
1

Community structure in networks:
Girvan-Newman algorithm improvement

Ljiljana Despalatović⇤, Tanja Vojković⇤⇤, Damir Vukičević⇤⇤
⇤The University Department of Professional Studies, University of Split, Croatia

⇤⇤Faculty of Natural Sciences and Mathematics, University of Split, Croatia
ljiljana.despalatovic@oss.unist.hr

Abstract—Real world networks often have community struc-

ture. It is characteristic that the groups of nodes are connected

denser within themselves and rarely with each other. The Girvan-

Newman method for the detection and analysis of community

structure is based on the iterative elimination of edges with the

highest number of the shortest paths that go through them.

By eliminating edges the network breaks down into smaller

networks, i.e. communities. This paper introduces improved

Girvan-Newman method where multi-edge removal is allowed,

and presents the results of the application of both methods to the

existing real social network (Zachary karate club), the computer-

generated network and the tumor genes and their mutations

network. The improved algorithm in practice reduces the number

of operations, but retains the same computational complexity, so

it cannot be applied to networks with a very large number of

nodes. The most important feature of our improvement is that

the result is graph-theoretical invariant, while original algorithm

depends on the vertex labeling.

Index Terms—Girvan-Newman, complex networks algorithms,

edge betweenness

I. INTRODUCTION

A network is a set of nodes and links connecting them.
Studying network properties belongs into graph theory area
which is a part of discrete mathematics. With the devel-
opment of computers that can perform operations on very
large amounts of data, modeling and analysis of network
performance is extended to other scientific disciplines and
becomes an interdisciplinary topic.

In mathematics, network is represented with a graph, where
nodes are vertices and links edges. Graph is ordered pair G =
(V,E), where ? 6= V = V (G) is set of vertices, E = E(G)
is set of edges such that every e 2 E connects two vertices
u, v 2 V called endpoints of e. Two connected vertices are
adjacent vertices and we say that the edge and its endpoint
are incident. A loop is an edge that connects a vertex to itself.
The number of edges incident to a given vertex is the degree
of that vertex, where every loop is counted twice. A graph is
regular if all its vertices have the same degree.

In the real world, complex systems in different disciplines
form networks such as social networks, World Wide Web,
transport networks, citation network, metabolic networks,
protein interaction networks, and gene regulatory network.
Network exist in almost every area of human existence,
from neuroscience to sociology, from economy to information

technology. Those networks are called complex networks or
real-world networks. Although graph theory is almost 300
years old (Euler solution for Könisberg bridges problem in
1736. is considered as the birth of the graph theory), the study
of complex networks is a young discipline, only a little more
than a decade old.

Unlike random (Erdos-Renyi model) and regular graphs,
which were the focus of the graph theory before the Erdos-
Renyi model, most real world networks are not random nor
regular and have common topological properties. Some of
them are small world effect, scale-free property, clustering or
network transitivity, and community structure.

The property of complex networks that nodes are divided
into groups or communities in which the links connecting
nodes within the community are dense and the connections
between nodes from different communities are sparse is the
focus of this study. The possibility of detecting communities
in networks can have practical applications. Communities in
social networks could represent people with similar prefer-
ences or interests. The epidemiology could use the results to
recognize the communities and the connections between peo-
ple in order to prevent the spread of disease [1]. Kininmonth
et al. [2] used the community detection methods to analyze
genetic information exchange among the coral reefs through
transport larvae. Communities on the Internet could be pages
with similar content. From these examples, it is clear that
the detection of communities in complex networks has broad
application in a variety of scientific disciplines.

The rest of the paper is organized as follows. In Section
2 we present methods used for community structure detection
in complex networks. Section 3 describes the Girvan-Newman
method and our improvement of the method. In Section 4 we
introduce modularity, a qualitative measure of network decom-
position. Section 5 presents and discusses results achieved with
our modification, and finally, Section 6 concludes the article.

II. METHODS FOR COMMUNITY STRUCTURE DETECTION
IN COMPLEX NETWORKS

Main methods for finding communities in a network are
variants of hierarchical clustering methods used in social
network analysis [3]. Hierarchical clustering could be ag-
glomerative or divisive, depending on decision to start from

MIPRO 2014, 26-30 May 2014, Opatija, Croatia

997



2

empty network and add the edges to form communities, or
to start with complete network and remove edges until the
communities are formed. In both cases, the process could be
represented with dendrogram, which is a hierarchical tree with
clusters as a nodes in tree, and single nodes as leaves. In
agglomerative process, dendrogram is built from leaves to the
root, and in divisible process from root to the leaves (Fig. 3a).

A. Agglomerative methods.

The traditional hierarchical agglomerative clustering algo-
rithm starts with empty graph which consist of nodes of
original graph without edges. In every step of the algorithm
edges are added, starting from "stronger" to "weaker" links.

Edge weight can be calculated in different ways. For ex-
ample, edge weight could be the number of node-independent
or edge-independent paths between vertices. Two paths are
node-independent if they share no other vertices than the path
endpoints. Similarily, they are edge-independent if they share
no edges. The number of those paths represents the number of
vertices (or edges) which should be removed from the graph
in order to disconnect path endpoints [4].

New communities are formed in the consecutive steps of the
algorithm. Iterative algorithm process could be stopped at any
iteration, but usually, it is done until all the edges are added
to the graph. In the end, all the nodes and edges form one
community.

B. Divisive methods.

Opposite of agglomerative methods, divisive methods start
from the complete graph and, in every iteration, remove the
edges with the highest weight. In every step weight calculation
is repeated, since the weight of remaining edges changes with
edge removal. The Girvan-Newman algorithm, which will be
described in detail in the next section, is an example of divisive
algorithm. In that algorithm, the order of removal of the edges
with the highest weight is not defined, so it could produce
different results depending on implementation. Modifications
of that algorithm exist in which the community structure is
built for every possible order of highest weight edge removal.

III. GIRVAN-NEWMAN METHOD

Girvan-Newman method is divisive method where edge
weight is the number of shortest paths passing through the
edge. That value is called edge betweenness and it is a general-
ization of central vertex betweenness which determines vertex
influence on other vertices in network. Vertex betweennes
is the number of shortest paths passing through the vertex,
therefore, edge betweenness is the number of shortest paths
passing through the endpoints of the edge.

We can describe Girvan-Newman algorithm in the following
way:

1) Calculate edge betweenness for every edge in the graph.

3 2 3

1 1 1 2

1

(a) A tree

19
6

11
6

4
3

5
6

1
3

0

2
3

5
6

(b) Not a tree

Figure 1: The number of shortest paths in a graph: a) In a tree
there is unique path from source to every vertex. b) If graph
is not a tree there is more than one path to every vertex. Each
edge has weight which is fraction of the paths flow through
the edge.

2) Remove the edge with highest edge betweenness.
3) Calculate edge betweenness for remaining edges.
4) Repeat steps 2-4 until all edges are removed.

In order to calculate edge betweenness it is necessary to
find all shortest paths in the graph. The algorithm starts with
one vertex, calculates edge weights for paths going through
that vertex, and then repeats it for every vertex in the graph
and sums the weights for every edge.

Let us choose source vertex s 2 V in a graph. In the most
simple case graph is a tree (Fig. 1a) and there exists only
one shortest path from the source vertex to any other vertex.
Starting from the leaves we assign the value 1 to the edges
that connect leaves with the rest of the tree (because there
is only one shortest path to s passing through that edge).
Moving upwards in the tree we assign edge value as a sum of
values assigned to the edges directly below it, increased by 1.
The number of shortest paths in the tree from source vertex
to every other vertex passing through particular edge is that
edge weight value. By repeating the process for every vertex
and calculating the sum of weight values for every edge, we
calculate edge betweenness for every edge.

If a graph is not a tree (Fig. 1b), it is possible that more
than one shortest path connects source vertex with some other
vertex. In that case, value k

l

is assigned to the edge on shortest
path to source vertex, where k is the number of shortest paths
to source vertex from the endpoint of the edge that is closer
to source and l is the number of shortest paths from source
vertex to other endpoint of the edge, and multiplied by the

998



3

number of shortest paths from source that pass through edges
below farther vertex incresed by one. Assignment starts from
the edge that has maximum distance from source vertex.

The algorithm for calculating edge betweenness is per-
formed in two parts. In the first part of the algorithm, using
breadth-first search, distance from source is assigned for every
vertex and also the number of shortest paths from source to
vertices. In the second part, starting from edge incident to
the vertex with maximum distance from the source vertex
as endpoint (the last vertex visited in the first part on the
algorithm), the numbers of shortest paths passing through
edges are calculated for every edge. For every vertex i 2 V the
triple (d

i

, w
i

, b
i

) is calculated, where d
i

is the distance from
the source vertex, w

i

is the number of shortest paths from
source vertex to vertex i, and b

i

is the number of shortest
paths between source vertex to any vertex in graph that pass
through vertex i.

For this algorithm we denote Adj(v) as the set of all vertices
adjacent to v 2 V .

The first part of the algorithm for vertex marking:

1) For initial vertex s 2 V let d
s

= 0, w
s

= 1, b
i

= 0.
2) Let d

v

= inf , w
v

= 0, b
v

= 1 for all v 6= s 2 V .
3) Create queue Q, Q {s}. Create list L, L {s}.
4) While Q is not empty:

a) Dequeue i Q.
b) For each vertex j 2 Adj(i):

i) If d
j

= inf then d
j

= d
i

+1, w
j

= w
i

. Enqueue
j ! Q. Push j ! L.

ii) If d
j

6= inf and d
j

= d
i

+ 1 then w
j

+ = w
i

.
iii) If d

j

6= inf and d
j

< d
i

+ 1, do nothing.

Efficient implementation of this part of the algorithm could be
done by using abstract data type queue.

The second part of the algorithm starts from the vertex that
was last marked in the first part of the algorithm and visits
vertices in reverse order than they were visited in the first part
of the algorithm. Only one shortest path from source passes
through the last marked vertex.

The second part of the algorithm for edge betweenness
calculation:

1) While L is not empty:
a) Pop i L.
b) For each vertex j 2 Adj(i):

i) If d
i

< d
j

then b
i

= 1 +
P

j

�
ij

.
ii) If d

i

> d
j

then �
ij

= wj

wi
⇤ b

i

.

Both parts of the algorithm are performed for all source
vertices s and edge betweeness for every edge is calculated as
a sum of the edge betweennesses calculated in every step.

The computational complexity of this part of algorithm is
O(mn), where m is the number of edges and n is the number
of vertices. After each edge betweenness calculation, the edge
with highest edge betweenness is removed and the algorithm
is repeated until there is no remaining edge. The algorithm

complexity is therefore O(m2n).

In complex networks it is often the case that more edges
have the same highest edge betweenness. Since the recalcula-
tion of edge betweenness has O(mn) complexity, in order to
reduce the number of calculations we could remove all edges
with the highest edge betweenness in the same step. On the
other side, Girvan-Newman algorithm does not say anything
about the order of removal for those edges leaving that detail
to implementation.

Consequently, we introduce modification of the Girvan-
Newman algorithm:

1) Calculate edge betweenness for every edge in the graph.
2) Remove all edges with highest edge betweenness.
3) Recalculate edge betweennes for remaining edges.
4) Repeat 2-4 until graph becames empty.

Worst-case time complexity is still O(m2n), but in networks
with strong community structure the number of calculations
could be significantly reduced.

The main problem of Girvan-Newman algorithm is the fact
that it is not really an algorithm that has a graph as input and
community structure as output. Namely, if the labeling of the
vertices of the graph is rearranged, than the result of Girvan-
Newman algorithm may change. Hence, there is no unique
output for a given input (which should be a property of any
algorithm). Our modification amends this shortcoming of the
Girvan-Newman algorithm. Namely, our community structure
indeed does not depend on the labeling of the vertices of the
graph.

Also, this modification may reduce the number of operations
of the algorithm. However, this strongly depends on the
observed graph. There are graphs for which no improvement
will be obtained and there are graphs for which significant
improvement will be obtained. The most drastic example may
be edge-transitive graphs (i.e. graphs such that for each two
edges e and f there is the automorphism that maps e to f ).
Standard Girvan-Newman algorithm has complexity O(m2n)
on this graphs also, while our algorithm does not repeat
calculation for each edge, but does everything in a single step
reducing complexity to O(mn).

IV. MODULARITY

The algorithms used for community structure detection in
networks give an overview of possible communities. Simula-
tion of decomposition done by Girvan-Newman method gives
more information of network structure. Knowing network
structure, it is possible to predict critical connections in the
network, and therefore, control the network. For example, in
the electricity distribution network detecting critical connec-
tions could be a method to prevent the collapse of the system
that has occurred in the United States in 1965, 1996, and in
September 2011.

However, the question is when an optimal decomposition of
a network into communities is reached. To answer that ques-

999



4

tion it is not necessary to decompose network in communities
of the size one. Qualitative measure of network decomposition
is called modularity [5].

For a particular partition of a network into k communities,
let us define k ⇥ k matrix E such that e

ij

is the fraction of
number of edges that connect vertices between community
i to community j in the total edge number. Then on the
diagonal of the matrix E is the fraction of edges that are
located within the same community, so the trace of the matrix
tr(E) is the fraction of edges that will not be removed in
process of removing edges. A good partition is the partition
with high value of the trace. However, that number will be
the highest in the case where all the vertices are in the same
community, so it does not always give necessary information
about the structure of the communities.

We define modularity:

Q =
X

i

(e
ii

� a
i

)2 = tr(e)� kE2k,

where kk is the sum of matrix elements, as the fraction of
edges that connect vertices within communities decreased with
the expected fraction of edges within partition in random
graph [6]. When the fraction of edges within the communities
is higher than it is in random graph, the value is Q = 0.
As Q is approaching the value 1, the community structure in
network is better. In most cases, the value of Q is between
0.3 and 0.7 [5].

Value Q is calculated in every step of divisible algorithms.
The maximum value q gives us the best partition of the graph.

V. RESULTS

We tested the Girvan-Newman algorithm with the sin-
gle edge removal and modified algorithm with the multiple
edges removal on three different complex networks. The first,
Zachary’s karate club; the second, computer generated random
network; and the third, network of cancer genes with co-
occurring and anti-co-occurring mutations.

A. Zachary’s Karate Club

Zachary’s karate club is the example of the real-world
network for which it is known how the network was split
in reality. Fig. 2 shows the friendship network between 34
members of a karate club at a US university observed by an
anthropologist Wayne Zachary for a period of three years, from
1970 to 1972 [7].

At the beginning of the study there was a conflict between
the club president (node 34) and the karate instructor (node
1). During the study club was divided into two parts and
has become the most frequently tested dataset in the network
communities detection area. The Girvan-Newman algorithm
divides the network into two communities with an accuracy of
97% (which is also Zachary’s accuracy) with wrong classifica-
tion of the node 3 (in Zachary’s study the node 9 was wrongly

15

19

24

27

23

30

33

21

18

2

22
8

1

4

13

20

31

10

3

34

29

14

9

16

7

6

17

12
11

5

26

25

28
32

Figure 2: Zachary karate klub

classified). Fig. 3a shows the dendrogram generated using the
Girvan-Newman algorithm, while Fig. 3b shows the dendro-
gram generated using implementation of modified method with
multiple edge removal. It is clear that our method leads to
faster separation of the communities i.e. reduced number of
operations (Fig. 4). The algorithm modularity values are high
when the network is divided into two communities which is
expected concerning the nature of community and the process
of the separation. However, modularity is the largest in the
network partition to the three communities. On Fig. 2 we can
see that there exists a community of five nodes (5, 6, 7, 11,
17) with high number of links within community and small
number of links to other communities.

B. Computer generated network

In addition to real-world examples we analysed computer-
generated network with strong community structure. For this
purpose, network with 48 vertices divided into communities
of 16 vertices is generated with probability p

in

that edge is
within community and p

out

that edge is between communities.
Fig. 5 presents the modularity values for Girvan-Newman
algorithm and for our multiple-edge-removal modification of
the algorithm. The modularity function maximum is reached
in both algorithms when the network is divided in three
communities, but needed fewer steps to complete calculation
in the latter case. Both algorithms correctly classify all nodes.

C. The network of cancer genes with co-occurring and anti-
co-occurring mutations

The network of cancer genes with co-occurring and anti-
co-occurring mutations (CCA network) is presented in [8].
CCA networks are studied in order to better understand the
development of cancer and community detection in such
networks is an important property. The cancer genes are nodes
and co-occurring and anti-co-occurring mutations are links
between them. The tested network has 306 nodes and 1366

1000



5

(a) Single edge removal

(b) Multiple edge removal

Figure 3: Zachary’s karate club

(a) Single edge removal

(b) Multiple edge removal

Figure 4: Zachary’s karate club - modularity

edges, of which 1355 are co-occuring and 11 are anti-co-
occuring.

The number of iterations in this example needed to divide

(a) Single edge removal

(b) Multiple edge removal

Figure 5: Computer generated network modularity

the network into communities with modularity 0 is much
smaller when multiple edge removal is done. Both algorithms
correctly classify all the nodes.

VI. CONCLUSION

Community detection in networks is important for different
scientific and practical areas. It is not a surprise that in this
article we refer to articles of physicists, sociologists, mathe-
maticians, biologists, epidemiologists, etc. Complex network
research is young discipline and with its rapid development
reflects the flourishing of interdisciplinary research. Graph
theory is widely used in various applications in different areas.
Some of them are mentioned in this article. The robustness of a
network and analysis of system collapse due to the elimination
of nodes or links between nodes is of great importance in
the study of networks. How can we stop the propagation of
diseases? How can we determine the most important airlines
or highways? Algorithms decribed in this article help us to
experience the world around us.

Girvan-Newman algorithm is one of the first algorithms
that deals with detecting communities in networks and as
such suffers from certain ”childhood diseases”. Number of
operations is proportional to m2n, or n3 for sparse networks,
which limits performance on networks with up to tens of

1001



6

(a) Single edge removal

(b) Multiple edge removal

Figure 6: A network of cancer genes with co-occurring and
anti-co-occurring mutations modularity

thousands of nodes. Methods based on modularity, [6] [9] [10],
the use of the eigenvectors of matrices [11], and greedy algo-
rithms [12] give us smaller complexity than Girvan-Newman
method. Regardless, in this article we focused on the Girvan-

Newman method and its improvement, as a starting point for
any subsequent methods. This small algorithm improvement
reduces the number of operations, but still not enough to apply
it on large complex networks. But on smaller networks it has
a high percentage of correct classification of nodes and it is
independent of vertex labeling, which puts it ahead of other
methods.

REFERENCES

[1] S. Kitchovitch and P. Liò, “Community Structure in Social Networks:
Applications for Epidemiological Modelling,” PloS one, vol. 6, no. 7,
p. e22220, 2011.

[2] S. Kininmonth, M. J. H. Van Oppen, and H. P. Possingham, “Deter-
mining the community structure of the coral seriatopora hystrix from
hydrodynamic and genetic networks,” Ecological Modelling, vol. 221,
no. 24, pp. 2870–2880, 2010.

[3] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang,
“Complex networks: Structure and dynamics,” Physics Reports, vol. 424,
no. 4-5, pp. 175–308, 2006.

[4] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 99, no. 12, pp. 7821–7826, 2002.

[5] M. E. J. Newman and M. Girvan, “Finding and evaluating community
structure in networks,” Physical Review E - Statistical, Nonlinear and
Soft Matter Physics, vol. 69, no. 2 Pt 2, p. 16, 2004.

[6] A. Clauset, M. E. J. N. Newman, and C. Moore, “Finding community
structure in very large networks,” Physical Review E, vol. 70, no. 6, pp.
1–6, 2004.

[7] W. W. Zachary, “An information flow model for conflict and fission in
small groups,” Journal of Anthropological Research, vol. 33, no. 4, pp.
452–473, 1977.

[8] Q. Cui, “A network of cancer genes with co-occurring and anti-co-
occurring mutations,” PLoS ONE, vol. 5, no. 10, p. 8, 2010.

[9] M. E. J. Newman, “Fast algorithm for detecting community structure in
networks,” Physical Review E, vol. 69, no. 2, pp. 1–5, 2004.

[10] D. Chen, Y. Fu, and M. Shang, “A fast and efficient heuristic algorithm
for detecting community structures in complex networks,” Physica A:
Statistical Mechanics and its Applications, vol. 388, no. 13, pp. 2741–
2749, 2009.

[11] M. E. J. Newman, “Finding community structure in networks using the
eigenvectors of matrices,” Phys. Rev. E, vol. 74, p. 036104, Sep 2006.

[12] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008.

1002


