams

- Much computer time on final optimization
- Carefully calibrated to end about an hour before deadline

Final submissions

- BellKor submits a little early (on purpose), 40 mins before deadline
- Ensemble submits their final entry 20 mins later
-and everyone waits....

NETFLIX

Rules

Netflix Prize

Home

Leaderboard

Download

Update

Leaderboard

Showing Test Score. Click here to show quiz score

COMPLETED

Display top 20 ‡ leaders.

Rank	Team Name	Best Test Score	% Improvement	Best Submit Time
Grand	<u> Prize</u> - RMSE = 0.8567 - Winning Te	a <mark>m: BellKorie Pres</mark> r	natic Chaes	_
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.0082	0.00	2000-01-10-21:2-7-70
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace_	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11
Progr	<u>ess Prize 2008</u> - RMSE = 0.8627 - W	inning Team: BellKo	r in BigChaos	
13	xiangliang	0.8642	9.27	2009-07-15 14:53:22
14	Gravity	0.8643	9.26	2009-04-22 18:31:32
15	Ces	0.8651	9.18	2009-06-21 19:24:53
16	Invisible Ideas	0.8653	9.15	2009-07-15 15:53:04
17	Just a guy in a garage	0.8662	9.06	2009-05-24 10:02:54
8	J Dennis Su	0.8666	9.02	2009-03-07 17:16:17
19	Craig Carmichael	0.8666	9.02	2009-07-25 16:00:54
20	acmehill	0.8668	9.00	2009-03-21 16:20:50

/28/2015

Progress Prize 2007 Jure Leskovec, Stanford C246: Mining Massive Datasets

Million \$ Awarded Sept 21st 2009

		2009
1	NETFLIX	DATE 09.21-09
	ORDER OF BellKor's Pragmatic Chaos	s 1,000,000 ≌
In electrony of the	ORDER OF DELINUS TRAGMATIC CHAOS	
	AMOUNT ONE MILLION	°°/100
	EOR The Netflix Prize Reed 7	fastings

- Some slides and plots borrowed from Yehuda Koren, Robert Bell and Padhraic Smyth
- Further reading:
 - Y. Koren, Collaborative filtering with temporal dynamics, KDD '09
 - http://www2.research.att.com/~volinsky/netflix/bpc.html
 - http://www.the-ensemble.com/